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1. INTRODUCTION AND PRELIMINARIES

As it is well known, one of the most efficient ways to clarify the structure of a
complex set is to arrange an equivalence with another set which is then carefully anal-
ysed. Apparently, the first results concerning the asymptotic behaviour of systems on
the basis of one-to-one correspondence between sets of solutions were obtained in
[4, 5, 8, 9].

In this paper, we obtain new sufficient conditions for the asymptotic equivalence
of linear and quasilinear systems of differential equations with piecewise constant
arguments. Homeomorphism, which is the most important version of the correspon-
dence in a theoretical sense, is considered. The method of the paper was also used in
the works [1, 2].

Let Z;N, and R be, respectively, the sets of all integer, natural, and real numbers.
Denote by k � k the Euclidean norm in Rn, where n 2 N. Fix a sequence �i , i 2 Z;
such that �i < �iC1 for all i 2Z and j�i j !1 as ji j !1:

We consider the system of impulsive differential equations

´0.t/D C´.t/Cf .t;´.t//;

�´jtD�i D Ji .´/;
(1)

and the linear system of ordinary differential equations

x0.t/D Cx.t/; (2)
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where x;´ 2 Rn, t 2 R:
The following assumptions will be needed throughout the paper:
(c1) C is a constant n�n real valued matrix;
(c2) f 2 C.R�Rn;Rn/;
(c3) The estimate

kf .t;´1/�f .t;´2/kCkJi .´1/�Ji .´2/k � �.t/k´1�´2k

holds for all ´1;´2 2 Rn; t 2 RC; and i 2Z with some nonnegative function
�.t/ defined on RCI

(c4) The following equalities are true

f .t;0/D 0 for all t 2 RI

Ji .0/D 0 for all i 2Z:
(3)

To investigate the asymptotic properties of the solutions, the following definition
can be efficiently applied.

Definition ([3, 6]). A homeomorphism H between the sets of solutions x.t/ and
´.t/ is called an asymptotic equivalence if ´.t/DH.x.t// implies that x.t/�´.t/!
0 as t !1:

2. MAIN RESULT

In this section we consider the theorem about the asymptotic equivalence of sys-
tems (1) and (2). The theorem is a development of V. Yakubovich’s result [6, 9] for
impulsive differential equations. Let ˛ D minj Re�j and ˇ D maxj Re�j , where
Re�j denotes the real part of the eigenvalue �j of the matrix C . Let m˛ and mˇ be
the maximum of the degrees of elementary divisors of C corresponding to eigenval-
ues with the real parts equal to ˛ and ˇ, respectively. Clearly, there exist constants
�1 and �2 such that

keCtk � �1t
mˇ�1eˇt and ke�Ctk � �2tm˛�1e�˛t

for all t 2 RC D Œ0;1/. We shall also assume that
(c5) The relation

l0 WD

Z 1
0

tmˇCm˛�2e.ˇ�˛/t�.t/dtC
X

0��i<1

�
mˇCm˛�2

i e.ˇ�˛/�i�.�i / <C1

is satisified.
The following lemma can be easily established by direct substitution.

Lemma 1. If ´.t/ is a solution of (1), then there is a solution u.t/ of the equation

u0 D e�Ctf .t;eCtu/;

�ujtD�i D e
�C�iJi .e

C�iu/;
(4)
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such that
´.t/D eCtu.t/: (5)

Conversely, if u.t/ is a solution of (4), then y.t/ in (5) is a solution of (2).

Lemma 2. If conditions (c1)–(c5) are valid, then every solution of (4) is bounded
on RC and for each solution u of (4) there exists a constant vector cu 2 Rn such that
u.t/! cu as t !1:

Proof. Let u.t/Du.t; t0;u0/ denote a solution of (4) satisfying u.t0/Du0, t0� 0.
It is known [7] that

u.t/D u0C

Z t

t0

e�Csf .s;eCsu.s//dsC
X

t0��i<t

e�C�iJi .e
C�iu/

for all t � t0: Using (c4), we obtain

ku.t/k � ku0kCk1

Z t

t0

smˇCm˛�2e.ˇs�˛/s�.s/ku.s/kds

Ck2
X

t0��i<t

�
mˇCm˛�2

i e.ˇ�˛/�i�.�i /ku.�i /k; t � t0;

with some positive k1 and k2. By applying the Gronwall–Bellman Lemma for dis-
continuous functions [7] we obtain that ju.t/j �M for all t 2RC;with some positive
M: To prove the second part of the theorem, we first note thatˇ̌̌̌Z t

t0

e�Csf .s;eCsu.s//dsC
X

t0��i<t

e�C�iJi .e
C�iu.�i //

ˇ̌̌̌

�Mk1

Z 1
0

tmˇCm˛�2e.ˇ�˛/t�.t/dt

CMk2
X

0��i<1

�
mˇCm˛�2

i e.ˇ�˛/�i�.�i / <1:

