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Abstract. This paper is concerned with the existence of solutions for initial value problems of
functional and neutral functional Hadamard type fractional differential inclusions. We apply
appropriate fixed point theorems for multivalued maps to obtain the existence results for the
given problems covering convex as well as non-convex cases. Some illustrative examples are
also presented.
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1. INTRODUCTION

In this paper we study the existence of solutions for initial value problems of func-
tional and neutral functional Hadamard type fractional differential inclusions given
by

D˛y.t/ 2 F.t;yt /; for each t 2 J WD Œ1;b�; 0 < ˛ < 1; (1.1)
y.t/D #.t/; t 2 Œ1� r;1�; (1.2)

and
D˛Œy.t/�g.t;yt /� 2 F.t;yt /; t 2 J; (1.3)

y.t/D #.t/; t 2 Œ1� r;1�; (1.4)
where D˛ is the Hadamard fractional derivative, F W J �C.Œ�r;0�;R/ ! P .R/
(P .R/ is the family of all nonempty subjects of R) is a given function and # 2C.Œ1�
r;1�;R/ with #.1/ D 0 and g W J �C.Œ�r;0�;R/! R is a given function such that
g.1;#/ D 0: For any function y defined on Œ1� r;b� and any t 2 J , let yt denote
the element of C.Œ�r;0�;R/ defined by yt .�/ D y.t C�/; � 2 Œ�r;0�: Here yt .�/
represents the history of the state from time t � r up to the present time t .

Functional and neutral functional differential equations arise in the mathematical
modelling of biological, physical, and engineering problemss, see, for example, the
texts [19], [17] and the references cited therein.

c
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Fractional order operators are found to be valuable tools in describing several phe-
nomena occurring in applied sciences and engineering. Examples include viscoelasti-
city, electrochemistry, control, porous media, electromagnetic, etc. (see [18,21–23]).

Fractional differential equations involving Riemann-Liouville and Caputo type
fractional derivatives have extensively been studied by several researchers [1–4, 6,
7, 15, 24, 25]. On the other hand, Hadamard type fractional differential equations are
not studied in depth and many aspects of these equations need further attention. It
is imperative to note that the definition of Hadamard fractional derivative contains a
logarithmic function of arbitrary exponent in contrast to aforementioned derivatives.
For details, we refer the reader to the papers [9–11] and references cited therein.

The IVPs (1.1)–(1.2) and (1.3)–(1.4) involving Riemann-Liouville fractional de-
rivative and infinite delay were studied in [8] while the case of functional fractional
Hadamard type differential equations has recently been discussed in [5]. Here we
extend the problems addressed in [5] to the multi-valued case.

The purpose of this paper is to establish some existence results for the problems
(1.1)–(1.2) and (1.3)-(1.4) for convex and non-convex values of the multivalued maps
involved in the problems. Our main results rely on the nonlinear alternative of Leray-
Schauder type and a fixed point theorem for contraction multivalued maps due to
Covitz and Nadler.

The paper is organized as follows. Section 2 contains some preliminaries needed
for the sequel. In Section 3, we establish the existence results for the problem (1.1)–
(1.2) while the results for the problem (1.3)-(1.4) are presented in Section 4. The
paper concludes with illustrating examples.

2. PRELIMINARIES

Here we fix notations and state some definitions, and preliminary facts that we
need in the sequel.

The space C.J;R/ denote the Banach space of all continuous functions from J

into R equipped with the norm kyk1 WD supfjy.t/j W t 2 J g and C.Œ�r;0�;R/ is en-
dowed with norm k � kC defined by k#kC WD supfj#.�/j W �r � �� 0g:

Definition 1 ([18]). The Hadamard derivative of fractional order q for a function
g W Œ1;1/! R is defined as

Dqg.t/D
1

� .n�q/

�
t
d

dt

�nZ t

1

�
log

t

s

�n�q�1 g.s/
s
ds; n�1< q < n;nD Œq�C1;

where Œq� denotes the integer part of the real number q and log.�/D loge.�/:

Definition 2 ([18]). The Hadamard fractional integral of order q for a function g
is defined as

I qg.t/D
1

� .q/

Z t

1

�
log

t

s

�q�1 g.s/
s
ds; q > 0;

provided the integral exists.
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For the convenience of the reader, we briefly describe some basic definitions.

