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Abstract. Motivated by the elaborate work of Cheung [Linear Multilinear Algebra, 51 (2003),
299-310], we apply the construction of a Lie derivation on a generalized matrix algebra to give a
characterization for a Lie derivation on a generalized matrix algebra to be proper. Our approach
not only provides a direct proof for some known results in the theory, but also it presents several
sufficient conditions assuring the properness of Lie derivations on certain generalized matrix
algebras.
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1. INTRODUCTION AND PRELIMINARIES

Let A be a unital algebra (over a commutative unital ring R) and M be an A�module.
A linear mapping D WA!M is said to be a derivation if

D.ab/DD.a/bCaD.b/ .a;b 2A/:

A linear mapping L WA!M is called a Lie derivation if

L.Œa;b�/D ŒL.a/;b�C Œa;L.b/� .a;b 2A/;

where Œa;b�D ab�ba. Every derivation is trivially a Lie derivation. If D WA!A

is a derivation and � WA! Z.A/.WD the center of A/ is a linear map then DC � is
a Lie derivation if and only if � vanishes at commutators (i.e. �.Œa;b�/ D 0; for all
a;b 2A). Lie derivations of this form are called proper Lie derivations. Therefore
a Lie derivation L is proper if and only if L D D C � for some derivation D and
a linear center valued map � on A (i.e. �.A/ � Z.A/). The fundamental question
is that under what conditions a Lie derivation on an algebra is proper. We say that
an algebra A has Lie derivation property if every Lie derivation from A into itself is
proper.

In this paper, we study the Lie derivation property for the general matrix algebras.
First we briefly introduce a general matrix algebra. A Morita context .A;B;M;N ;

˚MN ;	N M/ consists of two unital algebras A, B, an .A;B/�module M,
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a .B;A/�module N , and two module homomorphisms˚MN WM˝B N �!A and
	N M WN ˝A M �!B satisfying the following commutative diagrams:

M˝B N ˝A M
˚MN˝IM
�������! A˝A M??yIM˝	N M

??yŠ
M˝B B

Š
����! M

and

N ˝A M˝B N
	N M˝IN
�������! B˝B N??yIN˝˚MN

??yŠ
N ˝A A

Š
����! N :

For a Morita context .A;B;M;N ;˚MN ;	N M/, the set

G D

�
A M

N B

�
D

(�
a m

n b

�ˇ̌̌
a 2A;m 2M;n 2N ;b 2B

)
forms an algebra under the usual matrix operations, where at least one of two modules
M and N is distinct from zero. The algebra G is called a generalized matrix algebra.
In the case where N D 0, G becomes the so-called triangular algebra Tri.A;M;B/

whose Lie derivations are extensively investigated by Cheung [4]. Generalized matrix
algebras were first introduced by Sands [12], where he studied various radicals of
algebras occurring in Morita contexts.

A direct verification reveals that the center Z.G / of G is

Z.G /D fa˚bja 2Z.A/;b 2Z.B/; amDmb;naD bn for all m 2M;n 2N g;

where a˚bD
�
a 0

0 b

�
2 G :We also define two natural projections �A W G �!A

and �B W G �!B by

�A W

�
a m

n b

�
7! a and �B W

�
a m

n b

�
7! b:

It is clear that, �A.Z.G // � Z.A/ and �B.Z.G // � Z.B/. Further, similar to [4,
Proposition 3] one can show that, if M is a faithful .A;B/�module (i.e. aM D f0g

necessities aD 0 and Mb D f0g necessities b D 0) then there exists a unique algebra
isomorphism

' W �A.Z.G // �! �B.Z.G //

such that am D m'.a/ and '.a/n D na for all m 2M, n 2 N ; or equivalently,
a˚'.a/ 2Z.G / for all a 2A:
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Martindale [9] was the first one who investigated the Lie derivation property of
certain primitive rings. Cheung [3] initiated the study of various mappings on tri-
angular algebras; in particular, he studied the Lie derivation property for triangular
algebras in [4]. Following his seminal work [4], Lie derivations on a wide variety
of algebras have been studied by many authors (see [1, 2, 5–8, 10, 11, 13, 14] and
the references therein). The main result of Cheung [4] has recently extended by Du
and Wang [5] for a generalized matrix algebra. They have shown that [5, Theorem
1] a general matrix algebra G with M faithful enjoys the Lie derivation property if
�A.Z.G //DZ.A/;�B.Z.G //DZ.B/, and either A or B does not contain nonzero
central ideals. This result has been developed for Lie n�derivation in [13, Theorem
1], (see also [14, Theorem 2.1]).

