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1. Introduction

The so-called numerical-analytic method of successive approximations [1,2,3,4] is
widely used for studying the solvability of non-linear boundary value problems and
constructing approximate solutions. For a survey of applications and development of
the method to problems of higher order ordinary differential and impulsive differential
systems with affine (periodic, two- and multi-point) conditions, one can refer to the
appropriate parts of the series of survey papers [5, 6]

In [7,3], the methodology of the numerical-analytic method is extended in order
to make it possible to study the non-linear two-point boundary problem of the form

y'(t) = f(t,yt), t€l0,T], (1.1)
9(y(0),y(T)) =0,

for which purpose a general non-linear change of variable was introduced in Eq. (1.1).
Here, we use a simpler substitution, which, as is shown, essentially facilitates the
subsequent application of the numerical-analytic method. In particular, all the as-
sumptions are formulated in terms of the original problem, and not the transformed
one.
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2. A reduction to the problem with linear conditions

Consider the boundary value problem (1.1), (1.2), where the functions f : [0, T] x
G — R" and g : G x G — R™ are continuous, G C R"™ being the closure of a bounded
domain. Assume that, for ¢ € [0, 7] fixed, f satisfies the Lipschitz condition

|f(t7y1)_f(t’y2)| SK|y1_y2|7 {ylva}CG’ (21)

where the square matrix K is supposed to have non-negative components. In (2.1),
the absolute value sign and inequality are understood component-wise.

Let us introduce the traditional (see, e.g.,[8]) substitution
y(t) = z(t) + w, (2.2)

where w € 2 C R™ is an unknown parameter. The domain, €2, of w is chosen so that
D + Q C G, whereas the new variable, x, is supposed to have range in D, the closure
of a bounded subdomain of G.

Substitution (2.2) allows one to rewrite (1.1), (1.2) as
z'(t) = f(t,z(t) + w), te[0,7], (2.3)
Az(0) + Bx(T) = ¢(x(0) + w, =(T) + w) — [A + Blw,
where ¢(u,v) := Au+ Bv + g(u,v).
It is natural to determine the parameter w from the additional equation
d(z(0) + w,z(T)+w) —[A+ Blw=0
or, equivalently,
Az(0) + Bx(T) + g(x(0) + w, z(T) + w) = 0. (2.5)

Thus, the essentially non-linear problem (1.1), (1.2) turns out to be equivalent to
problem (2.3), (2.4), and (2.5).

On the other hand, system (2.3), (2.4), (2.5) can be regarded as a collection of
problems

2'(t) = f(t,2(t) + w), (2.6)

Az(0)+ Bx(T)=0 (2.7)

parametrised by w belonging to a certain (unknown) set. The essential advantage
obtained thereby is that the boundary condition (2.7) is linear. Therefore, problems

of the family (2.6), (2.7) can be studied by using the numerical-analytic method
developed in [2,3].

Assume that

Dg:={z € R" | B(z, 8(z)) C D} # 0, (2.8)
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where

Bla) = T6() + (B~ A+ L)al.

Here,

SG(f) = m f(ta y) - min f(t7 y)

= ax
(t,y)€[0,T1xG (t,y)€[0,TIxG

Moreover, we suppose that
K)< —.
r(K) 31

Introduce the sequence of functions

t
Tt (t,w, 2) =2 —I—/ f(s,m(s,w, 2) + w)ds
0

(2.9)

(2.10)

(2.11)

T
- i/ f(s,zm (s, w, 2) +w)ds — i[B’IA + 1]z, (2.12)
T J, T

where m = 0,1,... and z(t,w,z) = z. It is easily seen that all the members of
sequence (2.12) satisfy condition (2.7) for every z € Dg and w € €. Furthermore,

Zm (0,w, z) = z for all m € N.
By virtue of (2.7), a solution x of (2.6), (2.7) satisfies

z(T) = =B~ Az(0)
and, therefore, Eq. (2.5) can be rewritten as

g(x(0) +w, —B~ ' Az(0) + w) = 0.

(2.13)

Summarising the above, we easily conclude that problem (2.6), (2.7), (2.5) is equiva-
lent to system (2.6), (2.7), (2.13). We suggest solving it sequentially: first solve (2.6),

(2.7), and then try to clarify whether (2.13) can be fulfilled.
Theorem 1 Assume conditions (2.1), (2.8), and (2.11). Then

1. Sequence (2.12) has a limit x*(-,w, z) uniform in (t,w,z) € [0,T] x Q x Dg;

2. The limit function x*(-,w, z) satisfies the ‘perturbed’ boundary value problem

() = f(t,z(t) + w) + Aw, 2),
Az(0) + Bz(T) =0,

where

T
Aw, z) :== 7%[37114 + 1]z — %/0 f(s,x*(s,w, z) + w)ds.