Let .D ;k �k/ denote a normed space and P1 DP .D/ WD fA�D WA¤¿g: Then
we define Pcl.D/DfD1 2P1 WD1 is closedg;Pb.D/DfD1 2P1 WD1 is boundedg;
Pcp.D/D fD1 2P1 WD1 is compactg; and
Pcp;c.D/D fD1 2P1 WD1 is compact and convexg:

Definition 3. A multi-valued map G WD!P1 is
.a/ convex (closed) valued if G .a/ is convex (closed) for all a 2D I

.b/ bounded on bounded sets if G .B/D [x2BG .x/ is bounded in D for all B 2
Pb.D/ (i.e. supx2Bfsupfjyj W y 2G.x/gg<1/I

.c/ upper semi-continuous (u.s.c.) on D if for each a0 2D ; the set G .a0/ is a
nonempty closed subset of D , and if for each open set N of D containing
G .a0/; there exists an open neighborhood N0 of a0 such that G .N0/�N I

.d/ completely continuous if G .B/ is relatively compact for every B 2Pb.D/:

Definition 4. The map G has a fixed point if there is a 2D such that a 2 G .a/.
The fixed point set of the multivalued operator G will be denoted by FixG .

Definition 5. The map G W J !Pcl.R/ is said to be measurable if for every b 2R,
the function t 7�! d.b;G .t//D inffjb� cj W c 2 G .t/g is measurable.

Definition 6. A multivalued map F W J �R!P .R/ is said to be Carathéodory if
.i/ t 7�! F.t;y/ is measurable for each x 2 R;
.i i/ y 7�! F.t;y/ is upper semicontinuous for almost all t 2 J:

Further a Carathéodory function F is called L1�Carathéodory if
.i i i/ for each � > 0, there exists '� 2 L1.J;RC/ such that

kF.t;y/k D supfjvj W v 2 F.t;y/g � '�.t/

for all kyk � � and for a.e. t 2 J:

3. EXISTENCE RESULTS FOR THE PROBLEM (1.1)–(1.2)

In this section, we establish the existence criteria for the problem (1.1)–(1.2). Be-
fore presenting the main results, we outline some auxiliary material.

For each y 2 C.J;R/, define the set of selections of F by

SF;y WD fv 2 L
1.J;R/ W v.t/ 2 F.t;yt / for a.e. t 2 J g:

Definition 7. A function x 2C 1.Œ1�r;b�;R/ is called a solution of problem (1.1)–
(1.2) if there exists a function v 2 L1.J;R/ with v.t/ 2 F.t;yt /; a.e. J such that
D˛y.t/D v.t/ for a.e. t 2 J and y.t/D #.t/; t 2 Œ1� r;1�:
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To discuss the existence of the solutions for the initial value problem (1.1)–(1.2)
when the right-hand side is convex valued (upper semicontinuous case), we need the
following lemmas.

Lemma 1 ( [16]). (Nonlinear alternative for Kakutani maps.) Let E be a Banach
space, C a closed convex subset of E; U an open subset of C and 0 2 U: Suppose
that F W U !Pcp;c.C / is a upper semicontinuous compact map. Then either

(i) F has a fixed point in U ; or
(ii) there is a u 2 @U and � 2 .0;1/ with u 2 �F.u/:

Lemma 2 ([20]). Let X be a Banach space. Let F W J �X ! Pcp;c.X/ be an
L1� Carathéodory multivalued map and let � be a linear continuous mapping from
L1.J;X/ to C.J;X/. Then the operator

� ıSF W C.J;X/!Pcp;c.C.J;X//; x 7! .� ıSF /.x/D�.SF;x/

is a closed graph operator in C.J;X/�C.J;X/:

Theorem 1. Assume that
.H1/ F W J �R!P .R/ is L1-Carathéodory and has nonempty compact and con-

vex values;
.H2/ there exists a continuous nondecreasing function ˇ W Œ0;1/! .0;1/ and a

function � 2 C.J;RC/ such that

kF.t;y/kP WD supfjvj W v 2 F.t;y/g � �.t/ˇ.kykC /;

for each .t;y/ 2 J �C.Œ�r;0�;R/I
.H3/ there exists a constant � > 0 such that

�

ˇ.�/k�k1
.logb/˛

� .˛C1/

> 1:

Then the initial value problem (1.1)–(1.2) has at least one solution on Œ1� r;b�:

Proof. Define an operator ˝F W C.Œ1� r;b�;R/!P .C.Œ1� r;b�;R// by

˝F .y/D

8̂̂̂̂
<̂
ˆ̂̂:

h 2 C.Œ1� r;b�;R/ W

h.t/D

8̂̂<̂
:̂
#.t/; if t 2 Œ1� r;1�;

1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s
ds; if t 2 Œ1;b�;

9>>>>=>>>>;
(3.1)

for v 2 SF;y : It will be shown that the operator ˝F satisfies the assumptions of
Lemma 1. Firstly we observe that ˝F is convex for each x 2 C.Œ1� r;b�;R/ since
SF;x is convex (F has convex values). Next, we show that ˝F maps bounded sets
into bounded sets in C.Œ1� r;b�;R/: For a positive number r , let Br D fy 2 C.Œ1�
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r;b�;R/ W kykŒ1�r;b� � rg be a bounded ball in C.Œ1� r;b�;R/. Then, for each h 2
˝F .y/;y 2 Br , there exists v 2 SF;y such that

h.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s
ds:

Then for t 2 J; we have

jh.t/j �
1

� .˛/

Z t

1

�
log

t

s

�˛�1
jv.s/j

ds

s

�
ˇ.kykŒ1�r;b�/k�k1

� .˛/

Z t

1

�
log

t

s

�˛�1 ds
s

�
ˇ.kykŒ1�r;b�/k�k1

� .˛C1/
.logb/˛:

Thus

khk �
ˇ.r/k�k1

� .˛C1/
.logb/˛ WD Q̀:

Now we show that˝F maps bounded sets into equicontinuous sets ofC.Œ1�r;b�;R/:
Let t1; t2 2 J with t1 < t2 and x 2 Br : For each h 2˝F .y/; we obtain

jh.t2/�h.t1/j �
1

� .˛/

ˇ̌̌̌
ˇ
Z t1

1

"�
log

t2

s

�˛�1
�

�
log

t1

s

�˛�1#
f .s;ys/

ds

s

C
1

� .˛/

Z t2

t1

�
log

t2

s

�˛�1
f .s;ys/

ds

s

ˇ̌̌̌
ˇ

�
ˇ.r/k�k1

� .˛/

Z t1

1

"�
log

t2

s

�˛�1
�

�
log

t1

s

�˛�1#ds
s

C
ˇ.r/k�k1

� .˛/

Z t2

t1

�
log

t2

s

�˛�1 ds
s
:

Clearly the right hand side of the above inequality tends to zero independent of x 2
Br as t2 � t1 ! 0: As ˝F satisfies the above three assumptions, it follows by the
Ascoli-Arzelá theorem that˝F WC.Œ1�r;b�;R/!P .C.Œ1�r;b�;R// is completely
continuous.

In our next step, we show that ˝F is upper semicontinuous. It is known [14,
Proposition 1.2] that ˝F will be upper semicontinuous if we establish that it has
a closed graph, since ˝F is already shown to be completely continuous. Thus we
will prove that ˝F has a closed graph. Let yn! y�;hn 2 ˝F .yn/ and hn! h�:

Then we need to show that h� 2˝F .y�/: Associated with hn 2˝F .yn/; there exists
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vn 2 SF;yn
such that for each t 2 J;

hn.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
vn.s/

ds

s
:

Thus it suffices to show that there exists v� 2 SF;y�
such that for each t 2 J;

h�.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v�.s/

ds

s
:

Let us consider the linear operator � W L1.J;R/! C.J;R/ given by

v 7!�.v/.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

ds

s
:

Notice that

khn.t/�h�.t/k D






 1

� .˛/

Z t

1

�
log

t

s

�˛�1
.vn.s/�v�.s//

ds

s






! 0; as n!1:

Thus, it follows by Lemma 2 that� ıSF is a closed graph operator. Further, we have
hn.t/ 2�.SF;yn

/: Since yn! y�; therefore, we have

h�.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v�.s/

ds

s
;

for some v� 2 SF;y�
:

Finally, we show there exists an open setU �C.J;R/with y …˝F .y/ for any �2
.0;1/ and all y 2 @U: Let � 2 .0;1/ and y 2 �˝F .y/: Then there exists v 2L1.J;R/
with v 2 SF;y such that, for t 2 J , we have

y.t/D �

 
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

ds

s

!
:

By the assumption .H2/; for each t 2 J , we get

jy.t/j �
1

� .˛/

Z t

1

�
log

t

s

�˛�1
�.s/ˇ.kysk/

ds

s

�
k�k1ˇ.kykŒ1�r;b�/

� .˛C1/
.logb/˛;

which can be expressed as

kykŒ1�r;b�

ˇ.kykŒ1�r;b�/k�k1
.logb/˛

� .˛C1/

� 1:

In view of .H3/, there exists � such that kykŒ1�r;b� ¤ � . Let us set

U D fy 2 C.Œ1� r;b�;R/ W kykŒ1�r;b� < �g:
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Note that the operator ˝F W U ! PC.Œ1� r;b�;R/ is upper semicontinuous and
completely continuous. From the choice of U , there is no y 2 @U such that y 2
�˝F .y/ for some � 2 .0;1/. Consequently, by the nonlinear alternative of Leray-
Schauder type (Lemma 1), we deduce that ˝F has a fixed point y 2 U which is a
solution of the problem (1.1)–(1.2). This completes the proof. �

Next we prove the existence of solutions for the problem (1.1)–(1.2) with a non-
convex valued right hand side (Lipschitz case) by applying a fixed point theorem for
multivalued map due to Covitz and Nadler. Let us first introduce terminology.

Let .X;d/ be a metric space induced from the normed space .X Ik � k/. Consider
Hd WP .X/�P .X/! R[f1g given by

Hd .A;B/Dmaxfsup
a2A

d.a;B/; sup
b2B

d.A;b/g;

where d.A;b/D infa2Ad.aIb/ and d.a;B/D infb2B d.aIb/.

Definition 8. A multivalued operator N WX !Pcl.X/ is called:
.a/ 
�Lipschitz if and only if there exists 
 > 0 such that

Hd .N.x/;N.y//� 
d.x;y/ for each x;y 2X I

.b/ a contraction if and only if it is 
�Lipschitz with 
 < 1.

Lemma 3 ([13]). Let .X;d/ be a complete metric space. If N WX !Pcl.X/ is a
contraction, then F ixN ¤¿.

Theorem 2. Assume that:
.H4/ F W J �R! Pcp.R/ is such that F.�;y/ W J ! Pcp.R/ is measurable for

each y 2 R.
.H5/ Hd .F.t;y/;F.t; Ny//� `.t/ky� NykC for almost all t 2 J and y; Ny

2 C.Œ�r;0�;R/ with ` 2 C.J;RC/ and d.0;F.t;0// � `.t/ for almost all
t 2 J .

Then, if
.logb/˛

� .˛C1/
k`k1 < 1; the initial value problem (1.1)–(1.2) has at least one

solution on Œ1� r;b�:

Proof. Observe that the set SF;y is nonempty for each x 2 C.Œ1� r;b�;R/ by the
assumption .H4/; so F has a measurable selection (see Theorem III.6 [12]). Now we
show that the operator˝F ; defined by (3.1), satisfies the hypothesis of Lemma 3. To
show that ˝F .y/ 2 Pcl.C.Œ1� r;b�;R// for each y 2 C.Œ1� r;b�;R/, let fungn�0 2
˝F .y/ be such that un! u .n!1/ in C.Œ1� r;b�;R/: Then u 2 C.Œ1� r;b�;R/
and there exists vn 2 SF;yn

such that, for each t 2 J ,

un.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
vn.s/

ds

s
:
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As F has compact values, we pass onto a subsequence (if necessary) to obtain that
vn converges to v in L1.J;R/: Thus, v 2 SF;y and for each t 2 J , we have

un.t/! u.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

ds

s
:

Hence, u 2˝.y/:

Next we show that there exists ı < 1 (ı WD
.logb/˛

� .˛C1/
k`k1/ such that

Hd .˝F .y/;˝F . Ny//� ıky� NykC for each y; Ny 2 C.Œ1� r;b�;R/:

Let y; Ny 2 C.Œ1� r;b�;R/ and h1 2˝F .y/. Then there exists v1.t/ 2 F.t;yt / such
that, for each t 2 J ,

h1.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v1.s/

ds

s
:

By .H5/, we have

Hd .F.t;y/;F.t; Ny//� `.t/ky� NykC :

So, there exists w 2 F.t; Nyt / such that

jv1.t/�wj � `.t/ky� NykC ; t 2 J:

Define U W J !P .R/ by

U.t/D fw 2 R W jv1.t/�wj � `.t/ky� NykC g:

Since the multivalued operator U.t/\F.t; Nyt / is measurable (Proposition III.4 [12]),
there exists a function v2.t/ which is a measurable selection for U . So v2.t/ 2
F.t; Nyt / and for each t 2 J , we have jv1.t/�v2.t/j � `.t/ky� NykC .

For each t 2 J , let us define

h2.t/D
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v2.s/

ds

s
:

Thus,

jh1.t/�h2.t/j �
1

� .˛/

Z t

1

�
log

t

s

�˛�1
jv1.s/�v2.s/j

ds

s

�
1

� .˛/

Z t

1

�
log

t

s

�˛�1
`.s/ky� NykC

ds

s

�
1

� .˛/

Z b

1

�
log

t

s

�˛�1
`.s/ky� NykŒ1�r;b�

ds

s

�
.logb/˛

� .˛C1/
k`k1ky� NykŒ1�r;b�:
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Hence,

kh1�h2k �
.logb/˛

� .˛C1/
k`k1ky� NykŒ1�r;b�:

Analogously, interchanging the roles of y and y, we obtain

Hd .˝F .y/;˝F . Ny//�
1

� .˛C1/
k`k1ky� NykŒ1�r;b�:

Since ˝F is a contraction, it follows by Lemma 3 that ˝F has a fixed point x
which is a solution of (1.1)–(1.2). This completes the proof. �

4. EXISTENCE RESULTS FOR THE PROBLEM (1.3)–(1.4)

This section is devoted to some results dealing with the existence of solutions for
the problem (1.3)–(1.4).

Definition 9. A function y 2 C 1.Œ1� r;b�;R/; is said to be a solution of (1.3)–
(1.4) if there exists a function v 2 L1.Œ1;b�;R/ with v.t/ 2 F.t;yt /; a.e. Œ1;b� such
that D˛Œy.t/�g.t;yt /�D v.t/ on J; and the condition y.t/D #.t/ on Œ1� r;1�.

Theorem 3. Assume that .H1/–.H2/ hold. Further we suppose that

.H6/ the function g is continuous and completely continuous, and for any bounded
set B in C.Œ1� r;b�;R/, the set ft ! g.t;yt / W y 2 Bg is equicontinuous in
C.Œ1;b�;R/, and there exist constants 0� d1 < 1; d2 � 0 such that

jg.t;u/j � d1kukC Cd2; t 2 Œ1;b�; u 2 C.Œ�r;0�;R/:

.H7/ there exists a constant M > 0 such that

.1�d1/M

d2C
k�k1ˇ.M/

� .˛C1/
.logb/˛

> 1:

Then the IVP (1.3)–(1.4) has at least one solution on Œ1� r;b�:

Proof. Define the operator N W C.Œ1� r;b�;R/!PC.Œ1� r;b�;R/ by

N.y/D

8̂̂̂̂
<̂
ˆ̂̂:

h 2 C.Œ1� r;b�;R/ W

h.t/D

8̂̂<̂
:̂
#.t/; if t 2 Œ1� r;1�;

g.t;xt /C
1

� .˛/

Z t

1

�
log

t

s

�˛�1
v.s/

s
ds; if t 2 Œ1;b�;

9>>>>=>>>>;
for v 2 SF;y :
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Using .H6/; it suffices to show that the operator N1 W C.Œ1� r;b�;R/! C.Œ1�

r;b�;R/ defined by

N1.x/D

8̂̂̂̂
<̂
ˆ̂̂:

h 2 C.Œ1� r;b�;R/ W

h.t/D

8̂̂<̂
:̂
#.t/; if t 2 Œ1� r;1�;

1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s
ds; if t 2 Œ1;b�;

9>>>>=>>>>;
for v 2 SF;y ; is continuous and completely continuous. The proof is similar to that
of Theorem 1. So we omit the details.