In this paper, we use the construction of Lie derivations of a generalized matrix
algebra G (Proposition 1) to give a criterion for properness of Lie derivations on G

(see Theorem 1 and Corollary 1). We then deduce not only, as a byproduct, the afore-
mentioned result of Du and Wang (Theorem 2), but also we provide some alternative
sufficient conditions ensuring the Lie derivation property for G (Theorems 3, 4). We
then come to our main result, Theorem 5, collecting some sufficient conditions assur-
ing the Lie derivation property for a generalized matrix algebra. In the last section,
we include some applications of our results to some special generalized matrix algeb-
ras such as: triangular algebras, the full matrix algebras and the algebras of operators
on a Banach space.

2. PROPER LIE DERIVATIONS

From now on, we assume that the modules M and N appeared in the generalized
matrix algebra G are 2�torion free; (M is called 2�torsion free if 2m D 0 implies
mD 0 for any m 2M).

We commence with the following result providing the construction of (Lie) deriv-
ations of a generalized matrix algebra. It needs a standard argument, however Li and
Wei [6, Propositions 4.1, 4.2 ] gave a complete proof for the first two parts of it.

Proposition 1. Let G D

�
A M

N B

�
be a generalized matrix algebra. Then

� A linear mapping L on G is a Lie derivation if and only if it has the presentation

L

�
a m

n b

�
D

�
P.a/�mn0�m0nChB.b/ am0�m0bCf .m/

n0a�bn0Cg.n/ hA.a/Cn0mCnm0CQ.b/

�
; (2.1)

for some m0 2M;n0 2 N and some linear maps P W A �! A;Q W B �! B;f W

M �!M;g W N �! N ;hB W B �! Z.A/ and hA W A �! Z.B/ satisfying the
following conditions:

(a) P;Q are Lie derivations;
(b) hB.Œb;b

0�/D 0; hA.Œa;a
0�/D 0;

(c) f .am/DP.a/m�mhA.a/Caf .m/; f .mb/DmQ.b/�hB.b/mCf .m/b;
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(d) g.na/D nP.a/�hA.a/nCg.n/a; g.bn/DQ.b/n�nhB.b/Cbg.n/;
(e) P.mn/�hB.nm/Dmg.n/Cf .m/n; Q.nm/�hA.mn/D g.n/mCnf .m/;

for all a;a0 2A;b;b0 2B;m 2M and n 2N .
� A linear mapping D on G is a derivation if and only if it has the presentation

D

�
a m

n b

�
D

�
P 0.a/�mn0�m0n am0�m0bCf

0.m/

n0a�bn0Cg
0.n/ n0mCnm0CQ

0.b/

�
; (2.2)

wherem0 2M;n0 2N ;P 0 WA�!A;Q0 WB �!B;f 0 WM �!M and g0 WN �!
N are linear maps satisfying the following conditions:
.a0/ P 0;Q0 are derivations;
.b0/ f 0.am/D P 0.a/mCaf 0.m/; f 0.mb/DmQ0.b/Cf 0.m/b;
.c0/ g0.na/D nP 0.a/Cg0.n/a; g0.bn/DQ0.b/nCbg0.n/;
.d0/ P 0.mn/Dmg0.n/Cf 0.m/n; Q0.nm/D g0.n/mCnf 0.m/;

for all a 2A;b 2B;m 2M and n 2N .
� A linear mapping � on G is center valued and vanishes at commutators (i.e.

