More on contra δ-precontinuous functions

Miguel Caldas, Saeid Jafari, Takashi Noiri, and Marilda Simões
MORE ON CONTRA δ-PRECONTINUOUS FUNCTIONS

MIGUEL CALDAS, SAEID JAFARI, TAKASHI NOIRI, AND MARILDA SIMÕES

Received 3 June, 2006

Abstract. In [4], Dontchev introduced and investigated a new notion of continuity called contra-continuity. Recently, Jafari and Noiri [8–10] introduced new generalizations of contra-continuity called contra-α-continuity, contra-super-continuity and contra-precontinuity. Recently, Ekici and Noiri [6] have introduced a new class of continuity called contra δ-continuity as a generalization of contra-continuity. In this paper, we obtain some more properties of contra δ-precontinuous functions.

2000 Mathematics Subject Classification: 54C10, 54D10

Keywords: topological spaces, δ-preopen sets, preclosed sets, contra-continuous functions, contra δ-precontinuous functions

1. INTRODUCTION AND PRELIMINARIES

Recently, Jafari and Noiri have introduced and investigated the notions of contra-precontinuity [10], contra-α-continuity [9] and contra-super-continuity [8] as a continuation of research done by Dontchev [4] and Dontchev and Noiri [5] on the interesting notions of contra-continuity and contra-semi-continuity, respectively. Caldas and Jafari [3] introduced and investigated the notion of contra-β-continuous functions in topological spaces. Raychaudhuri and Mukherjee [15] introduced the notions of δ-preopen sets and δ-almost continuity in topological spaces. The class of δ-preopen sets is larger than one of preopen sets. Recently, by using δ-preopen sets, Ekici and Noiri [6] have introduced the notion of contra δ-precontinuity as a generalization of contra-precontinuity.

In this paper, we obtain the further properties of contra δ-precontinuous functions. Throughout this paper, all spaces (X, τ) and (Y, σ) (or X and Y) are topological spaces. A subset A of X is said to be regular open (resp., regular closed) if $A = \text{Int}(ext{Cl}(A))$ (resp., $A = \text{Cl}(ext{Int}(A))$) where $\text{Cl}(A)$ and $\text{Int}(A)$ denote the closure and interior of A. A subset A of a space X is called preopen [12] (resp., semi-open [11], α-open [14], β-open [1]) if $A \subset \text{Int}(ext{Cl}(A))$ (resp., $A \subset \text{Cl}(ext{Int}(A))$, $A \subset \text{Int}(ext{Cl}(\text{Int}(A)))$, $A \subset \text{Cl}(ext{Int}(ext{Cl}(A))))$. The complement of a preopen (resp., semi-open, α-open, β-open) set is said to be preclosed (resp., semi-closed, α-closed, β-closed). The collection of all closed (resp., semi-open, clopen) subsets of X will

© 2008 Miskolc University Press
be denoted by $C(X)$ (resp., $SO(X)$, $CO(X)$). We set $C(X, x) = \{ V \in C(X) \mid x \in V \}$ for $x \in X$. We define $CO(X, x)$ in a similar way.

The notion of the δ-closure of A which is denoted by $\delta Cl(A)$ was introduced by Veličko [19] and is widely investigated in the literature. The δ-closure of A is the set $\{ x \in X \mid Int(Cl(U)) \cap A \neq \emptyset \}$ for every open set U containing x. If $\delta Cl(A) = A$, then A is said to be δ-closed [19]. The complement of a δ-closed set is said to be δ-open. The union of all δ-open sets contained in A is called the δ-interior of A and is denoted by $\delta Int(A)$. A subset A of a topological space X is said to be δ-preopen [15] if $\delta Cl(A)$. The complement of a δ-preopen set is said to be δ-preclosed. The intersection (union) of all δ-preclosed (δ-preopen) sets containing (contained in) A in X is called the δ-preclosure (δ-preinterior) of A and is denoted by $\delta Cl_p(A)$ (resp., $\delta Int_p(A)$). By $\delta PO(X)$ (resp., $\delta PC(X)$), we denote the collection of all δ-preopen (resp., δ-preclosed) sets of X.

