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Abstract. In this paper, we study the existence of nontrivial symmetric solution for the second-
order three-point boundary value problem for a function f:[0,1] x R — R which is continuous
and f(z,-) is symmetric on [0,1]. We shall formulate conditions on f which guarantee the
existence of nontrivial symmetric solution. As an application, we also give some examples to
demonstrate our results.
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1. INTRODUCTION

In this paper, we study the existence of nontrivial symmetric solution for the three-
point boundary value problem

W' @)+ ftu@) =0, 0<t<l, (1.1)
u(0) = u(l) = au(n), (1.2)

where n € (0,1), ¢ € R, f € C([0,1] xR,R), f(:,x) is symmetric on [0, 1] for every
x € R, and R = (—o0, +0).

The three-point boundary value problems for ordinary differential equations arise
in a variety of different areas of applied mathematics and physics. For example, the
vibrations of a guy wire of a uniform cross-section and composed of three parts of
different densities can be set up as a three-point boundary value problem; also many
problems in the theory of elastic stability can be handled as a multi-point problem.
Many authors studied nonlinear three-point or multi-point boundary value problems
and many excellent results have been established. For detail, we refer the reader
to [2-9, 11-17, 19] for some recent results of nonlinear three-point boundary value
problems. But the problems of the existence of symmetric positive solutions to the
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second-order three-point boundary value problems has received very little attention
in the literature to the best of the author’s knowledge. Very recently, Kosmatov [10]
studied the existence of triple symmetric solutions for a multi-point boundary value
problem by Leggett—Williams fixed point theorem. In [18], we studied the existence
of symmetric positive for boundary value problem (1.1), (1.2) by Schauder’s fixed
point theorem. Motivated by the above mentioned papers, in this paper, we shall
study the existence of nontrivial symmetric solution for the boundary value problem
(1.1), (1.2) and establish some simple criteria of this problem.

The paper is organized as follows. In Section 2, we obtain some existence results
for nontrivial symmetric solution of the boundary value problem (1.1), (1.2). In Sec-
tion 3, as an application, we give some examples to illustrate the results we obtained.
The key tool in our approach is the following Leray—Schauder nonlinear alternative,
see for example [1].

Theorem 1.1. Let E be Banach space and §2 be a bounded open subset of E,
0€ 2, T:2 — E be a completely continuous operator. Then, either there exist
x €082 and A > 1 such that T (x) = AXx, or there exists a fixed point x* € 2.

2. MAIN RESULTS

Let E = C([0,1]) be a Banach space equipped with norm ||y || = sup;¢[o,17 1y ()|
for any y € E. A solution u(¢) of the boundary value problem (1.1),(1.2) is called
a nontrivial symmetric solution if u(z) £ 0 and u(¢) = u(1 —¢) for all t € [0,1]. To
state and prove the main results of this paper, we first give some lemmas.

Lemma 2.1. Let h € C([0,1]),a # 1, n € (0,1), then the three-point boundary
value problem

w' +h(t)=0, 0<t<l, 2.1
u(0) =u(l) = au(n) (2.2)
has a unique solution
1 o 1
u(t) :/ G(t,s)h(s)ds—l——/ G(n,s)ds, 2.3)
0 l—aJo
where
x(I—y) for0=x=y=1,
Gx.y) =
y(l=x) for0<y=<x=<I

Proof. From (2.1) we have u”(t) = —h(t). For t € [0, 1], integrating from O to ¢,
we get

u'(t) = —/Oth(s)ds+B.
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For ¢ € [0, 1], integrating from O to ¢ yields u(t) = —fé (fox h(s)ds) dx+ Bt+ A,
i.e.,

t
u(t) = —/0 (t—s)h(s)ds+ Bt + A.

Thus, u(0) = A and
1
u(l) = —/ (1—=s)h(s)ds+ B+ A,
0

n
u(n) = —/O (n—s)h(s)ds+nB + A.

Combining with (2.2) we conclude that
1
B = / (1—s5)h(s)ds,
0

an (! o "
A= m/o (1—s)h(s)ds—m/0 (n—s)h(s)ds.

