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CAYLEY LINE GRAPHS OF TRANSITIVE GROUPOIDS
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Abstract. A groupoid is a small category with inverses. Adding appropriate colors to the edges
of the line graph of a transitive groupoid creates a Cayley line graph of the groupoid. The group-
oid of partial automorphisms of the Cayley line graph is isomorphic to a semidirect product
of the original groupoid. Using the trivial coloring to build the Cayley line graph makes the
semidirect product trivial, hence the groupoid of partial automorphisms of this Cayley line graph
is isomorphic to the original groupoid.
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1. INTRODUCTION

The Cayley color graph of a group is an important object both in group theory and
in graph theory. A comprehensive reference can be found for example in [6]. The
line graph of the Cayley color graph is studied in [2–4]. In particular, it is shown
in [4] that the edges of the line graph of a Cayley color graph of a group can be
colored so that the automorphism group of the resulting color digraph is isomorphic
to a semidirect product of the group.

A groupoid is a small category with inverses. The notion of Cayley color graph
of a group is extended to inverse semigroups and groupoids in [9], where it is shown
that the groupoid of partial automorphisms of the Cayley color graph of a transitive
groupoid is isomorphic to the original groupoid. In this paper we study the line graph
of the Cayley color graph of a transitive groupoid and extend the above mentioned
result of [4] to transitive groupoids.

In Section 2 we recall definitions and results from [9] concerning the Cayley color
graph of a groupoid and give a few examples. In Section 3 we define a Cayley
line graph as a special edge coloring of the line graph of the Cayley graph. The
Cayley line graph might not be unique, we can color the edges more than one way.
In Section 4 we show that the groupoid of partial automorphisms of the Cayley line
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graph is isomorphic to a semidirect product of the original groupoid. The semidirect
product depends on the choice of the coloring, but the coloring always can be chosen
trivially to make this semidirect product isomorphic to the original groupoid.

2. PRELIMINARIES

A groupoid G is a set with a subset G (2) of G × G , a product map (x,y) 7→
xy : G (2) → G and an inverse map x 7→ x−1 : G → G such that:

(a) (xy)z = x(yz) for all (x,y), (y,z) ∈ G (2);
(b) (x,x−1) ∈ G (2) for all x ∈ G ;
(c) x−1(xy) = y, (xy)y−1 = x for all (x,y) ∈ G (2).

The set G (2) is called the set of composable pairs. The domain and range maps
d,r : G →U are defined by d(x) = x−1x and r(x) = xx−1, where U = {xx−1 | x ∈ G}
is the set of units of G .

A groupoid G is called transitive if for all u,v ∈U there is an element g ∈ G satis-
fying d(x) = u and r(x) = v. This means G is connected if viewed as a small category
with inverses. Every groupoid is the disjoint union of transitive groupoids, and every
transitive groupoid is the direct product of a group G and a trivial groupoid A×A.
More precisely, a transitive groupoid G is isomorphic to a groupoid A×G×A where
(d,h,c) and (b,g,a) are composable whenever b = c, in which case their product is
(d,hg,a). The inverse of (b,g,a) is (a,g−1,b). The set A can be identified with the
unit space {(a,e,a) | a ∈ A} of G where e is the identity of G. The group G is iso-
morphic to the isotropy subgroup Gu

u = {x | d(x) = u = r(x)} for any unit u of G . We
only work with finite groupoids. Our references for groupoids are [1, 7, 8].

Example 1. If A = {a,b} then the transitive groupoid G = A×Z2 ×A has eight
elements

G = {x,y,x−1,y−1,u = x−1x,v = xx−1,s = y−1x, t = yx−1}

where x = (b,0,a) and y = (b,1,a). The groupoid can be visualized by an arrow
diagram.
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A subset ∆ of the groupoid G generates G if every element of G can be written as
a finite product of elements of ∆.

A color digraph is a directed graph with possible multiple edges and loops, to-
gether with a color function defined on the set of edges.

The tail of a vertex v in a color digraph is the set tail(v) of vertices that can be
reached by a finite directed walk starting at v. We say that v is a head of its tail. Note
that a tail may have more than one head, and a tail contains each of its heads.
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If ∆ is a set of generators of the groupoid G , then the Cayley color graph [9]
D=D∆(G) of G with respect to the generating set ∆ is the color digraph with vertices
G and edges

{(x,z) | x ∈ G ,z ∈ ∆,(x,z) ∈ G (2)}
such that the edge (x,z) connects x to xz and has color z. See [5] for another version
of groupoid Cayley graphs.