Lemma 1 ([2,15,17]). The following properties holds for the δ-preclosure of a set in a space X:

1. Arbitrary union (intersection) of δ-preopen (δ-preclosed) sets in X is δ-preopen (resp., δ-preclosed).
2. A is δ-preclosed in X iff $A = \delta Cl_p(A)$.
3. $\delta Cl_p(A) \subset \delta Cl_p(B)$ whenever $A \subset B(\subset X)$.
4. $\delta Cl_p(A)$ is δ-preclosed in X.
5. $\delta Cl_p(\delta Cl_p(A)) = \delta Cl_p(A)$.
6. $\delta Cl_p(A) = \{ x \in X \mid U \cap A \neq \emptyset \}$ for every δ-preopen set U containing x.
7. $\delta Cl_p(A) = A \cup Cl(\delta Int(A))$.
8. If A is δ-open, then $\delta Cl_p(A) = Cl(A)$.
9. If $Y \subset X$ is δ-open and $U \in \delta PO(Y)$, then $U \in \delta PO(X)$.
10. $U \cap V \in \delta PO(U)$ if U is δ-open and $V \in \delta PO(X)$.

Definition 1. A function $f : X \to Y$ is said to be contra δ-precontinuous [6] (resp., δ-almost continuous [15]) if $f^{-1}(V)$ is δ-preclosed (resp., δ-preopen) in X for each open set V of Y.

Definition 2. Let A be a subset of a space (X, τ). The set $\cap \{ U \in \tau \mid A \subset U \}$ is called the kernel of A [13] and is denoted by $ker(A)$.

Lemma 2 (Jafari and Noiri [8]). The following properties hold for subsets A, B of a space X:

1. $x \in ker(A)$ if and only if $A \cap F \neq \emptyset$ for any $F \in C(X, x)$.
2. $A \subset ker(A)$ and $A = ker(A)$ if A is open in X.
3. If $A \subset B$, then $ker(A) \subset ker(B)$.

2. **Contra δ-precontinuous functions**

Theorem 1. The following assertions are equivalent for a function $f : X \to Y$:
Lemma 2, there exists continuous and hence inverse image of every open set is continuous are independent concepts.

Therefore, \(f(U) \subseteq F \).

Thus, \(x \notin \delta Cl_p(A) \) for any \(x \in f^{-1}(F) \). Therefore, \(f^{-1}(F) \cap \delta Cl_p(A) = \emptyset \) and hence \(F \cap f(\delta Cl_p(A)) = \emptyset \).

(4) \(\Rightarrow \) (5) : Let \(B \) be any subset of \(Y \). Then, by (4) and Lemma 2, we have \(f(\delta Cl_p(f^{-1}(B))) \subseteq ker(f(f^{-1}(B))) \subseteq ker(B) \) and therefore \(\delta Cl_p(f^{-1}(B)) \subseteq f^{-1}(ker(B)) \).

(5) \(\Rightarrow \) (1) : Let \(V \) be any open set of \(Y \). Then, by virtue of Lemma 2, we have \(\delta Cl_p(f^{-1}(V)) \subseteq f^{-1}(ker(V)) = f^{-1}(V) \) and \(\delta Cl_p(f^{-1}(V)) = f^{-1}(V) \). This shows that \(f^{-1}(V) \) is \(\delta \)-preclosed in \(X \).

The following two examples show that \(\delta \)-almost continuous and contra \(\delta \)-precontinuous are independent concepts.

Example 1. The identity function on the real line (with the usual topology) is continuous and hence \(\delta \)-almost continuous but not contra \(\delta \)-precontinuous, since the preimage of each singleton fails to be \(\delta \)-preopen.

Example 2. Let \(X = \{a, b\} \) be the Sierpinski space endowed with the topology \(\tau = \{\emptyset, \{a\}, X\} \). Let \(f:X \rightarrow X \) be defined by \(f(a) = b \) and \(f(b) = a \). Since the inverse image of every open set is \(\delta \)-preclosed, then \(f \) is contra \(\delta \)-precontinuous, but \(f^{-1}(\{a\}) \) is not \(\delta \)-preopen in \((X, \tau) \). Therefore \(f \) is not \(\delta \)-almost continuous.

Definition 3. A function \(f:X \rightarrow Y \) is said to be contra-continuous [4] (resp., contra-\(\alpha \)-continuous [9], contra-precontinuous [10], contra-semi-continuous [5], contra-\(\beta \)-continuous [3]) if, for each open set \(V \) of \(Y \), \(f^{-1}(V) \) is closed (resp., \(\alpha \)-closed, preclosed, semi-closed, \(\beta \)-closed) in \(X \).

For the functions defined above, we have the following implications:

\[
\begin{array}{cccc}
A & \Rightarrow & B & \Rightarrow & C & \Rightarrow & D \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
C & \Rightarrow & F
\end{array}
\]
The meaning of symbols here is as follows: A = contra-continuity, B = contra-α-continuity, C = contra-precontinuity, D = contra δ-precontinuity, E = contra-semi-continuity, and F = contra-β-continuity.

It should be mentioned that none of these implications is reversible as shown by the examples stated below.