So we may define

cu D u0C

Z 1
t0

e�Csf .s;eCsu.s//dsC
X

t0��i<1

e�C�iJi .e
C�iu.�i //:

It follows that

u.t/D cu�

Z 1
t

e�Csf .s;eCsu.s//ds�
X

t��i<1

e�C�iJi .e
C�iu.�i //;

which completes the proof. �
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Theorem 1. If conditions (c1)–(c5) are satisfied, then every solution y.t/ of (1)
possesses an asymptotic representation of the form

´.t/D eCt ŒcCo.1/�;

where c 2 Rn is a constant vector and for a solution u.t/ of (4),

o.1/D�

Z 1
t

e�Csf .s;eCsu.s//ds�
X

t��i<1

e�C�iJi .e
C�iu.�i //:

The proof follows from Lemma 1 and Lemma 2.

Theorem 2. Assume that conditions (c1)–(c5) are fulfilled, and, moreover,

lim
t!1

�Z 1
t

.s� t /m˛�1smˇ�1e˛.t�s/eˇs�.s/ds

C

X
t��i<1

.�i � t /
m˛�1�

mˇ�1

i e˛.t��i /eˇ�i�.�i /

�
D 0: (6)

Then systems (1) and (2) are asymptotically equivalent.

Proof. In view of Lemma 2, we see that

´.t/D eCt
�
cu�

Z 1
t

e�Csf .s;eCsu.s//ds�
X

t��i<1

e�C�iJi .e
C�iu.�i //

�

D x.t/�

Z 1
t

e�C.s�t/f .s;eCsu.s//ds�
X

t��i<1

e�C.�i�t/Ji .e
C�iu.�i //;

where x.t/D eCtcu is a solution of (2) and u.t/D u.t; t0;u0/ is a solution of (4). It
is clear that a given u0 results in a homeomorphism between x.t/ and y.t/: Thus, we
find that there exists a bicontinuous and one-to-one correspondence between u0 and
cu: In view of (6), we also see that x.t/�´.t/! 0 as t !1; which completes the
proof of the theorem. �

REFERENCES

[1] M. U. Akhmet and M. A. Tleubergenova, “On asymptotic equivalence of impulsive linear homoge-
nous differential systems,” Mat. Zh., vol. 2, no. 2(4), pp. 15–18 (electronic), 2002.

[2] M. U. Akhmet, M. A. Tleubergenova, and A. Zafer, “Asymptotic equivalence of differential equa-
tions and asymptotically almost periodic solutions,” Nonlinear Anal., vol. 67, no. 6, pp. 1870–1877,
2007.

[3] L. Cesari, Asymptotic behavior and stability problems in ordinary differential equations, ser. Sec-
ond edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Bd. 16. Publishers, New
York: Academic Press Inc., 1963.

[4] P. Hartman, Ordinary differential equations. New York: John Wiley & Sons Inc., 1964.



ASYMPTOTIC EQUIVALENCE OF DIFFERENTIAL EQUATIONS 121

[5] P. Hartman and A. Wintner, “Asymptotic integrations of ordinary non-linear differential equations,”
Amer. J. Math., vol. 77, pp. 692–724, 1955.

[6] V. V. Nemytskii and V. V. Stepanov, Qualitative theory of differential equations, ser. Princeton
Mathematical Series, No. 22. Princeton, N.J.: Princeton University Press, 1960.

[7] A. M. Samoı̆lenko and N. A. Perestyuk, Impulsive differential equations, ser. World Scientific Series
on Nonlinear Science. Series A: Monographs and Treatises. River Edge, NJ: World Scientific
Publishing Co. Inc., 1995, vol. 14, with a preface by Yu. A. Mitropol0skiı̆ and a supplement by
S. I. Trofimchuk, Translated from the Russian by Yu. Chapovsky.

[8] A. Wintner, “Linear variations of constants,” Amer. J. Math., vol. 68, pp. 185–213, 1946.
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