Example 2. If G = A × Z2 × A is the transitive groupoid of Example 1, then
∆ = {x,x−1,s} is a generating set and the Cayley color graph has two tails:

x−1 x // u
s //

x−1
oo s

x−1
//

s
oo y−1

x
oo v

x // x
s //

x−1
oo y

x−1
//

s
oo t

x
oo

If x is a vertex of D∆(G), then tail(x) = {xy | y ∈ G} and r(x) is the unique unit u
of G for which tail(x) = tail(u). Every tail is strongly connected, and every element
of a tail is a head of the tail. A tail contains all the elements of the groupoid whose
range is a given unit, so the number of tails is equal to the number of units.

A partial automorphism of a Cayley color graph D=D∆(G) is a bijection between
two tails of the graph that preserves the colors of the edges. Every partial automorph-
ism of D is implemented by a left multiplication by an element of G and this rep-
resentation gives an isomorphism between the partial automorphisms of D and G
(see [9]).

If G = A×G×A and T is a tail of D, then the partial automorphisms of D whose
domain and range is T form a group isomorphic to G.

A color permuting partial automorphism of a Cayley color graph D∆(G) is a
bijection α between two tails of D∆(G) and a permutation ρ of ∆ such that α(xz)
= α(x)ρ(z) for all x ∈ dom(α), (x,z) ∈ G (2) and z ∈ ∆.

Let H = {π ∈ Aut(G) | π(∆) = ∆} be the group containing the automorphisms of
G preserving ∆. Let ι : H → Aut(G) be the canonical embedding. Recall [8] that the
semidirect product G ×ι H is the groupoid with operations

(x1,π1)(x2,π2) = (x1π1(x2),π1π2) and (x,π)−1 = (π−1(x−1),π−1)

whenever x1 and π1(x2) are composable. The map (y,ρ) 7→ β(y,ρ) where β(y,ρ)(x)
= yρ(x) is an isomorphism between the semidirect product G ×ι H and the groupoid
PAut∗(D) of color permuting partial automorphisms of D∆(G).

3. CAYLEY LINE GRAPHS

Definition 1. Let D = D∆(G) be a Cayley color graph and πz be a permutation
of ∆ for all z ∈ ∆ satisfying πz ◦πw = ππz(w) for all w,z ∈ ∆. The Cayley line graph
L = Lπ(D) with respect to π is the color digraph with vertices {(x,z) | x ∈ G ,z ∈ ∆,

(x,z) ∈ G (2)} and edges

{((x,z),w) | x ∈ G and z,w ∈ ∆ and (x,z),(z,πz(w)) ∈ G (2)}
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such that the edge ((x,z),w) connects vertex (x,z) to vertex (xz,πz(w)) and has color
w.

The correspondence can be visualized by the following diagram where the color is
written next to the edge, and the name is written on the edge:

groupoid G : • •xoo •z1oo •z2oo

Cayley graph D : x
z1 // xz1

z2 // xz1z2

Cayley line graph L : (x,z1) ((x,z1),w)
w=π−1

z1
(z2)

// (xz1,z2)

Example 3. If ∆ = {z0, . . . ,zn−1} then both of the definitions
(a) πzi = id;
(b) πzi(z j) = zi+ j mod n;

satisfy πz ◦πw = ππz(w) for all w,z ∈ ∆.

Example 4. Let G = {x,y,u,v} be the trivial groupoid, that is, y = x−1, v = xy, and
u = yx. If ∆ = {x,y} then the Cayley graph is:

u
y
// y

x
oo v

x // x
y

oo

If πx = id and πy = (x y) is the cycle permutation as in Example 3(b), then the Cayley
line graph is:

(y,x)
y
// (u,y)

y
oo (x,y)

y
// (v,x)

y
oo

Example 5. Let D be the Cayley color graph of Example 2, πx = id, πx−1 =
(x x−1 s), and πs = (x s x−1). The Cayley line graph is:

(x−1,x) s //

x−1

��

(u,s) s //

x
��

(s,x−1)

s
��

(u,x−1)

s

OO

(s,s)s
oo

x

OO

(y−1,x)s
oo

x−1

OO
(v,x) s //

x−1

��

(x,s) s //

x
��

(y,x−1)

s
��

(x,x−1)

s

OO

(y,s)s
oo

x

OO

(t,x)s
oo

x−1

OO

Throughout this paper let L = Lπ(D) denote the Cayley line graph of the Cayley
color graph D = D∆(G) of the transitive groupoid G .