Example 3 (Jafari and Noiri [9]). Let $X = \{a, b, c\}$. Put $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f : (X, \tau) \to (X, \sigma)$ is contra-α-continuous but not contra-continuous.

Lemma 3 (Caldas et al. [7]). Let A be a subset of (X, τ). Then the following properties hold:

1. If A is preopen in (X, τ), then it is δ-preopen in (X, τ).
2. A is δ-preopen in (X, τ) if and only if it is preopen in (X, τ_3).
3. A is δ-precontinuous in (X, τ) if and only if it is preclosed in (X, τ_3).

Since $\text{Cl}(A) \subset \delta\text{Cl}(A)$ for any subset A of X, therefore, every contra-precontinuous is contra-δ-precontinuous but not conversely as following example shows.

Example 4 ([5]). A contra-semi-continuous function need not be contra-precontinuous. Let $f : R \to R$ be the function $f(x) = [x]$, where $[x]$ is the Gaussian symbol. If V is a closed subset of the real line, its preimage $U = f^{-1}(V)$ is the union of the intervals of the form $[n, n + 1], n \in Z$; hence U is semi-open being union of semi-open sets. But f is not contra-precontinuous, because $f^{-1}(0.5, 1.5) = [1, 2)$ is not preclosed in R.

Example 5 ([5]). A contra-precontinuous function need not be contra-semi-continuous. Let $X = \{a, b\}$, $\tau = \{\emptyset, X\}$ and $\sigma = \{\emptyset, \{a\}, X\}$. The identity function $f : (X, \tau) \to (Y, \sigma)$ is contra-precontinuous as only the trivial subsets of X are open in (X, τ). However, $f^{-1}(\{a\}) = \{a\}$ is not semi-closed in (X, τ); hence f is not contra-semi-continuous.

Example 6 ([6]). Let R be the set of real numbers, τ be the countable extension topology on R, i.e., the topology with subbase $\tau_1 \cup \tau_2$, where τ_1 is the Euclidean topology of R and τ_2 is the topology of countable complements of R, and σ be the discrete topology of R. Define a function $f : (R, \tau) \to (R, \sigma)$ as follows: $f(x) = 1$ if x is rational, and $f(x) = 2$ if x is irrational. Then f is contra-δ-precontinuous but not contra-β-continuous, because $\{1\}$ is closed in (R, σ) and $f^{-1}(\{1\}) = Q$, where Q is the set of rationals, is not β-open in (R, τ).

Example 7 ([3]). Let $X = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $Y = \{p, q\}$, $\sigma = \{\emptyset, \{p\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be defined by $f(a) = p$ and $f(b) = f(c) = q$. Then f is contra-β-continuous but not contra-δ-precontinuous since $f^{-1}(\{q\}) = \{b, c\}$ is β-open but not δ-preopen.

Theorem 2. If a function $f : X \to Y$ is contra δ-precontinuous and Y is regular, then f is δ-almost continuous.
Proof. Let \(x \) be an arbitrary point of \(X \) and \(V \) an open set of \(Y \) containing \(f(x) \). Since \(Y \) is regular, there exists an open set \(W \) in \(Y \) containing \(f(x) \) such that \(\text{Cl}(W) \subset V \). Since \(f \) is contra \(\delta \)-precontinuous, so by Theorem 1 there exists \(U \in \delta\text{PO}(X, x) \) such that \(f(U) \subset \text{Cl}(W) \subset V \). Hence, \(f \) is \(\delta \)-almost continuous. \(\square \)

The converse of Theorem 2 is not true. Example 1 shows that \(\delta \)-almost continuity does not necessarily imply contra \(\delta \)-precontinuity even if the range is regular.

Definition 4. A function \(f: X \to Y \) is said to be:

1. (\(\delta,s \))-preopen if \(f(U) \in \text{SO}(Y) \) for every \(\delta \)-preopen set of \(X \).
2. contra-\(I(\delta,p) \)-continuous if for each \(x \in X \) and each \(F \in C(Y, f(x)) \), there exists \(U \in \delta\text{PO}(X, x) \) such that \(\text{Int}(f(U)) \subset F \).

Theorem 3. If a function \(f: X \to Y \) is contra-\(I(\delta,p) \)-continuous and (\(\delta,s \))-preopen, then \(f \) is contra-\(\delta \)-precontinuous.