�.G /� G and �.ŒG ;G �/D 0) if and only if � has the presentation

�

�
a m

n b

�
D

�
`A.a/ChB.b/ 0

0 hA.a/C`B.b/

�
; (2.3)

where `A W A �! Z.A/;hB W B �! Z.A/;hA W A �! Z.B/;`B W B �! Z.B/ are
linear maps vanishing at commutators, having the following properties:

(a00) `A.a/˚hA.a/ 2Z.G / and hB.b/˚`B.b/ 2Z.G /; for all a 2A;b 2BI

(b00) `A.mn/D hB.nm/ and hA.mn/D `B.nm/; for all m 2M;n 2N :

Following the method of Cheung [4, Theorem 6] in the next theorem, we give a
necessary and sufficient condition for a Lie derivation on a generalized matrix algebra
G to be proper.

Theorem 1. Let G be a generalized matrix algebra. A Lie derivation L on G

of the form presented in (2.1) is proper if and only if there exist linear mappings
`A WA �!Z.A/ and `B WB �!Z.B/ satisfying the following conditions:

.A/ P �`A and Q�`B are derivations on A and B, respectively;

.B/ `A.a/˚hA.a/ 2 Z.G / and hB.b/˚ `B.b/ 2 Z.G /; for all a 2A;b 2

BI

.C/ `A.mn/D hB.nm/ and `B.nm/D hA.mn/; for all m 2M;n 2N :

Proof. Employing the characterization of L as in Proposition 1, for the sufficiency,
we define D and � by

D

�
a m

n b

�
D

�
.P �`A/.a/�mn0�m0n am0�m0bCf .m/

n0a�bn0Cg.n/ n0mCnm0C .Q�`B/.b/

�
and

�

�
a m

n b

�
D

�
`A.a/ChB.b/ 0

0 hA.a/C`B.b/

�
:
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Then a direct verification reveals that D is a derivation, � is center valued and LD

DC �:

For the converse, suppose that L is of the form DC� , where D is a derivation and
� maps into Z.G /. Applying the presentations (2.1), (2.2) for L and D , respectively,
we get � DL�D as

�

�
a m

n b

�
D

�
.P �P 0/.a/ChB.b/ 0

0 hA.a/C .Q�Q
0/.b/

�
:

By setting `A D P �P
0;`B DQ�Q

0; a direct verification shows that `A;`B are
our desired maps satisfying the required conditions. �

Remark 1. It is worthwhile mentioning that in the case where M is faithful as an
.A;B/�module then;

(i) In Proposition 1, the condition (b) becomes redundant as it can be followed
by (a) and (c). Indeed, for a;a0 2A;m 2M; from (c) we get

f .Œa;a0�m/D P.Œa;a0�/m�mhA.Œa;a
0�/C Œa;a0�f .m/: (2.4)

On the other hand, employing (c) and then (a), we have

f .Œa;a0�m/Df .aa0m�a0am/

DP.a/a0m�a0mhA.a/Caf .a
0m/�

�
P.a0/am�amhA.a

0/Ca0f .am/
�

DP.a/a0m�a0mhA.a/Ca.P.a
0/m�mhA.a

0/Ca0f .m//

�
�
P.a0/am�amhA.a

0/Ca0.P.a/m�mhA.a/Caf .m//
�

DŒP.a/;a0�mC Œa;P.a0/�mC Œa;a0�f .m/

DP.Œa;a0�/mC Œa;a0�f .m/: (2.5)

Comparing the equations (2.4) and (2.5) reveals that mhA.Œa;a
0�/ D 0; for

every m 2M; and the faithfulness of M (as a right B�module) implies that
hA.Œa;a

0�/D 0; as claimed.
(ii) In Proposition 1, the condition .a0/ can also be dropped as it can be derived

from .b0/ by a similar argument as in (i), (see [4, Page 303]).
(iii) In Theorem 1, the same reason as in (ii) shows that the condition .A/ in

Theorem 1, stating that P �`A and Q�`B are derivations, is superfluous.

