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Abstract. In this paper we define generalized statistical convergence for sequences of sets of
order ˛; 0 < ˛ � 1 in sense of Wijsman and study some basic properties of this concept.
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1. INTRODUCTION

The concept of convergence of sequences of points has been extended by several
authors to convergence of sequences of sets. The one of these such extensions con-
sidered in this paper is the concept of Wijsman convergence. We shall define Wijsman
�-statistical convergence for sequences of sets of order ˛; .0 < ˛ � 1/ and estab-
lish some basic results regarding the notions Wijsman �-statistical convergence and
Wijsman statistical convergence for sequences of sets of ˛; .0 < ˛ � 1/.

The idea of statistical convergence first appeared, under the name of ”almost con-
vergence” in the first edition Zygmund [25] of celebrated monograph of Zygmund
[26]. Later, this idea was introduced by Fast [8] and Steinhaus [22] and later was
introduced by Schoenberg [21], also independently by Buck [1] and studied various
authors (see [5, 9, 20]). Mursaleen [17], introduced the notion �-statistical conver-
gence for real sequences. For more details on �-statistical convergence we refer to
[2] and many others. Over the years and under different names statistical convergence
has been discussed in the theory of Fourier analysis, ergodic theory and number the-
ory. In the recent years, generalization of statistical convergence have appeared in the
study of strong integral summability and the structure of ideals of bounded continu-
ous functions on Stone-C̆ech compactification of the natural numbers.

c 2017 Miskolc University Press
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A real or complex number sequence x D .xk/ is said to be statistically convergent
to L if for every " > 0

lim
n

1

n
jfk � n W jxk �Lj � "gj D 0:

In this case, we write S � limx D L or xk ! L.S/ and S denotes the set of all
statistically convergent sequences.
The generalized de la Vallée-Poussin mean is defined by

tn .x/D
1

�n

X
k2In

xk

where In D Œn��nC1;n� : A sequence x D .xk/ is said to be (V ,�/�summable to
number L (see [15]) if tn .x/ ! L as n ! 1: If �n D n; then
.V;�/�summability reduces to (C,1)-summability.

Mursaleen [17] defined ��statistically convergent sequence as follows. A se-
quence x D .xk/ is said to be �� statistically convergent to the number L if for
every " > 0

lim
n!1

1

�n
jfk 2 In W jxk �Lj � "gj D 0:

Let S� denotes the set of all ��statistically convergent sequences. If �n D n; then
S� is the same as S .
Let .X;�/ be a metric space. For any point x 2X and any non-empty subset A�X ,
the distance from x to A is defined by

d.x;A/D inf
y2A

�.x;y/ :

Let (X,�/ be a metric space. For any non-empty closed subsets A;Ak � X .k 2N/ ;
we say that the sequence .Ak/ is Wijsman convergent (see [23, 24]) to A if
limk d.x;Ak/D d.x;A/ for each x 2X: In this case we write W � limAk DA: The
concepts of Wijsman statistical convergence and boundedness for the sequence .Ak/
were given by Nuray and Rhoades [18] as follows. Let .X;�/ be a metric space:
For any non-empty closed subsets A;Ak � X .k 2N/ ; we say that the sequence
.Ak/ is Wijsman statistical convergent to A if the sequence .d.x;Ak// is statistically
convergent to d.x;A/; i.e., for " > 0 and for each x 2X

lim
n

1

n
jfk � n W jd.x;Ak/�d.x;A/j � "gj D 0:

In this case, we write st � limkAk D A or Ak ! A
�
SW

�
. The sequence .Ak/ is

bounded if supk d.x;Ak/ <1 for each x 2 X: The set of all bounded sequences of
sets denoted byL1: For details on Wijsman statistical convergent we refer to [11–14]
and many others.
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2. WIJSMAN ��STATISTICAL CONVERGENCE

In this section, we will define Wijsman ��statistical convergence of sequences of
sets and will give the relations between Wijsman statistical and Wijsman ��statistical
convergence of sequences of sets.