Proof. Suppose that \(x \in X \) and \(F \in C(Y, f(x)) \). Since \(f \) is contra-\(I(\delta,p) \)-continuous, there exists \(U \in \delta\text{PO}(X, x) \) such that \(\text{Int}(f(U)) \subset F \). By hypothesis \(f \) is (\(\delta,s \))-preopen, therefore \(f(U) \in \text{SO}(Y) \) and \(f(U) \subset \text{Cl}(\text{Int}(f(U))) \subset F \). This shows that \(f \) is contra-\(\delta \)-precontinuous. \(\square \)

Definition 5. A space \((X, \tau) \) is said to be:

1. locally (\(\delta,p \))-indiscrete if every \(\delta \)-preopen set of \(X \) is closed in \(X \).
2. \(\delta\text{p} \)-space if every \(\delta \)-preopen set of \(X \) is open in \(X \).
3. \(\delta\text{S} \)-space if and only if every \(\delta \)-preopen subset of \(X \) is semi-open.

The following theorem follows immediately from Definition 5.

Theorem 4. If a function \(f: X \to Y \) is contra-\(\delta \)-precontinuous and \(X \) is a \(\delta\text{S} \)-space (resp., \(\delta\text{p} \)-space, locally (\(\delta,p \))-indiscrete), then \(f \) is contra-semi-continuous (resp., contra-continuous, continuous).

Recall that a topological space is said to be:

1. (\(\delta,p \))-\(T_2 \) ([16]) if for each pair of distinct points \(x \) and \(y \) in \(X \) there exist \(U \in \delta\text{PO}(X, x) \) and \(V \in \delta\text{PO}(X, y) \) such that \(U \cap V = \emptyset \).
2. Ultra Hausdorff [18] if for each pair of distinct points \(x \) and \(y \) in \(X \) there exist \(U \in \text{CO}(X, x) \) and \(V \in \text{CO}(X, y) \) such that \(U \cap V = \emptyset \).

Theorem 5. If \(X \) is a topological space and for each pair of distinct points \(x_1 \) and \(x_2 \) in \(X \) there exists a map \(f \) of \(X \) into a Urysohn topological space \(Y \) such that \(f(x_1) \neq f(x_2) \) and \(f \) is contra-\(\delta \)-precontinuous at \(x_1 \) and \(x_2 \), then \(X \) is (\(\delta,p \))-\(T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be any distinct points in \(X \). Then by hypothesis, there is a Urysohn space \(Y \) and a function \(f: X \to Y \), which satisfies the conditions of the theorem. Let \(y_i = f(x_i) \) for \(i = 1,2 \). Then \(y_1 \neq y_2 \). Since \(Y \) is Urysohn, there
exist open neighbourhoods \(U_{y_1} \) and \(U_{y_2} \) of \(y_1 \) and \(y_2 \) respectively in \(Y \) such that \(\text{Cl}(U_{y_1}) \cap \text{Cl}(U_{y_2}) = \emptyset \). Since \(f \) is contra \(\delta \)-precontinuous at \(x_1 \), there exists a \(\delta \)-preopen neighbourhood \(W_{x_1} \) of \(x_1 \) in \(X \) such that \(f(W_{x_1}) \subset \text{Cl}(U_{y_1}) \) for \(i = 1, 2 \). Hence we get \(W_{x_1} \cap W_{x_2} = \emptyset \) because \(\text{Cl}(U_{y_1}) \cap \text{Cl}(U_{y_2}) = \emptyset \). Then \(X \) is \((\delta, p)\)-\(T_2 \).

Corollary 1. If \(f \) is a contra \(\delta \)-precontinuous injection of a topological space \(X \) into a Urysohn space \(Y \), then \(X \) is \((\delta, p)\)-\(T_2 \).

Proof. For each pair of distinct points \(x_1 \) and \(x_2 \) in \(X \), \(f \) is a contra \(\delta \)-precontinuous function of \(X \) into a Urysohn space \(Y \) such that \(f(x_1) \neq f(x_2) \) because \(f \) is injective. Hence by Theorem 5, \(X \) is \((\delta, p)\)-\(T_2 \).

Corollary 2. If \(f \) is a contra \(\delta \)-precontinuous injection of a topological space \(X \) into a Ultra Hausdorff space \(Y \), then \(X \) is \((\delta, p)\)-\(T_2 \).

Proof. Let \(x_1 \) and \(x_2 \) be any distinct points in \(X \). Then since \(f \) is injective and \(Y \) is Ultra Hausdorff, \(f(x_1) \neq f(x_2) \), and there exist \(V_1, V_2 \in \text{CO}(Y) \) such that \(f(x_1) \in V_1 \), \(f(x_2) \in V_2 \) and \(V_1 \cap V_2 = \emptyset \). Then \(x_j \in f^{-1}(V_i) \in \delta \text{PO}(X) \) for \(i = 1, 2 \) and \(f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset \). Thus \(X \) is \((\delta, p)\)-\(T_2 \).