Furthermore, *(0,w, z) = z.
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8. The error estimate

) 20 AP N
|z* (t,w, 2) — zp (L, w, 2)] < ?t <1 — T) Q 1(In -Q) ! [§Q5G(f)

+ K|(B7'A+ I,L)z|] (2.14)
holds, where Q := 3LK and d¢(f) is as in (2.9).

Proof. It is carried out similarly to the proof of Theorem 1 from [9] and Theo-
rem 2.1 from [3, p. 32]. ®

The following statement shows the relation of the function z*(-,w, z) to problem
(2.6), (2.7).

Theorem 2 Under assumptions (2.1), (2.8), and (2.11), the function z*(-,w, z*) is
a solution of the boundary value problem (2.6), (2.7) if, and only if z = z* satisfies
the ‘determining equation’,

T
[B~'A+ 1]z + / f(s,z*(s,w, z) +w)ds =0,
0
where w s considered as a parameter.
Proof. Analogous to that of Theorem 2.4 from [3, p. 36]. =

Theorem 3 Assume conditions (2.1), (2.8), and (2.11). Then, for the function
x* (-, w, 2*) + w* to be a solution of the boundary value problem (1.1), (1.2), it is
sufficient that the parameters z = z*, w = w* satisfy the system of determining
equations

[B~'A+ I,]z + /T f(s,z*(s,w, z) +w)ds =0, (2.15)
gz + w(,)—B*IAz +w) =0. (2.16)

In this case,
y*(t) = 2* (¢, w*, 2*) + w* (2.17)

is a solution of the boundary value problem (1.1), (1.2).

Proof. It is obvious from the form of substitution (2.2) that equations (2.15) and
(2.16) hold whenever the transformed boundary value problem (2.6), (2.7), (2.13)
coincides with (1.1), (1.2). =
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Remark 4 In [7,3], a change of variable more general than (2.2) was used,
y(t) = z(t) + h(t, w). (2.18)

However, when Oh(t,w)/0t £ 0, substitution of (2.18) leads to a more complicated
transformed boundary value problem, as well as more complicated recursion sequence
and determining equations. Furthermore, the basic assumptions should then be made
on the transformed differential equation.

Remark 5 Considering (2.17), one can treat the function
Ym (t) =Tm (ta W, Zm) + W (219)

as the mth approximation to the exact solution, y*(-,w*,z*), of the boundary value
problem (1.1), (1.2). In (2.19), wy,, and z, are solutions of the ‘approximate deter-
mining equations’,

T
[B~'A+ 1]z + / f(syzm(s,w, z) +w)ds =0, (2.20)
0
g(z+w,—B ' Az +w) =0, (2.21)

and T (-, z,w) is given by (2.12). We do not consider the strict substantiation, re-
ferring the reader to [3] where similar techniques are described.

Remark 6 It follows from the consideration in [6] that the convergence of the recur-
sion sequence (2.12) can be proved under the condition r(K) < 3.4161...-T~1, which
is weaker than (2.11). Howewver, estimate (2.14) does not hold in this case.

Remark 7 By using an idea from [, one can obtain similar statements based on
replacing (2.12) by the sequence

t
Tma1(t,w,2) =2z — (A4 B)z+ / f(s,xm(s,w, 2) +w)ds
0

T
- @(t)/ f(s,zm(s,w, 2) +w)ds,
0
where @ is an arbitrary continuous matriz-valued function such that
A®(0)+ B®(T) = 1I,,.

In this case, the restrictive conditions of type (2.11) can be avoided. However, an
analogue of condition (2.8) is more difficult toverify unless f in Eq. (1.1) is globally
Lipschitzian.

Example 8 Consider the differential equation

Y0+ )+ ()P = e (0] (2.22)
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under the non-linear boundary conditions
(2.23)

We reduce Eq. (2.22) to the first order system
2t t (2.24)
/ _ - = .2 .
ya(t) = 123 1691(75) 4?/2(’5),

conditions (2.23) then rewrite as

12 (1)2(0) + 241 (0) = 0,

4
y1(1)y2(0) — %m(l) = —%.

Put A= B =1y and T = 1. It is not difficult to verify that the assumptions of the
theorems above hold in the domain G == {(y1,y2) | |ly1| < 1, |y2| < 3}

Namely, (2.8) holds when B from (2.9) satisfies the component-wise inequality

1

Blx1,z2) < (ﬁ) + 2(3L). The vector function in the right-hand side of (2.24)
256
satisfies (2.1) in G with K = (i i) Since r(K) = 1+4\/§, it is obvious that (2.11)
16 4
holds.
Substitution (2.2) in (2.24) leads us to the system

1 (t) = w2(t) + w2,

Bhlt) = 1o — 111 () + wn] = Floa(t) + unl®

In this case, the determining equation (2.21) has the form

1
w%—z§+z(21+w1) =0,

7
(w1 — Zl)(wQ + 22) — 5(1112 — 2’2) = —@.