Lemma 1. For all w,z ∈ ∆ we have π−1
z ◦πw = π

π
−1
z (w).

Proof. The result follows from the calculation:

π
−1
z ◦πw = π

−1
z ◦π

πz(π
−1
z (w)) = π

−1
z ◦πz ◦π

π
−1
z (w) = π

π
−1
z (w). □

Lemma 2. If the vertex (x0,δ0) is connected to the vertex (y,z) in L through n
edges with colors δ1, . . . ,δn, then z = πδ0 ◦πδ1 ◦ · · · ◦πδn−1(δn).
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Proof. Suppose vertex (x0,δ0) is connected to vertex (y,z) through the vertices

(x1,z1), . . . ,(xn−1,zn−1),

so we have the following walk:

(x0,δ0)
δ1 // (x1,z1)

δ2 // · · · // (xn−2,zn−2)
δn−1
// (xn−1,zn−1)

δn // (y,z)

Then
z = πzn−1(δn) = ππzn−2 (δn−1)(δn) = πzn−2 ◦πδn−1(δn)

= · · ·= πδ0 ◦πδ1 ◦ · · · ◦πδn−1(δn).

□

Definition 2. Define

HL := {ρ ∈ Aut(G) | ρ(∆) = ∆ and ρ◦πz = πρ(z) for all z ∈ ∆}.

Note that HL is not empty since it contains the identity.

Example 6.
(a) If πz is the identity for all z ∈ ∆ as in Example 3(a), then HL = {id}.
(b) In Example 4, HL = {id,ρ} ∼= Z2 where ρ = (x y)(u v).
(c) In Example 5, HL = {id}.

Lemma 3. HL is a subgroup of Aut(G).

Proof. If σ,ρ ∈ HL then for all z ∈ ∆ we have σρ ◦ πz = σ ◦ πρ(z) = πσ(ρ(z)), so
σρ ∈ HL. Also,

ρ
−1 ◦πz = ρ

−1 ◦πρ(ρ−1(z)) = ρ
−1

ρ◦πρ−1(z) = πρ−1(z)

for all z ∈ ∆. Thus, ρ−1 ∈ HL. □

4. PARTIAL AUTOMORPHISMS

Lemma 4. If (y,w) and (y,z) are vertices of L, then tail(y,w) = tail(y,z).

Proof. By symmetry, it suffices to show that (y,z) ∈ tail(y,w). Write w−1 =
δ1 · · ·δn as a product of elements of ∆. Then (y,z) can be reached from (y,w) along
the following walk:

(y,w)→ (yw,δ1)→ ··· → (ywδ1 · · ·δn−1,δn)→ (y,z)

where the color of the last edge is π
−1
δn
(z). □

Similar proof shows that tail(y,z) = tail(r(y),δ) for some δ ∈ ∆. It is easy to see
that if u and v are different elements of U , then tail(u,δ) and tail(v,µ) are not the
same. Thus, the tails of L are of the form tail(u,δ), where u is a unit of G and δ is an
arbitrary element of ∆ whose range is u.
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Definition 3. A partial automorphism of L is a bijection α between two tails of L
that preserves the colors of the edges, that is,

πα(x,z)2(w) = α(xz,πz(w))2

for all ((x,z),w) satisfying (x,z) ∈ dom(α). The set of partial automorphisms of L is
denoted by PAut(L).

The mapping can we visualized by:

(x,z) w // (xz,πz(w)) α(x,z) w // α(xz,πz(w))

Lemma 5. For all (y,ρ) ∈ G ×ι HL, the map α(y,ρ) : tail(ρ−1(y−1),δ)→ tail(y,δ0)
defined by

α(y,ρ)(x,z) = (yρ(x),ρ(z))

is a partial automorphism of L. Furthermore α(y,ρ)−1 = α
−1
(y,ρ).

Proof. If ((x,z),w) is an edge with (x,z) ∈ dom(α(y,ρ)), then

πα(y,ρ)(x,z)2(w) = πρ(z)(w) = ρ◦πz(w) = α(y,ρ)(xz,πz(w))2.