As a consequence of Theorem 1, we have the following criterion characterizing
Lie derivation property for a generalized matrix algebra G :

Corollary 1. Let G be a generalized matrix algebra and let L be a Lie derivation
on G of the form presented in (2.1). If L is proper, then

.A0/ hA.A/� �B.Z.G //, hB.B/� �A.Z.G //; and

.B0/ hB.nm/˚hA.mn/ 2Z.G /; for all m 2M;n 2N :

The converse also holds in the case when M is faithful.
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Proof. The necessity follows trivially from Theorem 1. For the sufficiency sup-
pose that M is faithful. Let ' W �A.Z.G // �! �B.Z.G // be the isomorphism satis-
fying a˚'.a/ 2Z.G / for all a 2A; whose existence guaranteed by the faithfulness
of M: By virtue of .A0/, we define `A W A �! Z.A/ and `B W B �! Z.B/ by
`A D '

�1 ıhA and `B D ' ıhB . It is now obvious that `A.a/˚hA.a/ 2Z.G / and
hB.b/˚`B.b/ 2Z.G /; for all a 2A;b 2B: Further, .B0/ follows that

`A.mn/D '
�1.hA.mn//D hB.nm/ and `B.nm/D '.hB.nm//D hA.mn/:

Now Theorem 1 together with Remark 1 (iii) confirm that L is proper, as required.
�

3. SOME SUFFICIENT CONDITIONS

We commence with the following result which employs Corollary 1 to give a proof
for a modification of the main result of Du and Wang [5]. See also [13, Corollary 1]
and examine [14, Theorem 2.1] for nD 2.

Theorem 2 ([5, Theorem 1]). Let G be a generalized matrix algebra with faithful
M. Then G has Lie derivation property if

(i) �A.Z.G //DZ.A/;�B.Z.G //DZ.B/, and
(ii) either A or B does not contain nonzero central ideals.

Proof. Let L be a Lie derivation of the form presented in (2.1). From Corollary
1, as (i) implies .A0/, we only need to show that hB.nm/˚hA.mn/ 2 Z.G / for all
m 2M;n 2 N : Without loss of generality suppose that A has no nonzero central
ideals. Set

.a;b/D `A.a/ChB.b/ .a 2A;b 2B/;

where, as in the proof of Corollary 1, `A D '
�1 ı hA: Then pA D P � `A is a

derivation. Now Proposition 1 (e) implies that

pA.mn/Dmg.n/Cf .m/n�.mn;�nm/ .m 2M;n 2N /;

so for each a 2 A; pA.amn/� amg.n/� f .am/n D �.amn;�nam/: By the
latter identity and the fact that pA is a derivation, we get

pA.a/mnCapA.mn/�amg.n/�pA.a/mn�af .m/nD�.amn;�nam/:

These relations follow that a.mn;�nm/D .amn;�nam/; for a 2A;m 2M;n 2

N .
Therefore for any two elements m 2M and n 2 N , the set A.mn;�nm/ is a

central ideal of A. Thus `A.mn/�hB.nm/D .mn;�nm/D 0 and so hB.nm/˚

hA.mn/D `A.mn/˚hA.mn/ 2Z.G /, as claimed. �

For an algebra A satisfying condition (ii) of Theorem 2, one can directly show
that every noncommutative unital prime algebra with a nontrivial idempotent does
not contain nonzero central ideals. In particular, B(X), the algebra of operators on
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a Banach space X when the dimension X is grater that 1, does not contain central
ideal. The full matrix matrix algebra Mn.A/, n � 2, has also no nonzero central
ideal, [5, Lemma 1]. In [5, Theorem 2], they also showed that in a generalized matrix
algebra G with loyal M if A is noncommutative, then A has no central ideals.

In the next result, we provide some new sufficient conditions assuring the Lie
derivation property for G . We say that an algebra A is a domain if it has no zero
devisors if aa0 D 0 implies aD 0 or a0 D 0 for any two elements a;a0 2A:

Theorem 3. Let G be a generalized matrix algebra with faithful M. Then G has
Lie derivation property if

(i) �A.Z.G //DZ.A/;�B.Z.G //DZ.B/, and
(ii) A and B are domain.

Proof. Let L be a Lie derivation of the form presented in (2.1). From Corollary 1,
we only need to show that hB.nm/˚hA.mn/ 2Z.G /.

