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Abstract. The main purpose of this paper is using the analytic method and the properties of
Dirichlet L-functions to study the computational problem of one kind Dedekind sums, and give
a new reciprocity formula for it.
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1. INTRODUCTION

Let q be a natural number and h an integer prime to q. The classical Dedekind
sums
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describes the behaviour of the logarithm of the eta-function (see [6,7]) under modular
transformations. Many authors have studied the arithmetical properties of S.h;q/
and obtained many interesting results, some of them can be found in [10–12]. For
example, Conrey et al [3] studied the mean value distribution of S.h;k/, and proved
the asymptotic formula
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where
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denotes the summation over all h such that .k;h/D 1, and
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C. Jia [5] improved the error term in (1) to O
�
k2m�1 ln3k

�
, if m� 2.

Walum [9] obtained an identity between the mean square value of S.h;p/ and the
fourth power mean of Dirichlet L-functions. That is, he proved the following:
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where p be an odd prime.
Perhaps the most famous property of Dedekind sums is the reciprocity formula

(see references [2, 4] and [6]):
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for all .h;k/D 1, h > 0 and k > 0.
An interesting three term version of (1.2) was also discovered by H. Rademacher

and and E. Grosswald [7].
In this paper, as a note of [8], we use the analytic method and the properties of Di-

richlet L-functions to study the computational problem of one kind Dedekind sums,
and give a new reciprocity formula for S.k;h/. That is, we will prove the following:

Theorem 1. Let h and k are two positive odd numbers with .k;h/D 1. Then we
have the identity
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where integers k and h satisfying the congruence equation k �k� 1 mod h and h �h�
1 mod k.

We prove this result by the analytic method and the properties of Dirichlet L-
functions, which is distinct from other methods of proving reciprocity formula of
Dedekind sums. Whether there exists a direct elementary method to prove this iden-
tity is an interesting problem.

2. PRELIMINARIES

To complete the proof of our theorem, we need to prove several lemmas. Herein-
after, we shall use some properties of Dirichlet L-functions, all of these can be found
in reference [1], so they will not be repeated here.
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Lemma 1. Let q > 2 be an integer, then for any integer a with .a;q/D 1, we have
the identity
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whereL.1;�/ denotes the DirichletL-function corresponding to the character � mod
d .

Proof. See Lemma 2 of [8]. �

Lemma 2. Let a and q are two positive odd numbers with .a;q/ D 1. Then we
have the identity

S.a;2q/CS.2 �a;q/CS.2 �a;q/D 3S.a;q/;

where 2 �2� 1 mod q.

Proof. Let �02 denotes the principal character mod 2. Then for any non-principal
character � mod d with .2;d/D 1, note that the identity

ˇ̌
L
�
1;��02

�ˇ̌2
D

ˇ̌̌̌
ˇ̌Y
p

 
1�

�.p/�02.p/

p

!�1 ˇ̌̌̌ˇ̌
2

D

ˇ̌̌̌
ˇ̌Y
p>2

�
1�

�.p/

p

��1 ˇ̌̌̌ˇ̌
2

D

ˇ̌̌̌
1�

�.2/

2

ˇ̌̌̌2
�

ˇ̌̌̌
ˇY
p

�
1�

�.p/

p

��1 ˇ̌̌̌ˇ
2

D

ˇ̌̌̌
1�

�.2/

2

ˇ̌̌̌2
� jL.1;�/j2

D

�
5

4
�
�.2/

2
�
�.2/

2

�
� jL.1;�/j2;

from Lemma 1 and the properties of Euler function �.n/ we have
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This proves Lemma 2. �

3. PROOF OF THEOREM

In this section, we shall complete the proof of our theorem. For any positive odd
numbers h and k with .k;h/D 1, applying Lemma 2 repeatedly we have
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and
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Adding (3.1) and (3.2), then applying reciprocity formula (1.2) we have
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or
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Note that if positive integers n and q satisfying .n;q/ D 1, then S.n;q/ D S.n;q/,
where n satisfying the congruence equation n �n� 1 mod q.

Combining this property and (3.3) we may immediately deduce the identity
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This completes the proof of our theorem.
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