So α(y,ρ) preserves the colors of the edges.
If (x,z) ∈ tail(y,δ0) then (x,z) = (yδ0 · · ·δn,z) for some δ0, . . . ,δn ∈ ∆. Since r(y)

and δ0 are composable, (ρ−1(δ0 · · ·δn),ρ
−1(z)) is an element of tail(ρ−1(y−1),δ) that

is mapped to (x,z) by α(y,ρ). Thus, α(y,ρ) is surjective. It is easy to check that α(y,ρ) is
injective.

If (x,z) ∈ dom(α−1
(y,ρ)) then

α(y,ρ)−1(x,z) = α(ρ−1(y−1),ρ−1)(x,z) = (ρ−1(y−1)ρ−1(x),ρ−1(z))

= (ρ−1(y−1x),ρ−1(z)) = α
−1
(y,ρ)(x,z).

□

Lemma 6. If α ∈ PAut(L), dom(α) = tail(u,δ) with u ∈ U, δ ∈ ∆, and
(t,z) ∈ dom(α), then α(t,z)2 = πα(u,δ)2(π

−1
δ
(z)).

Proof. Since (u,δ) is connected to (t,z) through edges say with colors δ1, . . . ,δn.
By Lemma 2, z = πδ ◦πδ1 ◦ · · ·◦πδn−1(δn), and so π

−1
δ
(z) = πδ1 ◦ · · ·◦πδn−1(δn). Since

α preserves the colors of the edges, α(u,δ) is connected to α(t,z) through edges with
colors δ1, . . . ,δn, so

α(t,z)2 = πα(u,δ)2 ◦πδ1 ◦ · · · ◦πδn−1(δn) = πα(u,δ)2(π
−1
δ
(z)). □

Lemma 7. If α ∈ PAut(L) and (x,z),(x,w) ∈ dom(α), then α(x,z)1 = α(x,w)1.

Proof. Since L has no sources, there is a vertex (y,δ) of L that is connected to both
(x,z) and (x,w) by single edges. So α(x,z)1 = α(y,δ)1α(y,δ)2 = α(x,w)1. □
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Proposition 1. Every partial automorphism α of L is α(y,ρ) for some (y,ρ) ∈
G ×ι HL.

Proof. Let u be the unique unit of G such that tail(u,δ) = dom(α) for some δ ∈ ∆.
By the previous lemma,

y := α(u,δ)1

is independent of the choice of δ.
Let z ∈ ∆. Since G is transitive, we can find t ∈ G such that u = r(tz). The

definition

ρ(z) := α(t,z)2

is independent of the choice of t since by Lemma 6, α(t,z)2 = πα(u,δ)2(π
−1
δ
(z)).

We now extend ρ to G . If x ∈ G then x = z1 · · ·zn for some z1, . . . ,zn ∈ ∆. Define

ρ(x) = ρ(z1) · · ·ρ(zn).

We need to check that this definition is independent of the choice of the zi’s. Suppose
we also have x = w1 · · ·wm for some w1, . . . ,wm ∈ ∆. Choose t ∈ G and µ ∈ ∆ such
that u = r(tx) and (x,µ) ∈ G (2). Then we have the following walks in L

(y,δ) //

**

•· · ·• // (t,z1) // •· · ·• // (tz1 · · ·zn−1,zn)
,,

•· · ·• // (t,w1) // •· · ·• // (tw1 · · ·wm−1,wm) // (tx,µ)

which are mapped by α to the walks

α(y,δ) //

**

•· · ·• // (µ1,ρ(z1)) // •· · ·• // (µn,ρ(zn))
++

•· · ·• // (ν1,ρ(w1)) // •· · ·• // (νm,ρ(wm)) // α(tx,µ)

for some µ1, . . . ,µn,ν1, . . . ,νm ∈ G . Hence, we have

µ1ρ(z1) · · ·ρ(zn) = α(tx,µ)1 = ν1ρ(w1) · · ·ρ(wm).