Let m 2M;n 2 N : Using the identities in (c) of Proposition 1 for a D mn and
b D nm, we get

P.mn/m�mhA.mn/Cmnf .m/DmQ.nm/�hB.nm/mCf .m/nm: (3.1)

Multiplying by m the identities in (e) of Proposition 1, we get

P.mn/m�hB.nm/mDmg.n/mCf .m/nm;

mQ.nm/�mhA.mn/Dmg.n/mCmnf .m/: (3.2)

Combining the equations in (3.1) and (3.2), we get 2.hB.nm/m�mhA.mn//D 0;

so the 2�torsion freeness of M implies that

hB.nm/mDmhA.mn/: (3.3)

The faithfulness of M guaranties the existence of an isomorphism ' from �A.Z.G //

to �B.Z.G // satisfying a˚'.a/ 2 Z.G / for all a 2A: As �B.Z.G //D Z.B/ we
define `A WA�!Z.A/ and `B WB �!Z.B/ by `AD '

�1 ıhA and `B D ' ıhB ;

respectively. It follows that `A.a/˚hA.a/ 2 Z.G / and hB.b/˚ `B.b/ 2 Z.G / for
all a 2A;b 2B: By (3.3), we then have

.hB.nm/�`A.mn//mD 0I (3.4)

or equivalently,
m.`B.nm/�hA.mn//D 0: (3.5)

If Nm D 0 and mN D 0, then trivially hB.nm/� `A.mn/ D 0; otherwise either
mN ¤ 0 or Nm¤ 0: Take 0¤ n0 2 N : If mn0 ¤ 0, then as A is a domain, (3.4)
implies that hB.nm/�`A.mn/D 0I so

hB.nm/˚hA.mn/D `A.mn/˚hA.mn/ 2Z.G /:

If n0m¤ 0, then as B is a domain, (3.5) implies that `B.nm/�hA.mn/D 0I so

hB.nm/˚hA.mn/D hB.nm/˚`B.nm/ 2Z.G /:



392 A.H. MOKHTARI AND H.R. EBRAHIMI VISHKI

We thus have hB.nm/˚hA.mn/ 2Z.G / for allm 2M and n 2N ; as required. �

Here we impose a condition on M which is slightly stronger than the faithfulness
of M. We say M as an .A;B/�module is strongly faithful if M satisfies in one of
the following conditions:

M is faithful as a right B�module and amD 0 implies a D 0 or mD 0 for any
a 2A;m 2M.
M is faithful as a left A�module and mb D 0 implies m D 0 or b D 0 for any
m 2M;b 2B:

It is evident that if M is strongly faithful, then M is faithful and either A or B has
no zero devisors. As an immediate consequence of the above theorem, we have the
following corollary.

Theorem 4. A generalized matrix algebra G has Lie derivation property, if
(i) �A.Z.G //DZ.A/;�B.Z.G //DZ.B/, and

(ii) M is strongly faithful.

Proof. Following the proof of Theorem 3, the equations (3.4) and (3.5) together
with strong faithfulness of M ensure that hB.nm/� `A.mn/ D 0; so hB.nm/˚

hA.mn/D `A.mn/˚hA.mn/ 2Z.G /: The conclusion now follows from Corollary
1. �

We remark that, to the best of our knowledge, we do not know when one can with-
draw the strong faithfulness in Theorem 4.

Similar to what Cheung has introduced in [4, Section 3], we also introduce a crit-
ical subalgebra WA of an algebra A: With the same notations as in Theorem 1, sup-
pose that P is a Lie derivation on A and `A WA! Z.A/ is a linear map such that
P �`A is a derivation on A: Set

VA D fa 2A W `A.a/˚hA.a/ 2Z.G /g:

In other words, VA consists those elements a 2A such that

`A.a/mDmhA.a/; n`A.a/D hA.a/n; for all m 2M;n 2N :

It is also easy to verify that VA � h
�1
A
.�B.Z.G ///; with equality holds in the case

where M is faithful. With some modifications in the proof of [4, Proposition 10], one
can show that VA is a subalgebra of A containing all commutators and idempotents.
More properties of VA are investigated in [10].