Therefore, the three-point boundary value problem (2.1), (2.2) has a unique solution
t 1
ut) = —/ (t—s)h(s)ds+t/ (1—s)h(s)ds
0 0
an ! o n
+—/ (l—s)h(s)ds——/ (n—s)h(s)ds
l—« 0 l—« 0

1 1
— / G(t,s)h(s)ds + L/ G(n,s)ds.
0 l—aJo
This completes the proof. U

The following lemma is obvious.

Lemma 2.2. Forany x,y € [0, 1], we have
(1) Glx,y) =G —-x,1-y), 1
2) G(x,y) =Gy, y)=y(l—-y) =g
Lemma 2.3. Leta # 1, n € (0,1), and h € C([0, 1]) be symmetric on [0,1]. Then

the unique solution u(t) of the boundary value problem (2.1), (2.2) is symmetric on
[0,1].

Proof. From (2.3) we have

o

u(t) = /01 G(t,s)h(s)ds + m/ol G(n,s)h(s)ds.
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Therefore, for any ¢ € [0, 1], by Lemma 2.2 we get

u(l—t) =/(;1G(1—t,s)h(s)ds+&/OlG(n,s)h(s)ds
0 o 1
2/ G(l—t,l—s)h(l—s)d(l—s)+—/ G(n,8)h(s)ds
1 I—aJo

1 1

_ / Gl hs)ds + / G(n, )h(s)ds
0 —a@Jo

=u(t).

i.e., the solution u(¢) is symmetric on [0,1]. O

Define an integral operator 7: E — E by the formula

1 o 1
Tu(t) = /(; G(t,s) f(s,u(s))ds + E/o G(n,s) f(s,u(s))ds. 2.4)

By Lemma 2.1, the boundary value problem (2.1), (2.2) has a solution u = u(t) if
and only if u is a fixed point of the operator 7" defined by (2.4). So we only need to
seek a fixed point of 7' in E. By the Ascoli—Arzela theorem, we can prove that T is
a completely continuous operator.

Now we present and prove our main results.

Theorem 2.1. Suppose that f € C([0,1] x R,R), f(¢,0) # 0 « # 1, and there
exist two non-negative symmetric functions a,b € L'[0, 1] such that

| f(t,x)] <a@)|x|+b(t) fora.etel0,1]andall xR
and

/1 G(s,s)a(s)ds + —/ G(n,s)a(s)ds < 1.

Then the boundary value problem (1.1), (1.2) has at least one nontrivial symmetric
solution u* € C([0,1]).

Proof. Let

1
A =/0 G(s, s)a(s)ds—l——[ G(n,s)a(s)ds (2.5)
and .
B :/ G (s, s)b(s)ds—i——/ G(n,s)b(s)ds.
0

Then we have A < 1. Since f(¢,0) s 0, there exists a subinterval [0, 7] C [0, 1] such
that
min |f(t 0)| > 0.

o0<t<
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On the other hand, the inequality b(¢) > | f(¢,0)| holds for a.e. ¢ € [0, 1] and thus we
know that B > 0. Put r = B(1— A)~! and
2 ={u € C([0,1]) : u is symmetric on [0, 1] and |ju| < r}.
Suppose that u € 52 and A > 1 are such that Tu = Au. Then
Ar=Alul = ITull = max [(Tw)®)]

1
|1 al Jo G(n,9)| f(s,u(s))|ds

/ Gs.9)| f(s.u(s))|ds + —4—
1
< / G (s.5)(a(s)|u(s)| + b(s))ds
0
1
Ll / G (0. 5)(a(s)u(s)| +b(s))ds
[1—a| Jo
1
< ([ G(s,s)a(s)ds + —/ G(n, s)a(s)ds) [l ]|
0

1
+[ G(s, s)b(s)ds+—/ G(n,8)b(s)ds
0
= Allu||+ B = Ar + B.
Therefore,

B B
A<A+ D mAf P Ay (1-A)=1,
At =AY oy S AT

which contradicts the inequality A > 1. By Theorem 1.1, T has a fixed point u* € £2.