Definition 1. Let .X;�/ be a metric space and � D .�n/ be a non-decreasing
sequence of positive numbers such that �nC1 � �nC1;�1 D 1;�n!1 as n!1
and In D Œn��nC1;n� : For any non-empty closed subsets A;Ak �X .k 2N/ ; we
say that the sequence .Ak/ is Wijsman ��statistical convergent to A if the sequence
.d.x;Ak// is ��statistically convergent to d.x;A/; i.e., for " > 0 and for each x 2X

lim
n

1

�n
jfk 2 In W jd.x;Ak/�d.x;A/j � "gj D 0:

In this case, we write SW
�
� limkAk D A or Ak! A

�
BW
�

�
.

Example 1. Let X D R2 and the sequence .Ak/ is defined as follows:

Ak D

8̂<̂
:
n
.x;y/ W x2C .y�1/2 D k�1

o
; if n�

�p
�n
�
C1� k � n; k

is square integer
f.0;0/g ; otherwise

:

Then the sequence .Ak/ is Wijsman ��statistical convergent to AD f.0;0/g since

lim
n

1

�n
jfk 2 In W jd.x;Ak/�d.x;f.0;0/g/j � "gj D 0:

But it is not Wijsman convergent.

Definition 2. Let .X;�/ be a metric space. Then for any non-empty closed subsets
A;Ak �X .k 2N/ ; we say that the sequence .Ak/ is Wijsman ��Cesáro summable
to A if

lim
n

1

�n

X
k2In

jd.x;Ak/�d.x;A/j D 0:

In this case, we write wW
�
� limkAk D A or Ak! A

�
wW
�

�
and

wW� D

8<:.Ak/ W limn 1

�n

X
k2In

jd.x;Ak/�d.x;A/j D 0

9=; :
If �n D n; then Wijsman �-Cesáro summable becomes Wijsman-Cesáro summable,
i.e.

wW D

(
.Ak/ W lim

n

1

n

X
k2N

jd.x;Ak/�d.x;A/j D 0

)
:



896 B. HAZARIKA AND A. ESI

Theorem 1. Let .X;�/ be a metric space and A;Ak � X .k 2N/ be non-empty
closed subsets of X . Then

(a) wW
�
� SW

�
and the inclusion is proper.

(b) Let .Ak/ 2 L1, then SW
�
� wW

�
:

(c) SW
�
\L1 D w

W
�
\L1:

Proof. (a) Let " > 0 and .Ak/ 2 wW� : Then we can writeX
k2In

jd.x;Ak/�d.x;A/j �
X
k2In

jd.x;Ak/�d.x;A/j�"

jd.x;Ak/�d.x;A/j

� " jfk 2 In W jd.x;Ak/�d.x;A/j � "gj

which gives the result. To show that the inclusion is strict, we define the sequence
.Ak/ as follows:

Ak D

�
fkg ; if n�

�p
�n
�
C1� k � nI

f0g ; otherwise

It is clear that .Ak/ … L1 and for " > 0,

lim
n

1

�n
jfk 2 In W jd.x;Ak/�d.x;f0g/j � "gj D lim

n

1

�n

hp
�n

i
D 0:

So .Ak/ 2 SW� ; but

lim
n

1

�n

X
k2In

jd.x;Ak/�d.x;f0g/j D lim
n

1

�n

��p
�n
���p

�n
�
C1

��
2

D
1

2
¤ 0:

Therefore .Ak/ … wW� : This completes the proof of (a).
(b) Suppose that .Ak/ 2 SW� and .Ak/ 2 L1; say jd.x;Ak/�d.x;A/j �M for

each x 2X and for all k 2N: Given " > 0, we get
1

�n

X
k2In

jd.x;Ak/�d.x;A/j

D
1

�n

X
k2In

jd.x;Ak/�d.x;A/j�"

jd.x;Ak/�d.x;A/j

C
1

�n

X
k2In

jd.x;Ak/�d.x;A/j<"

jd.x;Ak/�d.x;A/j

�
M

�n
jfk 2 In W jd.x;Ak/�d.x;A/j � "gjC "

from which the result follows.
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(c) It follows from (a) and (b). �

If we let �n D n in Theorem 1, then we have the following corollary.