(2.25)

Let us find the first approximation, x1 = (ﬁ; ), in the sense of Remark 5. Ac-
cording to (2.12), we have

$1,1(t7w1,w2, 21,29) = 21 — 2tz1,
3 2 £2

t = - — _ 2
x1,2(t, w1, we, 21, 22) 22+384 32(21 +wy) 8(21 + w2)

t t
+ 3—2(Z1 +w1) + g(z2 +wsz)? — 2tz

384
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The first approzimate determining equation (2.20) (i.e., that corresponding to m =

1), is equivalent to Aq(w,z) = 0, where Ay = (21;) is given by

Ay 1 (wr, w2, 2 Z)—ﬁz —L_;_Lw
1,1 1, W2, <1,<2) — 192 1 1536 192 1
1
+ —(Z2 + w2)2 + wo (226)
48
and
At o, 19, 21, 2) = — 22y Wy 4 —003 107531
1,2 1, W2,41,%2) — 15360 122 2 14155776 10321920 1
46079 322549 1 1
- W1 22W2

* 230002~ 10321920 T 57602 15360
1, 1, 107509 , 107531

15360 2~ 15360 2 ~ 2580480 2 1200240 "2
1 1 1

— MU} 2 _ V4 2 21w — ——Z21% 2
2580480 - 245760 ' 122880 ' ' 30720 ' °?
1 2 1 2 1 2 1 2
T 3072071 T 245760t T 30720 Y2 T 30720 MR
— L223w2* L222w22* Zowg® + ! 2221
3840 2560 3840 3840
+ @Zﬂm— %waz— %2211&2— @wzm

1 1,1,
S s )t (22
7682 T ggo® T g2 (227)

Solving system (2.25) together with the approzimate determining equations

Ay (wr,wa, 21,22) =0, Ay 2(wy,wa, 21,22) =0,

where A1 1 and A 5 are given by (2.26) and (2.27), we obtain the following values
wi,1 ) .

for z1 = (2;) and w; = (’un,z

z1,1 =~ —0.06206890391,
wi,1 ~ —0.0002202244703,

z1,2 =~ —0.00001967788609,
w2 ~ 0.1247889518.

With these values of parameters, the first approzimation, x1, has the form

x1,1(t) = —0.06228912838 + 0.1241378078 ¢,

1
r19(t) = —0.196778861 - 10~ + @t?’ +0.613798 - 10542
—0.2565424693 - 102,

Consequently, according to substitution (2.2), the solution, y, of problem (2.22),
(2.23), up to the first approximation yy(t) = x1(t) + w1, has the form
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Figure 1.

y1.1(t) ~ —0.06250935285 + 0.1241378078 ¢,
1
y1.2(t) = 0.1247692739 + @ﬁ +0.613798 - 107542
—0.2565424693 - 10~ 2¢.

Note that the function y*(t) = § — % is an exact solution of problem (2.22),

(2.23). As is seen from Figures 1 and 2, the graphs of the exact solution and the
first approximation almost coincide, whereas the deviation of their derivatives does
not exceed 0.001. Thus, even the first iteration of the method gives a satisfactory
approzimation for the solution of the problem considered.

3. Separated non-linear boundary conditions

It turns out that, in the case of separated, in a sense, boundary conditions, the
numerical-analytic method can be applied without any change of variable.

Consider the two-point boundary value problem

2/ (t) = f(t,z(t)), te0,7], (3.1)
z(T) = a(z(0)), (3.2)
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where a : D — R™ is continuous and f satisfies conditions (2.1) and (2.11) in the
closure, D, of a bounded domain from R™.

Put y(z) := L6p(f) + |a(z) — | and assume that
D, 0, (33)
where the set D, is defined similarly to (2.8), whereas the number dp(f) is given by
(2.10).
Introduce the sequence of functions

Tma1(t,2) =2 +/ f(s,xm(s,2))ds
0

— %/0 f(s,2m(s,2))ds + %[a(z) —z], (34)

where m = 0,1,... and z¢(t,2) = z € D,. Obviously, all the members of sequence
(3.4) satisfy condition (3.1) for every z € D,,.