By f(z,0) #£ 0, the boundary value problem (1.1), (1.2) has a nontrivial symmetric
solution u™ € C([0, 1]). This completes the proof. a

Theorem 2.2. Suppose that f € C([0,1] xR, R), f(¢,0) £ 0, a # 1, and there
exist two non-negative symmetric functions a,b € L'[0, 1] such that

| f(t,x)] <a@)|x|+b(t) fora.etel0,1]andall xR

Assume that one of the following hypotheses is satisfied:
(1) There exists a p > 1 such that a € L?[0,1] and

1 _ 1/q p
/ap(s)ds< 41 “ll(l“’) :
0 |1 —a|(1+¢)V/9+4]ain(1—n)

where 1/p+1/q = 1.
(2) There exists a constant (1 > —1 such that
4ty —
el q—op foraeseo ],

“()—| o+ ol
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(3) The function a satisfies
6|1 —a|

fora.e. s €[0,1]
al+3la|n(1—mn)

a(s) < =
and
61—«
|1 —a|+3le|n(l—n)

Then the boundary value problem (1.1), (1.2) has at least one nontrivial solution
u* € C([0,1)).

Proof. Let A be given by formula (2.5). In order to apply Theorem 2.1, we only
need to prove that A < 1.
(1) By using the Holder inequality, we have

A< ( [ lap<s>ds)1/p { ( [ 1[G<s,s)]st)l/q + ( / [G(n,s)rfds)l/q}

1 VPO e n=m
= (/o “p(s)ds) (Z+ -« (1+q)1/q)

mesqs €[0,1]: a(s) <

41—al(1+9)'V4 [1—af(+ )" +4en(—n) _
[1—a|(14¢)17 + 4|a|n(1—n) 41—al(1+q)/4 '
(2) In this case, we have
41+’u|1_o{| w | | ! I
<— G(s Hs(A=)Hds+— | G, s)[s(1—s)]"ds
I1—al+ o [1—al Jo
411 — o

1 1
R L 1+ || B
_|1—a|+|a|(/0 -t G [ Geta-oras)

41— (1 |ot| 1
< +

[1—oa|+ || \41T8 |1 —a| 41+H
At —a| [I—al+ |
S l—al+ | 4FHI—af

(3) In this case, we have

61—« 1
< tan (G g [ o)

6|1 —af ( +|a|n(1—n))
 [T—al+3ahn(-n) 2|1 —af

The proof is complete. (]
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Corollary 2.1. Suppose that f € C([0,1] xR, R), f(¢,0) #0, @ # 1, and

f(t,x) 6|1 —«f
x I1—a|+3laln(l—n)

A :=limsup max
|x|—>o00 £€[0,1]

Then problem (1.1), (1.2) has at least one nontrivial solution u* € C([0, 1]).

6|1—a]| _
[1—c|+3]e[n(1—7)

If(t,x)Is( o1 —al —e)|x|
n)

Proof. Letus pute = % ( A). Then there exists ¢ > 0 such that

I1—a| +3la|n(l—
for (1,x) € [0,1] xR\ (—c,c). Set M = max{| f(t,x)|: (t,x) €[0,1] x [—c,c]}. Then
6|1 —«f
|f(t,x)| < (Il—al Al —e) x|+ M

for (z,x) € [0,1] x R. Consequently, the assumption of Theorem 2.2(3) is satisfied,
where
6/1—
a(s) = [1—al —&
[1—a|+3laln(l—n)
and b(s) = M for s € [0,1]. O

Corollary 2.2. Suppose that f € C([0,1]xR,R), f(z,0)#£0, a € (0, 1), and there

exist two non-negative symmetric functions a,b € L1[0, 1] such that
| ft,x)| <a(@)|x|+b(t) fora.etel0,1]andall x €R.

Let one of following assumptions hold:

(1) There exists constant p > 1 such that a € L?[0,1] and

1
/ a?(s)ds < (4(1—a))?.
0
(2) There exists constant |4 > —1 such that
a(s) <4HA—a)(s(0—s)H*  fora.e se[0,1].
(3) The function a satisfies the estimate
a(s) <6(l—a) fora.e se]0,1].