Corollary 1. Let .X;�/ be a metric space and A;Ak � X .k 2N/ be non-empty
closed subsets of X . Then

(a) wW � SW and the inclusion is proper.
(b) Let .Ak/ 2 L1, then SW � wW :
(c) SW \L1 D wW \L1:

Theorem 2. SW � SW
�

if and only if liminf �n
n
> 0:

Proof. Suppose that liminf �n
n
> 0: For given " > 0; we have

fk � n W jd.x;Ak/�d.x;A/j � "g � fk 2 In W jd.x;Ak/�d.x;A/j � "g :

Therefore
1

n
jfk � n W jd.x;Ak/�d.x;A/j � "gj �

1

n
jfk 2 In W jd.x;Ak/�d.x;A/j � "gj

�
�n

n
:
1

�n
jfk 2 In W jd.x;Ak/�d.x;A/j � "gj :

Taking the limit as n!1 and using liminf �n
n
> 0; we get the desired result.

Conversely, suppose that liminfn �nn D 0: Then we can select a subsequence
.n.i//1iD1 such that

�n.i/

n.i/
<
1

i
:

We define a sequence .Ak/ as follows:

Ak D

�
f1g; if n.i/�

�p
�n.i/

�
C1� k � n.i/; i D 1;2;3; : : : I

f0g; otherwise.

Then .Ak/ is Wijsman-statistically convergent, so .Ak/ 2 SW : But .Ak/ … wW� :
Therefore Theorem 1 (b) implies that .Ak/ … SW� : This completes the proof. �

Theorem 3. SW
�
� sW if liminf �n

n
D 1:

Proof. Since limn �nn D 1; then for " > 0; we observe that

1

n
jfk � n W jd.x;Ak/�d.x;A/j � "gj

�
1

n
jfk � n��n W jd.x;Ak/�d.x;A/j � "gj

C
1

n
jfk 2 In W jd.x;Ak/�d.x;A/j � "gj

�
n��n

n
C
1

n
jfk 2 In W jd.x;Ak �d.x;A/j � "gj
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D
n��n

n
C
�n

n

1

�n
jfk 2 In W jd.x;Ak �d.x;A/j � "gj:

This implies that .Ak/ Wijsman-statistically convergent, if .Ak/ is Wijsman �-
statistically convergent. Thus SW

�
� SW : �

Remark 1. Since limn �nn D 1; this implies that liminfn �nn >0; then from Theorem
3, we have SW � SW

�
: Hence SW

�
D SW :

3. WIJSMAN �-STATISTICAL CONVERGENCE OF ORDER ˛

The notion of order statistical convergence was introduced by Gadjiev and Orhan
[10] and after that statistical convergence of order ˛ studied by Çolak [3], �-statistical
convergence of order ˛ studied by Çolak and Bektaş [4], �-statistical convergence of
order ˛ of sequence of functions studied by Et et al., [6, 7] and many authors.

In this section, we define the concept of SW
�;˛

-statistical convergence and establish
the relationship of SW

�
with wW

�
: Also we introduce the notion of SW

�
�statistical

convergence of order ˛ of real number sequences and obtain some inclusion relations
between the set of SW�statistical convergence of order ˛:

Definition 3. Let .X;�/ be a metric space, ˛ 2 .0;1� and � D .�n/ be a non-
decreasing sequence of positive numbers such that �nC1 � �n; �1 D 1; �n!1 as
n!1 and In D Œn��nC1;n� : We denote the family of such sequences �D .�n/
by �: For any non-empty closed subsets A; Ak � X .k 2N/ ; we say that the se-
quence .Ak/ is Wijsman ��statistical convergent to A of order ˛ or SW

�;˛
�convergent

to A; if for every " > 0 and for each x 2X

lim
n

1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj D 0:

In this case we write SW
�;˛
� limAk D A or Ak! A.SW

�;˛
/: If �n D n for all n 2N;

we obtain the sequence space SW˛ such that

SW˛ D

�
.Ak/ W lim

n

1

n˛
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj D 0

�
and if �n D n for all n 2N and ˛ D 1 we obtain the sequence space SW such that

SW D

�
.Ak/ W lim

n

1

n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj D 0

�
:

Definition 4. Let .X;�/ be a metric space, ˛ 2 .0;1� and �D .�n/ 2�: For any
non-empty closed subsets A; Ak � X .k 2N/ ; we say that the sequence .Ak/ is
Wijsman ��Cesaro summable to A of order ˛ or wW

�;˛
�convergent to A; if for each

x 2X

lim
n

1

�˛n

X
k2In

jd .x;Ak/�d .x;A/j D 0:



ON GENERALIZED STATISTICAL CONVERGENCE OF SEQUENCES OF SETS ... 899

In this case we write wW
�;˛
� limAk D A or Ak! A.wW

�;˛
/: If �n D n for all n 2N;

we obtain the sequence space wW˛ such that

wW˛ D

8<:.Ak/ W lim
n

1

n˛

X
k2In

jd .x;Ak/�d .x;A/j D 0

9=;
and if �n D n for all n 2N and ˛ D 1 we obtain the sequence space wW such that

wW D

(
.Ak/ W lim

n

1

n

X
k

jd .x;Ak/�d .x;A/j D 0D 0

)
:

Theorem 4. Let .X;�/ be a metric space and ˛ 2 .0;1� : If SW
�;˛
� limAk D A

then A is unique.

Proof. The proof is easy, so omitted. �

Theorem 5. Let .X;�/ be a metric space, ˛ 2 .0;1� and non-empty closed subsets
A;B; Ak;Bk �X .k 2N/ ; then

(a) If SW
�;˛
� limAk D A and c 2C; then SW

�;˛
� limcAk D cAI

(b) If SW
�;˛
� limAk D A and SW

�;˛
� limBk D B; then SW

�;˛
� lim.AkCBk/D

ACB:

Proof. (a) For c D 0; the result is trivial. Suppose that c ¤ 0; then for every " > 0
the result follows form the following inequality

1

�˛n
jfk 2 In W jd .cx;cAk/�d .cx;cA/j � "gj

D
1

�˛n

ˇ̌̌̌�
k 2 In W jd .x;Ak/�d .x;A/j �

"

jcj

�ˇ̌̌̌
:

(b) For every " > 0: The result follows from the following inequality.
1

�˛n
jfk 2 In W jd .x;AkCBk/�d .x;ACB/j � "gj

�
1

�˛n

ˇ̌̌n
k 2 In W jd .x;Ak/�d .x;A/j �

"

2

oˇ̌̌
C
1

�˛n

ˇ̌̌n
k 2 In W jd .x;Bk/�d .x;B/j �

"

2

oˇ̌̌
:

�

If we take �n D n in the above theorem, then we have

Corollary 2. Let .X;�/ be a metric space, ˛ 2 .0;1� and non-empty closed subsets
A;B; Ak;Bk �X .k 2N/ ; then
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(a) If SW˛ � limAk D A and c 2C; then SW˛ � limcAk D cAI
(b) If SW˛ � limAk D A and SW˛ � limBk D B; then SW˛ � lim.AkCBk/ D

ACB:

Theorem 6. If 0 < ˛ < ˇ � 1; then SW
�;˛
� SW

�;ˇ
and the inclusion is strict.

Proof. The proof of the result follows form the following inequality.

1

�
ˇ
n

jfk 2 In W jd .x;Ak/�d .x;A/j � "gj

�
1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj :

To prove the inclusion is strict, let � be given and we consider a sequence .Ak/ of
non-empty closed subsets of (X,�/ metric space defined by

Ak D

�
f.k;k/g ; if n� Œ

p
�n�C1� k � nI

f.0;0/g ; otherwise.

D
1

�
ˇ
n

jfk 2 In W n� Œ
p
�n�C1� k � ngj �

p
�n

�
ˇ
n

Then we have .Ak/ 2 SW�;ˇ for 1
2
< ˇ � 1 but .Ak/ … SW�;˛ for 0 < ˛ � 1

2
: �

Theorem 7. If a sequence .Ak/ of non-empty closed subsets of .X;�/metric space
is SW

�;˛
�convergent to A, then it is SW

�
�convergent to A for 0 < ˛ � 1:

Proof. It is easy, so omitted. �

Theorem 8. Let .X;�/ be a metric space and ˛ 2 .0;1� : Then SW˛ � S
W
�;˛

if

lim
n!1

inf
�˛n
n˛

> 0:

Proof. If Ak! A
�
SW˛

�
then for every " > 0 and for sufficiently large n we have

1

n˛
jfk � n W jd .x;Ak/�d .x;A/j � "gj

�
1

n˛
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj

�
�˛n
n˛

1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj :

Taking the limit as n!1 and using the given condition, we get Ak ! A
�
SW
�;˛

�
:

This completes the proof of the theorem. �

Corollary 3. Let .X;�/ be a metric space, � D .�n/ 2 � and ˛ 2 .0;1� : Then
SW
�;˛
� SW :
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Theorem 9. Let �D .�n/ 2� and ˛ 2 .0;1� : Then SW � SW
�;˛

if and only if

lim
n!1

inf
�˛n
n
> 0: (3.1)

Proof. Let the condition (3.1) holds and .Ak/ 2 SW : For a given " > 0 we have

fk � n W jd .x;Ak/�d .x;A/j � "g � fk 2 In W jd .x;Ak/�d .x;A/j � "g:

Then we have

1

n
jfk � n W jd .x;Ak/�d .x;A/j � "gj �

1

n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj

D
�˛n
n

1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj :

By taking limit as n!1 and from relation (3.1) we have

Ak! A
�
SW

�
) Ak! A

�
SW�;˛

�
:

Next we suppose that

lim
n!1

inf
�˛n
n
D 0:

Then we can choose a subsequence .ni / such that
�˛ni
ni
< 1
i
: Define a sequence .Ak/

as follows:

Ak D

�
f.1;1/g ; if k 2 Ini I
f.0;0/g ; otherwise.

Then clearly .Ak/ 2 SW but .Ak/ … SW�;˛: Since SW
�;˛
� SW

�
; we have .Ak/ … SW�;˛;

which is a contradiction. Hence the relation (3.1) holds. �

Theorem 10. Let .X;�/ be a metric space, � D .�n/ and � D .�n/ be two se-
quences in � such that �n � �n for all n 2N and 0 < ˛ � ˇ � 1: If

lim
n!1

inf
�˛n

�
ˇ
n

; (3.2)

then SW
�;ˇ
� SW

�;˛
:

Proof. Suppose that �n � �n for all n 2N and the condition (3.2) satisfied. Then
In � Jn and so that for " > 0 we can write

fk 2 Jn W jd .x;Ak/�d .x;A/j � "g � fk 2 In W jd .x;Ak/�d .x;A/j � "g:

Then we have

1

�
ˇ
n

jfk 2 Jn W jd .x;Ak/�d .x;A/j � "gj
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�
�˛n

�
ˇ
n

1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj;

for all n 2N; where Jn D Œn��nC1;n�: Taking limit n!1 in the last inequality
and using (3.2), we have SW

�;ˇ
� SW

�;˛
: �

Corollary 4. Let .X;�/ be a metric space, � D .�n/ and � D .�n/ be two se-
quences in � such that �n � �n for all n 2N: If (3.2) holds, then

(a) SW�;˛ � S
W
�;˛

for 0 < ˛ � 1;
(b) SW� � S

W
�;˛

for 0 < ˛ � 1;
(c) SW� � S

W
�
:

Theorem 11. Let .X;�/ be a metric space, � D .�n/ and � D .�n/ be two se-
quences in � such that �n � �n for all n 2N and 0 < ˛ � ˇ � 1: If

lim
n!1

�n

�
ˇ
n

D 1; (3.3)

then SW
�;˛
� SW

�;ˇ
:

Proof. Let SW
�;˛
� limAk D A and (3.3) be satisfied. Since In � Jn; for " > 0 we

can write
1

�
ˇ
n

jfk 2 Jn W jd .x;Ak/�d .x;A/j � "gj

D
1

�
ˇ
n

jfn��nC1� k � n��n W jd .x;Ak/�d .x;A/j � "gj

C
1

�
ˇ
n

jfk 2 In W jd .x;Ak/�d .x;A/j � "gj

�
�n��n

�
ˇ
n

C
1

�
ˇ
n

jfk 2 In W jd .x;Ak/�d .x;A/j � "gj

�
�n��

ˇ
n

�
ˇ
n

C
1

�
ˇ
n

jfk 2 In W jd .x;Ak/�d .x;A/j � "gj

�

 
�n

�
ˇ
n

�1

!
C
�˛n

�
ˇ
n

1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj:

Using the relation (3.3) and SW
�;˛
� limAk D A the right-hand side of the above in-

equality tends to zero as n!1: This implies that SW
�;˛
� SW

�;ˇ
: �

Corollary 5. Let .X;�/ be a metric space, � D .�n/ and � D .�n/ be two se-
quences in � such that �n � �n for all n 2N: If (3.3) holds, then