We denote by WA the smallest subalgebra of A contains all commutators and
idempotents. We are especially dealing with those algebras satisfying WA D A: If
WA DA, then trivially hA.A/� �B.Z.G //, or equivalently, �B.L.A//

� �B.Z.G//: Some examples of algebras satisfying WA D A are: the full matrix
algebra ADMn.A/;n� 2; where A is a unital algebra, and also every simple unital
algebra A with a nontrivial idempotent.
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Motivated by the Cheung’s idea [4], regarding the latter observations and some
suitable combinations of the various assertions in the results 2, 3 and 4, we apply
Theorem 1 and Corollary 1 to arrive the main result of the paper providing several
sufficient conditions ensuring the Lie derivation property for a generalized matrix
algebra G ; which is a generalization of [4, Theorem 11].

Theorem 5. A generalized matrix algebra G has Lie derivation property, if the
following three conditions hold:

(I) �B.Z.G //DZ.B/ and M is a faithful left A-module, or ADWA and M

is a faithful left A-module, or A has Lie derivation property and ADWA:

(II) �A.Z.G //DZ.A/ and M is a faithful right B-module, or BDWB and M

is a faithful right B-module, orB has Lie derivation property and BDWB :

(III) One of the following assertions holds:
(i) Either A or B does not contain nonzero central ideals.

(ii) A and B are domain.
(iii) Either M or N is strongly faithful.

4. SOME APPLICATIONS

The main examples of generalized matrix algebras are: a triangular algebra
Tri.A;M;B/, a unital algebra with a nontrivial idempotent, the algebra B.X/ of
operators on a Banach spaceX and the full matrix algebraMn.A/ on a unital algebra
A.

Lie derivations on trivial generalized matrix algebras and Tri.A;M;B/

We say G is a trivial generalized matrix algebra when MN D 0 and N MD 0: The
main example of trivial generalized matrix algebra is the so-called triangular algebra
Tri.A;M;B/ whose Lie derivation property has been extensively investigated by
Cheung [3, 4]. As an immediate consequence of Corollary 1 and Theorem 5, we
get the following corollary which generalizes [4, Theorem 11] to trivial generalized
matrix algebras.

Corollary 2. Let G be a trivial generalized matrix algebra and let L be a Lie de-
rivation on G of the form presented in (2.1). If L is proper then hA.A/� �B.Z.G //

and hB.B/� �A.Z.G //: The converse is also hold in the case when M is faithful.
In particular, a trivial generalized matrix algebra G has Lie derivation property,

if the following two conditions hold:

(I) �B.Z.G //DZ.B/ and M is a faithful left A-module, or ADWA and M

is a faithful left A-module, or A has Lie derivation property and ADWA:

(II) �A.Z.G //DZ.A/ and M is a faithful right B-module, or BDWB and M

is a faithful right B-module, orB has Lie derivation property and BDWB :



394 A.H. MOKHTARI AND H.R. EBRAHIMI VISHKI

The following example which has been adapted from [1, Example 3.8] presents a
trivial generalized matrix algebra (which is not a triangular algebra) without the Lie
derivation property.

Example 1. Let M be a commutative unital algebra of dimension 3 (on the com-
mutative unital ringR) with base f1;a0;b0g such that a02D b02D a0b0D b0a0D 0:
Set N DM and let A and B be the subalgebras of M generated by f1;a0g and
f1;b0g, respectively. Then MN D 0 D N M, so the generalized matrix algebra

G D

�
A M

N B

�
is trivial, and a direct calculation reveals that the map L W G �! G

defined as

L

�
r1C r2a0 s1C s2a0C s3b0

t1C t2a0C t3b0 u1Cu2b0

�
D

�
u2a0 �s3a0� s2b0

�t3a0� t2b0 r2b0

�
;

(where the coefficients are taken from the ring R) is a non-proper Lie derivation. It
is worthwhile mentioning that Z.G /DR �1G and

�A.Z.G //DR �1A ¤Z.A/;�B.Z.G //DR �1B ¤Z.B/:

Furthermore, it is also easy to verify that A ¤WA;B ¤WB . Therefore, none of
the conditions (I) and (II) of Corollary 2 is hold. Nevertheless, A and B have Lie
derivation property. It should be also noted that hA.A/ ª �B.Z.G //; hB.B/ ª
�A.Z.G //; as, hA.a0/D b0 and hB.b0/D a0:

This example can be compared to that was given by Cheung in [4, Example 8].
They clarify the same discipline, however, G is not a triangular algebra.