By Lemma 7, µ1 = ν1. So, ρ(z1) · · ·ρ(zn) = ρ(w1) · · ·ρ(wm).
We show that ρ is an automorphism of G . If (w,z) ∈ G (2) then we can find a t ∈ G

such that u = r(tw) = r(twz). The edge ((t,w),π−1
w (z)) connects vertex (t,w) to

(tw,z). Taking the image under α shows that α(t,w) = (α(t,w)1,δ(w)) is connected
to (α(tw,z)1,δ(z)) by an edge with color π−1

w (z), so (δ(w),δ(z)) ∈ G (2). It follows
easily now that ρ is multiplicative. Since ρ = πα(u,δ)2 ◦ π

−1
δ

is a permutation of ∆,
ρ : G → G is surjective. Since G is finite, ρ must be injective.

We show that ρ ∈ HL. Since ρ(∆) = ∆, we only need to check that ρ ◦πz = πρ(z)

for all z ∈ ∆. If u = r(tz) for some t ∈ G , then ρ(z) = πα(u,δ)2(π
−1
δ
(z)). So,

πρ(z) = πα(u,δ)2 ◦π
π
−1
δ

(z) = πα(u,δ)2 ◦π
−1
δ

◦πz = ρ◦πz.
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It remains to show that α=α(y,ρ). To check that α and α(y,ρ) have the same domain,
write u = u1 · · ·un as a product of elements of ∆. Then

yρ(u) = α(u,u1)1ρ(u1) · · ·ρ(un)

= α(u,u1)1α(u,u1)2α(uu1,u2)2 · · ·α(uu1 · · ·un−1,un)2

= α(u,u1)1 = y

so
dom(α(y,ρ)) = tail(ρ−1(y−1),δ) = tail(r(ρ−1(y−1)),δ)

= tail(ρ−1(y−1y),δ) = tail(u,δ) = dom(α).

If (x,z) ∈ dom(α) then ux = x = x1 · · ·xn for some x1, . . . ,xn ∈ ∆, so we have

α(y,ρ)(x,z) = (yρ(x),ρ(z)) = (α(u,x1)1ρ(x1) · · ·ρ(xn),α(x,z)2)

= (α(u,x1)1α(u,x1)2α(ux1,x2)2 · · ·α(ux1 · · ·xn−1,xn)2,α(x,z)2)

= (α(ux1,x2)1α(ux1,x2)2 · · ·α(ux1 · · ·xn−1,xn)2,α(x,z)2)

= · · ·
= (α(ux1 · · ·xn,z)1,α(x,z)2) = (α(x,z)1,α(x,z)2)

= α(x,z).

□

Theorem 1. If L = Lπ(D∆(G)) then G ×ι HL ∼= PAut(L).

Proof. We saw that the map (y,ρ) 7→ α(y,ρ) is onto and α(y,ρ)−1 = α
−1
(y,ρ). It is mul-

tiplicative since if (x,σ),(y,ρ) ∈ G ×ι HL are composable and (x,z) ∈ dom(α(y,ρ)),
then

α(x,σ)(y,ρ)(x,z) = α(xσ(y),σρ)(x,z) = (xσ(y)σ(ρ(x)),σ(ρ(z)))

= (xσ(yρ(x)),σ(ρ(z))) = α(x,σ)(yρ(x),ρ(z))

= α(x,σ)α(y,ρ)(x,z).

It remains to show that (y,ρ) 7→ α(y,ρ) is injective. Suppose α(y,ρ) = α(x,σ). There is a
unique unit u ∈ G such that (u,δ) ∈ dom(α(y,ρ)). Hence

(y,ρ(δ)) = (yρ(u),ρ(δ)) = α(y,ρ)(u,δ)

= α(x,σ)(u,δ) = (xσ(u),σ(δ))

= (x,σ(δ)),

so y = x. If z ∈ ∆ and u = r(tz), then

ρ(z) = α(y,ρ)(t,z)2 = α(x,σ)(t,z)2 = σ(z).

Thus, (y,ρ) = (x,σ). □

Corollary 1. If πz is the identity for all z∈∆ as in Example 6(a), then PAut(L)∼= G .
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Note that HL is a subgroup of H = {π ∈ Aut(G) | π(∆) = ∆} and so PAut(L) ∼=
G ×ι HL is isomorphic to a subgroupoid of the groupoid PAut∗(D)∼= G ×ι H of color
permuting partial automorphisms of D.

Example 7. In Example 4, HL = H and G ×ι HL ∼= PAut(L)∼= {a,b}×Z2×{a,b}.
Note that the Cayley line graph L is not a Cayley color graph since the number of
vertices of L is not the same as the number of elements of PAut(L).
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