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A NEW SUMS AND ITS RECIPROCITY THEOREM
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Abstract. The main purpose of this paper is introduced a new sums analogous to Dedekind sums,
then using the analytic method and the properties of Dirichlet L-functions to study the arithmet-
ical properties of this sums, and give an interesting reciprocity theorem for it.
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1. INTRODUCTION

For a positive integer k and an arbitrary integer h, the classical Dedekind sums
S.h;k/ is defined by

S.h;k/D

kX
aD1

��a
k

����ah
k

��
;

where

..x//D

(
x� Œx�� 1

2
if x is not an integer

0 if x is an integer:

The various arithmetical properties of S.h;k/ were investigated by many authors,
one of the most important results (see Tom M. Apostol [2] or L. Carlitz [3]) is its
reciprocity theorem. That is, for all positive integers h and q with .h;q/ D 1, we
have the identity

S.h;q/CS.q;h/D
h2Cq2C1

12hq
�
1

4
: (1.1)

The other properties of S.h;q/ can also be found in [2], [3], [4], [6], [7] [8] and
[9]. But we think that the formula (1.1) is very important and interesting, because
from it we can compute the value of S.h;q/ by S.q;h/, providing .h;q/D 1.
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In this paper, we introduce a new sums C.h;q/ as follows:

C.h;q/D

qX0
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cot
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�ha
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�
;

where
P0 denotes the summation over all a such that .a;q/ D 1, .h;q/ D 1 and

cot.x/D cos.x/=sin.x/. We also provide C.h;q/D 0, if qjh.
This sums looks very similar to Dedekind sums, so we think that it must have some

similar properties with Dedekind sums. Based on this reason, we use the analytic
method and the properties of Dirichlet L-functions to study the reciprocity properties
of C.h;k/, and obtain an interesting reciprocity theorem. That is, we shall prove the
following:

Theorem 1. For any integers h > 1 and q > 1 with .h;q/D 1, we have the reci-
procity formula

1

q

X
d jq

C.h;d/C
1

h

X
d jh

C.q;d/D
q2Ch2C1

3qh
�1;

where
X
d jq

denotes the summation over all divisors d of q.

Theorem 2. For any square-full number q, we have the identity
qX0

aD1

qX0

bD1

K.a;1Iq/K.b;1Iq/ C.ab;q/D
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�q2 ��2.q/ �

Y
pjq

�
1C

1

p

�
;

whereK.m;nIq/D
qX0

uD1

e

�
muCnu

q

�
is the Kloostermann sums, e.y/D e2�iy ,

Y
pjq

denotes the product over all distinct prime divisors p of q, and u �u� 1 mod q.

Note that C.h;1/ D C.q;1/ D 0, so from our Theorem 1 we may immediately
deduce the following:

Corollary 1. For any odd primes p and q with p ¤ q, we have the reciprocity
formula

C.p;q/

q
C
C.q;p/

p
D
p2Cq2C1

3pq
�1:

2. SOME LEMMAS

In this section, we shall give some lemmas which are necessary in the proof of our
theorems. First we have the following:
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Lemma 1. Let q > 2 be an integer, and let � be any Dirichlet character mod q
with �.�1/D�1. Then we have the identity

L.1;�/D
�
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�.r/cot
�
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q

�
;

where L.1;�/ denotes Dirichlet L-function corresponding to � mod q.

Lemma 2. Let q � 3 be an integer, then for any integer h with .h;q/D 1, we have
the identity

S.h;q/D
1

�2q

X
d jq

d2

�.d/

X
� mod d
�.�1/D�1

�.h/jL.1;�/j2;

where � runs through the Dirichlet characters mod d with �.�1/D�1.

Proof. The proofs of Lemma 1 and Lemma 2 can be found in [8]. �

Lemma 3. Let q � 3 be an integer, then for any integer h with .h;q/D 1, we have
the identity

C.h;q/D
4q2
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X
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�.�1/D�1
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Proof. For any integer a with .a;q/ D 1, note that
qX
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�
D 0 if

�.�1/D 1, from Lemma 1 and the orthogonality of characters mod q we haveX
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or
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��.q/

X
� mod q
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�.a/L.1;�/: (2.1)

Then from the definition of C.h;q/, (2.1) and the orthogonality of characters mod q
we have the identity
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D
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X
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This proves Lemma 3. �

Lemma 4. Let q � 3 be a square-full number. Then we have the identityX�

� mod q
�.�1/D�1

jL.1;�/j2 D
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where
X�

� mod q
�.�1/D�1

denotes the summation over all primitive odd characters mod q.

Proof. The proof of Lemma 4 can be found in [8]. �

Lemma 5. Let q be a square-full number. Then for any non-primitive character
� mod q, we have the identity

�.�/D
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aD1

�.a/ e
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a

q

�
D 0:

Proof. It is clear that Gauss sums j�.�/j is a multiplicative function of mod q (see
references [1] and [5]), so without loss of generality, we can assume q D p˛, where
p be a prime and ˛ � 2. Now if � is a non-primitive character mod p˛, then it is also
a character mod p˛�1. So from the properties of the trigonometric sums we know
that for any positive integers q � 2 and integer n with .n;q/D 1, we have the identity

q�1X
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e
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q

�
D 0: (2.2)

From (2.2) and the definition of the reduce residue system modulo p˛ we have
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This proves Lemma 5. �
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3. PROOF OF THEOREMS

In this section, we shall complete the proof of our theorems.

Proof of Theorem 1. For any positive integers h > 1 and q > 1 with .h;q/ D 1,
note that C.h;1/D 0 and .h;d/D 1 for all d jq. So from Lemma 3 and Lemma 2 we
have

1

q

X
d jq

C.h;d/D
4

�2q

X
d jq

d2

�.d/

X
� mod d
�.�1/D�1

�.h/jL.1;�/j2 D 4S.h;q/: (3.1)

Similarly, using the method of proving (3.1) we can also deduce that

1

h
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Combining (1.1), (3.1) and (3.2) we may immediately deduce the reciprocity formula

1

q

X
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C.h;d/C
1

h

X
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C.q;d/D S.h;q/CS.q;h/D
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�1:

This proves Theorem 1. �

Proof of Theorem 2. If q is a square-full number and � is not a primitive character
mod q, then from Lemma 5 we know that �.�/ D 0. If � is a primitive character
mod q, then j�.�/j2 D q. Note that the identities �2.�/D �.�/

2
and
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from Lemma 3 and Lemma 4 we have
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D
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This completes the proof of Theorem 2. �
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