Next we now show that there exists an open set U � C.Œ1� r;b�;R/ with y ¤
�N.y/ for � 2 .0;1/ and y 2 @U:

Let y 2 C.Œ1� r;b�;R/ be such that y D �N.y/ for some 0 < � < 1. Thus, for
each t 2 Œ1;b�; we have

y.t/D �

 
g.t;yt /C

1

� .˛/

Z t

1

�
log

t

s

�˛�1 v.s/
s
ds

!
:

For each t 2 J; it follows by .H2/ and .H4/ that

jy.t/j � d1kytkC Cd2C
1

� .˛/

Z t

1

�
log

t

s

�˛�1
�.s/ˇ.kyskC /

ds

s

� d1kytkC Cd2C
k�k1ˇ.kykŒ1�r;b�/

� .˛C1/
.logb/˛;

which yields

.1�d1/kykŒ1�r;b� � d2C
k�k1ˇ.kykŒ1�r;b�/

� .˛C1/
.logb/˛:

In consequence, we get

.1�d1/kykŒ1�r;b�

d2C
k�k1ˇ.kykŒ1�r;b�/

� .˛C1/
.logb/˛

� 1:

In view of .H7/, there exists M such that kykŒ1�r;b� ¤M . Let us set

U D fy 2 C.Œ1� r;b�;R/ W kykŒ1�r;b� <M g:

Note that the operator N1 W U ! C.Œ1� r;b�;R/ is continuous and completely con-
tinuous. From the choice of U , there is no y 2 @U such that y D �N1y for some
� 2 .0;1/. Thus, by the nonlinear alternative of Leray-Schauder type (Lemma 1), we
deduce thatN1 has a fixed point y 2U which is a solution of the problem (1.3)-(1.4).
This completes the proof. �

Theorem 4. Assume that .H4/; .H5/ hold. In addition we suppose that:
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.H8/ There exists a constant L> 0 such that

jg.t;x/�g.t;y/j � Lkx�ykC ; for all t 2 Œ1;b� and x;y 2 C.Œ�r;0�;R/:

Then, if LC
.logb/˛

� .˛C1/
k`k1 < 1; the IVP (1.3)–(1.4) has at least one solution on

Œ1� r;b�:

Proof. Since the proof is similar to that of Theorem 2, so it is omitted. �

5. EXAMPLES

Example 1. For any function # 2C.Œ1�r;1�;R/with #.1/D 0; consider the prob-
lem

D˛y.t/ 2 F.t;yt /; for each t 2 J WD Œ1;e�; 0 < ˛ < 1; (5.1)

y.t/D #.t/; t 2 Œ1� r;1�; (5.2)
where

F.t;yt /D
h 1

4C e� t

�
jyjt

2.1Cjyjt /
C
1

4

�
;
1

16
.1C e�t /

i
:

Clearly

kF.t;yt /kP WD supfjuj W u 2 F.t;yt /g �
1

4

�3
4

�
; yt 2 R:

With �.t/D 1=4; ˇ.kytk/D 3=4; by the condition .H3/; we find that

M >
3

16� .˛C1/
; 0 < ˛ < 1:

Hence, by Theorem 1, the problem (5.1)-(5.2) has a solution on Œ1� r;e�:

Example 2. Let us consider the problem (5.1)-(5.2) with

F.t;yt /D
h 1
16
;

1

�
p
tC3

tan�1.yt /C
1

12

i
: (5.3)

Observe that

Hd .F.t;yt /;F .t; Nyt //�
1

�
p
tC3

ky� NykC :

Letting `.t/ D
1

�
p
tC3

; we find that d.0;F.t;0// � `.t/ for almost all t 2 J and

.logb/˛

� .˛C1/
k`k1 D

1

2�� .˛C1/
< 1; for 0 < ˛ < 1: Thus all the conditions of The-

orem 2 are satisfied. Hence, by the conclusion of Theorem 2, the problem (5.1)-(5.2)
with (5.3) has a solution on Œ1� r;e�.

Remark 1. Illustrating examples for Theorems 3 and 4 can be constructed like
Examples 1 and 2.
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