Lemma 4 ([15]). If \(A_i \) is a \(\delta \)-preopen set in a topological space \(X_i \) for \(i = 1, 2, \ldots, n \), then \(A_1 \times \cdots \times A_n \) is also \(\delta \)-preopen in the product space \(X_1 \times \cdots \times X_n \).

Theorem 6. Let \(f_1 : X_1 \to Y \) and \(f_2 : X_2 \to Y \) be two functions, where

1. \(Y \) is a Urysohn space,
2. \(f_1 \) and \(f_2 \) are contra \(\delta \)-precontinuous.

Then the set

\[
\{(x_1, x_2) \mid f_1(x_1) = f_2(x_2)\}
\]

is \(\delta \)-preclosed in the product space \(X_1 \times X_2 \).

Proof. Let \(A \) denote the set \(\{(x_1, x_2) \mid f_1(x_1) = f_2(x_2)\} \). In order to show that \(A \) is \(\delta \)-preclosed, we show that \((X_1 \times X_2) \setminus A \) is \(\delta \)-preopen. Let \((x_1, x_2) \notin A \). Then \(f_1(x_1) \neq f_2(x_2) \). Since \(Y \) is Urysohn, there exist open \(V_1 \) and \(V_2 \) of \(f_1(x_1) \) and \(f_2(x_2) \) such that \(C(V_1) \cap C(V_2) = \emptyset \). Since \(f_i \) \((i = 1, 2) \) is contra \(\delta \)-precontinuous, \(f_i^{-1}(C(V_i)) \) is a \(\delta \)-preopen set containing \(x_i \) in \(X_i \) \((i = 1, 2) \). Hence, by virtue of Lemma 4, \(f_1^{-1}(C(V_1)) \times f_2^{-1}(C(V_2)) \) is \(\delta \)-preopen. Further \((x_1, x_2) \in f_1^{-1} C(V_1) \times f_2^{-1} C(V_2) \subset (X_1 \times X_2) \setminus A \). It follows that \((X_1 \times X_2) \setminus A \) is \(\delta \)-preopen. Thus \(A \) is \(\delta \)-preclosed in the product space \(X_1 \times X_2 \).

Corollary 3. If \(f : X \to Y \) is contra \(\delta \)-precontinuous and \(Y \) is a Urysohn space, then

\[
A = \{(x_1, x_2) \mid f(x_1) = f(x_2)\}
\]

is \(\delta \)-preclosed in the product space \(X_1 \times X_2 \).
Definition 6. A topological space \(X\) is said to be:

1. \((\delta, p)\)-normal if each pair of non-empty disjoint closed sets can be separated by disjoint \(\delta\)-preopen sets.
2. Ultra normal [18] if each pair of non-empty disjoint closed sets can be separated by disjoint clopen sets.

Theorem 7. If \(f : X \to Y\) is a contra \(\delta\)-precontinuous, closed injection and \(Y\) is ultra normal, then \(X\) is \((\delta, p)\)-normal.

Proof. Let \(F_1\) and \(F_2\) be disjoint closed subsets of \(X\). Since \(f\) is closed and injective, \(f(F_1)\) and \(f(F_2)\) are disjoint closed subsets of \(Y\). Since \(Y\) is ultra normal \(f(F_1)\) and \(f(F_2)\) are separated by disjoint clopen sets \(V_1\) and \(V_2\), respectively. Hence \(F_i \subset f^{-1}(V_i), f^{-1}(V_i) \in \delta PO(X, x)\) for \(i = 1, 2\), and

\[f^{-1}(V_1) \cap f^{-1}(V_2) = \emptyset. \]

Thus, \(X\) is \((\delta, p)\)-normal. \(\Box\)

References

Authors’ addresses

Miguel Caldas
Universidade Federal Fluminense, Departamento de Matematica Aplicada, Rua Mario Santos Braga, s/n, 24020-140, Niteroi, RJ, Brasil
E-mail address: gmamccs@vm.uff.br

Saeid Jafari
College of Vestsjaelland South, Herrestraede 11, 4200 Slagelse, Denmark
E-mail address: jafari@stofanet.dk

Takashi Noiri
Yatsushiro College of Technology, Hirayama shinmachi, Yatsushiro-shi, Kumamoto-ken, 866-8501, Japan
E-mail address: noiri@as.yatsushiro-nct.ac.jp

Marilda Simões
Università Di Roma “La Sapienza”, Dipartimento Di Matematica “Guido Castelnuovo”, Roma, Italia
E-mail address: simoes@mat.uniroma1.it