Lie derivations on unital algebras with a nontrivial idempotent

In the following, we investigate the Lie derivation property for some unital algeb-
ras with a nontrivial idempotent. Let A be a unital algebra with a nontrivial idem-

potent p and qD 1�p: Then A enjoys the Peirce decomposition G D

�
pAq pAq

qAp qAq

�
;

as a generalized matrix algebra. Applying Theorem 5 for this generalized matrix al-
gebra G , we obtain the following result which partly improves the case n D 2 of a
result given by Wang [14, Theorem 2.1] and Benkovič [1, Theorem 5.3].

Corollary 3. Let A be a 2�torsion free unital algebra with a nontrivial idem-
potent p satisfying

pap �pAq D 0 implies pap D 0; and pAq �qaq D 0 implies qaq D 0;

(4.1)
for any a 2A; where q D 1�p: Then A has Lie derivation property, if the following
three conditions hold:

(I) Z.qAq/ D Z.A/q, or pAp DWpAp , or pAp has Lie derivation property and
pAp DWpAp:
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(II) Z.pAp/ D Z.A/p, or qAq D WqAq , or qAq has Lie derivation property and
qAq DWqAq :

(III) One of the following assertions holds:
(i) Either pAp or qAq does not contain nonzero central ideals.

(ii) pAp and qAq are domain.
(iii) Either pAq or qAp is strongly faithful.

As a consequence of the above corollary, we bring the following result showing
that the algebra B.X/ of bounded operators on a Banach space X enjoys Lie deriva-
tion property. The same result has already proved by Lu and Jing [7] for Lie derivable
map at zero and idempotents by a completely different method. See also [8] for the
properness of nonlinear derivations on B.X/:

Corollary 4. Let X be a Banach space of dimension greater than 2. Then B.X/
has Lie derivation property.

Proof. Set A D B.X/. Consider a nonzero element x0 2 X and f0 2 X� such
that f0.x0/ D 1; then p D x0˝f0 defined by y 7�! f0.y/x0 is a nontrivial idem-
potent. A direct verification reveals that A satisfies the implications (4.1). Indeed, if
pTp �pAqDf0g for some T 2A, then choose a nonzero element y 2 q.X/ such that
q.y/D y: Let x 2X , there exists an operator S 2B.X/ such that S.y/D x (e.g. S WD
x˝g for some g 2 X� with g.y/ D 1). We then get pTp.x/ D pTp.S.q.y/// D
pTp �pSq.y/D 0: Further, it can be readily verified that Z.A/DCIX DC.pCq/,
Z.pAp/D Cp and Z.qAq/D Cq: In particular, Z.pAp/D Z.A/p, Z.qAq/D

Z.A/q: These also imply that neither pAp nor qAq has no central ideals. By Co-
rollary 3 AD B.X/ has Lie derivation property. �

We conclude this section with an application of Corollary 3 to the full matrix
algebra A DMn.A/, n � 2, where A is a unital algebra. Then p D e11 is a non-
trivial idempotent and q D e11C�� �enn: It is easy to verify that pAp D A;qAq D

Mn�1.A/: As Z.A/DZ.A/1A, we get Z.pAp/DZ.A/p;Z.qAq/DZ.A/q; so
both conditions (I) and (II) in Corollary 3 are fulfilled. Further, in the case where
n � 3; the algebra qAq D Mn�1.A/ does not contain nonzero central ideals, so
ADMn.A/ also satisfies assumption (i) of the aforementioned corollary. Therefore
Mn.A/ has Lie derivation property for n � 3: This is an adaptation of [5, Corollary
1]. For nD 2, the same result was treated in [1, Corollary 5.7].
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