Then the boundary value problem (1.1), (1.2) has at least one nontrivial solution
u* e C([0,1)).

Proof. The validity of the corollary follows immediately from Theorem 2.2 by
using the inequality n(1 —n) < %. O
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Corollary 2.3. Suppose that f € C([0,1] xR, R), f(¢,0) #£0, @ € (0,1), and

Z
A :=limsup max AULD) <6(l—a).
X

|x|—>00 t€[0,1]

Then the boundary value problem (1.1), (1.2) has at least one nontrivial solution

u* e C([0,1]).

Proof. The validity of the corollary follows immediately from Corollary 2.1 by
using the inequality n(1 —n) < %. O

3. EXAMPLES

In this section, in order to illustrate the results obtained, we consider some exam-
ples.
Example 3.1. Consider the three-point boundary value problem

u” +min{t,1 —t}u(5sinu—7)+sin(t(1—1)) =0, 0<t<I,
u(0) =u(l) =—u(1/2).
Seta=—1,n= %, f(t,x) =min{¢,1 —t}x(5sinx —7) 4 sin[¢ (1 — )] for (¢,x) €
[0,1] xR, and a(¢) = 12min{z,1 —¢} and b(¢) = sin[t (1 —¢)] for ¢ € [0, 1]. It is easy
to see that a,b € L1[0, 1] are non-negative, symmetric, and the inequality | £ (¢, x)| <
a(t)|x|+ b(¢) holds for all (¢, x) € [0, 1] x R. Moreover, we have

1 || 1 5 1
A= / G(s,8)a(s)ds + / G(n.s)a(s)ds = =+ - < 1.
0 |1—(X| 0 8 4

Hence, by Theorem 2.1, the boundary value problem (3.1) has at least one nontrivial
symmetric solution.
Example 3.2. Consider the three-point boundary value problem

2/6t(1—t
u’ + #use_u2 +5€t(l_t) =0, O0<t<l,
1+u4 (32)
u(0) =u(l) =2u(l/4).

A3.1)

Seta =2, n= %, f(t,x)= Z—Vf_f_gcl;t) xS 4 5011 for (t,x) €[0,1] x R, and
a(t) =2/61(1—1) and b(t) = 5¢'1=) for r € [0,1]. It is easy to prove that a,b €
L1[0,1] are non-negative, symmetric, and the inequality | f(,x)| < a(t)|x| + b(t)
holds for all (¢,x) € [0,1] x R. If we put p = g = 2, then

1 1
/ a®(s)ds = / 24s(1 —s)ds = 4,
0 0

and

41 —a|(1+9)"/ "
(Il—al(l+q)1/q+4la|n(1—n)) = 647473,
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Therefore
1 _ 1/q p
4|1 1
/ a®(s)ds < | cx1|( +4q)
0 [T —al(1+¢)/4 4 4laln(l—n)
Hence, by Theorem 2.2(1), the boundary value problem (3.2) has at least one non-
trivial symmetric solution.

Example 3.3. Consider the three-point boundary value problem

3 /t(1 =
u//+4”5(1+;2)t)+4t(1—t)u—max{t,l—t}=O, 0<rt<l,
u(0) = u(l) = -2u(n).

Seta =2, 77€ (0.1), f(t.x) = 2D 4 45 (1 —1)x —max{t, 1 -1} for (t.x) €
[0,1]xR, and a(t) = %w/t(l —t)+4t(1—¢) and b(¢) = max{t,1 —¢} for ¢t € [0, 1].
It is easy to prove that a,h € L1[0, 1] are non-negative, symmetric, and the inequality
| f(t,x)| <a(t)|x|+ b(z) holds for all (¢,x) € [0,1] x R. If we put u = % then

a(s) =g\/s(1 —85)+4s(l—s) < %\/s(l —5)

411 —
=5 1—S H

for s € [0,1]. Hence, by Theorem 2.2(2), the boundary value problem (3.3) has at
least one nontrivial symmetric solution.

3.3)
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