Theorem 9 Assume conditions (2.1), (2.11), and (3.3). Then:
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1. Sequence (3.4) converges uniformly in [0,T) X D.,

lim sup |zn(t,2) —2*(t, 2)|| = 0.
=0 (¢ 2)€[0,T]x D,

2. The function x*(-, z) is a solution of the ‘modified’ problem,
' (t) = f(t,z(t)) + A(z), te[0,7],
z(T) = a(x(0)),

where

TA(z) :==a(z) — z — /OT f(s,x* (s, 2))ds.
Moreover, x*(-, z) satisfies ©*(0,2) = 21, (0, 2) = z (Ym € N).
3. The error estimate
7 (6 0,2) — w(t,0,2)| < 2 (1 - %) Qm (I, - Q) [%QéD(f)
+ Kla(z) — z|] (3.5)
holds, where Q) := %K and 0p(f) is defined by (2.10).
Proof. Analogous to that of Theorem 2.1 from [3, p. 32]. =
Theorem 10 Under conditions of Theorem 9, the limit function of sequence (3.4) is

a solution of problem (8.1), (3.2) if, and only if the parameter z = z* (which stands
for the initial value of the solution att = 0) satisfies the ‘determining equation,’

T
a(z) —z = / f(s,x* (s, 2))ds.
0
Proof. Similar to that of Theorem 2.3 from [3, p. 36]. =
Remark 11 When, in (3.1), a(z) = z, then (3.1), (3.2) is nothing but the T-periodic

boundary value problem. In this case, sequence (3.4) is reduced to the well-known [1]
T-periodic successive approximations,’

Trm41(t, 2) ::z—i—/o f(s,xm(s,2))ds — %/0 f(s,2m (s, 2))ds.

Remark 12 FEstimate (3.5) implies that the function t — 2, (L, 2m) s natural to be
taken as the mth approzimation of the exact solution of problem (8.1), (3.2), when
Z = zZpy S a 1Toot of the ‘mth approximate determining equation,’

T
a(z) —z = /0 f(s,zm (s, 2))ds. (3.6)
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Example 13 Let us apply the technique described above to the problem

" 7 t, 1 / 2 _ 1
() - s+ 5@ @)= teD1],
1 1
#(1) = 5 (0)° + 7, (37)
3
"1) = — —.
#(1) = —2(0) + =
As usual, we rewrite the second order problem (3.7) in the form

2y (t) = 2,
¢ 1,

dh(t)= 7 - £0al)  53@,  t€(01

1, 1 (3.8)

21(1) = 593(0) + 7o

3
Consider (3.8) in the domain
(t,CCl,JCQ) c [O, 1} xD, D= {(.131,(E2) | |5[31| <1, I.Z’2| < %} (39)

It is not difficult to wverify that the conditions of Theorem 9 are fulfilled with
To4l,2 . . . )
K= (8 %), ~y(x) < ( g tara—m ) The corresponding quantity (2.10) is estimated as

5711712

op(f) < (g), and K satisfies (2.11) because r(K) = £.

According to (3.4), we have the following formule for x1 = (7 ):

1 1
xl,l(t,gla <2) = Cl + t <§C§ - Cl + 1_6) 5 (310)
t2 1 3
xl,Q(t,CpCz):<2+EC2*1—6K2*7§ C1+42*E . (3.11)
The first approximate determining equations (3.6) has the form
Al,l(CpCQ) =0, A1,2(C17 CQ) =0, (3~12)
where
1 47 1 1
A == (-2 - =
1,1(¢1,€2) 2(2 9642 2§1 3
49 33 88165 827 31 1
A = 2, 2= 0 b R Z¢.2
12(¢1,C2) 48<1 512 89088<2 + 5120(2 192<2C1 + 6<1

The solution, ¢ = (gl), of system (3.12) has the form

2

T 6 =0, (3.13)
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Inserting (3.13) into (3.10) and (3.11), we obtain the first approximation
t 1 t
t = - — — t - —.
ma(t) = 5~ 15 z12(t) = 7
Note that the vector function with components

21

* _ * = — .14
w) =5 - o w0 = | (3.14)
is an exact solution of problem (3.8).
Let us construct the second approximation. By (3.4), we have
1 1 3 17
221 (t,C15Ca) = (1 + —=Cot® - —t2C1 =t = 2(2
48 3
49 1
— (ot — —t - ==t t 3.15
+ 9642 Cl 392 + C2a ( )
95 31 1 5 49
t =t — RSP
z2,2(t, (1, C2) 512 192 <2C1 +22+ 768@ Ca 48 G
1733 3 3041 5 4
- 5120 s+ 512 B 3072 B 2560<2t * ”241
1
_ L3 1.2 l l 3
GG+ 5PGG — Tttt et G =G
107
- G- —t3<1+ G+ sk (3.16)

Tt is not difficult to verify that inserting into (3.15) and (3.16) even the roots (3.13) of
the first determining system (3.12), we arrive at the exact solution (3.14) of problem
(3.8).
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