(a) SW
�;˛
� SW�;˛ for 0 < ˛ � 1;
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(b) SW
�
� SW�;˛ for 0 < ˛ � 1;

(c) SW
�
� SW� :

An Orlicz function M is a function M W Œ0;1/! Œ0;1/ which is continuous,
convex, nondecreasing function define for x > 0 such that M.0/D 0, M.x/ > 0 and
M .x/!1 as x!1. If convexity of Orlicz function is replaced by M.xCy/ �
M .x/CM .y/ then this function is called the modulus function and characterized
by Ruckle [19]. An Orlicz function M is said to satisfy �2�condition for all values
u, if there exists K > 0 such that M.2u/�KM.u/, u� 0.

Lemma 1. An Orlicz function satisfies the inequality M .�x/ � �M .x/ for all �
with 0 < � < 1.

Lindenstrauss and Tzafriri [16] used the idea of Orlicz function to construct the
sequence space

lM D

(
.xk/ W

1X
kD1

M

�
jxkj

r

�
<1; for some r > 0

)
,

which is a Banach space normed by

k.xk/k D inf

(
r > 0 W

1X
kD1

M

�
jxkj

r

�
� 1

)
.

The space lM is closely related to the space lp, which is an Orlicz sequence space
with M .x/D jxjp ; for 1� p <1:

Definition 5. Let .X;�/ be a metric space. LetM be an Orlicz function, pD .pk/
be a sequence of strictly positive real numbers, ˛ 2 .0;1�; �D .�n/ be a sequence of
positive reals, and for � > 0; now we define

wW�;˛ ŒM;p�D

8<:.Ak/ 2X W lim
n!1

1

�˛n

X
k2In

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk
D 0;

for some A and for x 2X
�
:

If M.x/D x and pk D p for all k 2N then we shall write wW
�;˛

ŒM;p�D wW
�;˛
.p/

and if M.x/D x then we shall write wW
�;˛

ŒM;p�D wW
�;˛

Œp� :

Theorem 12. Let .pk/ be a bounded and 0 < infk pk � pk � supkpk DH <1:

Let 0 < ˛ � ˇ � 1; M be an Orlicz function and �D .�n/ be a sequence of positive
reals, then wW

�;˛
ŒM;p�� SW

�;ˇ
:
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Proof. Let .Ak/ 2wW�;˛ ŒM;p� : Let " > 0 be given. As �˛n � �
ˇ
n for each n we can

write
1

�˛n

X
k2In

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk

D
1

�˛n

26664 X
k2In

jd.x;Ak/�d.x;A/j�"

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk

C

X
k2In

jd.x;Ak/�d.x;A/j<"

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk
37775

�
1

�
ˇ
n

26664 X
k2In

jd.x;Ak/�d.x;A/j�"

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk

C

X
k2In

jd.x;Ak/�d.x;A/j<"

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk
37775

�
1

�
ˇ
n

X
k2In

jd.x;Ak/�d.x;A/j�"

�
M

�
"

�

��pk

�
1

�
ˇ
n

X
k2In

jd.x;Ak/�d.x;A/j�"

min
�
ŒM ."1/�

h; ŒM."1/�
H
�

�
1

�
ˇ
n

jfk 2 In W jd .x;Ak/�d .x;A/j � "gjmin
�
ŒM ."1/�

h; ŒM."1/�
H
�
;

where "1 D "
�
: From the above inequality we have .Ak/ 2 SW�;˛:

�

Corollary 6. Let 0 < ˛ � 1; M be an Orlicz function and �D .�n/ be an element
of �; then wW

�;˛
ŒM;p�� SW

�;˛
:

Theorem 13. Let M be an Orlicz function, .Ak/ be a sequence in L1; and �D
.�n/ be an element of �: If limn!1 �n

�˛n
D 1; then SW

�;˛
� wW

�;˛
ŒM;p� :
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Proof. Suppose that .Ak/ is in L1 and SW
�;˛
� limkAk DA: As .Ak/ 2L1 there

exists K > 0 such that jd .x;Ak/�d .x;A/j �K for all k: For given " > 0 we have

1

�˛n

X
k2In

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk
D

1

�˛n

X
k2In

jd.x;Ak/�d.x;A/j�"

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk

C
1

�˛n

X
k2In

jd.x;Ak/�d.x;A/j<"

�
M

�
jd .x;Ak/�d .x;A/j

�

��pk

�
1

�˛n

X
k2In

jd.x;Ak/�d.x;A/j�"

max

(�
M

�
K

�

��h
;

�
M

�
K

�

��H)

C
1

�˛n

X
k2In

jd.x;Ak/�d.x;A/j<"

�
M

�
"

�

��pk

�max

(�
M

�
K

�

��h
;

�
M

�
K

�

��H) 1

�˛n
jd .x;Ak/�d .x;A/j � "j

C
�n

�˛n
max

(�
M

�
"

�

��h
;

�
M

�
"

�

��H)
:

Therefore we have .Ak/ 2 wW�;˛ ŒM;p� : �

Theorem 14. Let �D .�n/ 2�;0 < ˛ � ˇ � 1; p be a positive real number, then
wW
�;˛
.p/� wW

ˇ;˛
.p/:

Proof. The proof is easy, so omitted. �

Corollary 7. Let �D .�n/ 2� and p be a positive real number, then wW
�;˛
.p/�

wW
�
.p/:

Theorem 15. Let �D .�n/ 2�;0 < ˛ � ˇ � 1 and p be a positive real number,
then wW

�;˛
.p/� SW

�;ˇ
:

Proof. Let .Ak/ 2 wW�;˛.p/ and for " > 0 we haveX
k2In

jd .x;Ak/�d .x;A/j
p
D

X
k2In

jd.x;Ak/�d.x;A/j�"

jd .x;Ak/�d .x;A/j
p
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C

X
k2In

jd.x;Ak/�d.x;A/j<"

jd .x;Ak/�d .x;A/j
p

�

X
k2In

jd.x;Ak/�d.x;A/j�"

jd .x;Ak/�d .x;A/j
p

� jfk 2 In W jd .x;Ak/�d .x;A/j � "gj:"
p:

Therefore we have
1

�˛n

X
k2In

jd .x;Ak/�d .x;A/j
p
�

1

�
ˇ
n

jfk 2 In W jd .x;Ak/�d .x;A/j � "gj:"
p:

The last inequality implies that .Ak/ 2 SW�;ˇ if .Ak/ 2 wW�;˛.p/: This compltes the
proof of the theorem. �

Theorem 16. Let �D .�n/ and �D .�n/ be two sequences in � such that �n �
�n for all n 2N and 0 < ˛ � ˇ � 1: If (3.3) holds, then wW

�;ˇ
.p/� wW

�;˛
.p/:

Proof. The proof is easy, so omitted. �

Corollary 8. Let �D .�n/ and�D .�n/ be two sequences in� such that �n��n
for all n 2N: If (3.3) holds, then

(a) wW�;˛.p/� w
W
�;˛
.p/ for 0 < ˛ � 1;

(b) wW� .p//� w
W
�
.p/ for 0 < ˛ � 1;

(c) wW� .p/� w
W
�
.p/:

Theorem 17. Let �D .�n/ and �D .�n/ be two sequences in � such that �n �
�n for all n 2N and 0 < ˛ � ˇ � 1: If (3.3) holds, then wW

�;ˇ
.p/� SW

�;˛
:

Proof. Let .Ak/ 2 wW�;ˇ .p/ and for " > 0: Then we haveX
k2In

jd .x;Ak/�d .x;A/j
p
D

X
k2In

jd.x;Ak/�d.x;A/j�"

jd .x;Ak/�d .x;A/j
p

C

X
k2In

jd.x;Ak/�d.x;A/j<"

jd .x;Ak/�d .x;A/j
p

�

X
k2In

jd.x;Ak/�d.x;A/j�"

jd .x;Ak/�d .x;A/j
p

� jfk 2 In W jd .x;Ak/�d .x;A/j � "gj:"
p:
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Therefore we have
1

�
ˇ
n

X
k2In

jd .x;Ak/�d .x;A/j
p
�
�˛n

�
ˇ
n

1

�˛n
jfk 2 In W jd .x;Ak/�d .x;A/j � "gj:"

p:

Since (3.3) holds and .Ak/ 2 wW�;ˇ .p/: The last inequality implies that .Ak/ 2 SW�;˛:
This completes the proof of the theorem. �

Corollary 9. Let �D .�n/ and�D .�n/ be two sequences in� such that �n��n
for all n 2N and 0 < ˛ � 1: If (3.3) holds, then

(a) wW�;˛.p/� S
W
�;˛
;

(b) wW� .p/� S
W
�;˛
;

(c) wW� .p/� S
W
�
:

Theorem 18. Let �D .�n/ and �D .�n/ be two sequences in � such that �n �
�n for all n 2N and 0 < ˛ � ˇ � 1: If (3.3) holds, then L1\wW�;˛.p/� w

W
�;ˇ
.p/:

Proof. Let .Ak/ 2L1\wW�;˛.p/ and suppose that (3.3) holds. Since .Ak/ 2L1;
there esists K > 0 such that jd .x;Ak/�d .x;A/j �K for all k: Since �n � �n and
In � Jn for all n 2N we can write

1

�
ˇ
n

X
k2Jn

jd .x;Ak/�d .x;A/j
p

D
1

�
ˇ
n

X
k2Jn�In

jd .x;Ak/�d .x;A/j
p
C

1

�
ˇ
n

X
k2In

jd .x;Ak/�d .x;A/j
p

�

 
�n��n

�
ˇ
n

!
KpC

1

�
ˇ
n

X
k2In

jd .x;Ak/�d .x;A/j
p

�

 
�n��

ˇ
n

�
ˇ
n

!
KpC

1

�
ˇ
n

X
k2In

jd .x;Ak/�d .x;A/j
p

�

 
�n��

ˇ
n

�
ˇ
n

!
KpC

�˛n

�
ˇ
n

1

�˛n

X
k2In

jd .x;Ak/�d .x;A/j
p

�

 
�n

�
ˇ
n

�1

!
KpC

�˛n

�
ˇ
n

1

�˛n

X
k2In

jd .x;Ak/�d .x;A/j
p :

This imples that .Ak/ 2 wW�;ˇ .p/: Hence L1\wW�;˛.p/� w
W
�;ˇ
.p/: �

Corollary 10. Let �D .�n/ and �D .�n/ be two sequences in � such that �n �
�n for all n 2N: If (3.3) holds, then

(a) L1\wW�;˛.p/� w
W
�;ˇ
.p/ for 0 < ˛ � 1;
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(b) L1\wW�;˛.p/� w
W
� .p/ for 0 < ˛ � 1;

(c) L1\wW� .p/� w
W
� .p/:

Theorem 19. Let M be an Orlicz function and if infk pk > 0; then limit of any
sequence .Ak/ in wW

�;˛
ŒM;p� is unique.

Proof. Let limk pk D s > 0: Suppose that Ak ! A1

�
wW
�;˛

ŒM;p�
�

and Ak !

A2

�
wW
�;˛

ŒM;p�
�
: Then there exist �1 > 0 and �2 > 0 such that

lim
n!1

1

�˛n

X
k2In

�
M

�
jd .x;Ak/�d .x;A1/j

�

��pk
D 0;

and

lim
n!1

1

�˛n

X
k2In

�
M

�
jd .x;Ak/�d .x;A2/j

�

��pk
D 0:

Let �Dmaxf2�1;2�2g: As M is nondecreasing and convex, we have

1

�˛n

X
k2In

�
M

�
jd .x;A1/�d .x;A2/j

�

��pk
�
D

�˛n

X
k2In

1

2pk

��
M

�
jd .x;Ak/�d .x;A1/j

�

��pkpk
C

�
M

�
jd .x;Ak/�d .x;A2/j

�

���

D

�˛n

X
k2In

��
M

�
jd .x;Ak/�d .x;A1/j

�

��pk

C
D

�˛n

X
k2In

�
M

�
jd .x;Ak/�d .x;A2/j

�

��pk1A! 0 as n!1;

where supk pk DH and D Dmax.1;2H�1/: Therefore we get

lim
n!1

1

�˛n

X
k2In

�
M

�
jd .x;A1/�d .x;A2/j

�

��pk
D 0:

As limk pk D s; we have

lim
k!1

�
M

�
jd .x;A1/�d .x;A2/j

�

��pk
D

�
M

�
jd .x;A1/�d .x;A2/j

�

��s
and so A1 D A2: Hence the limit is unique. �
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