

AN EXTENSION OF TOTAL GRAPH OVER A MODULE

A. ABBASI AND A. RAMIN

Received 01 March, 2015

Abstract. Let R be a commutative ring with nonzero identity and U(R) its multiplicative group of units. Let M be an R-module where the collection of prime submodules is non-empty and let N_A be an arbitrary union of prime submodules. Also, suppose that $c \in U(R)$ such that $c^{-1} = c$. We define the extended total graph of M as a simple graph $T\Gamma_c(M, N_A)$ with vertex set M, and two distinct elements $x, y \in M$ are adjacent if and only if $x + cy \in N_A$. In this paper, we will study some graph theoretic results of $T\Gamma_c(M, N_A)$.

2010 Mathematics Subject Classification: 05C25; 13C99

Keywords: total graph, prime submodule

1. INTRODUCTION

Let *R* be commutative ring with $1 \neq 0$, U(R) its multiplicative group of units and Z(R) its set of zero-divisors. A proper submodule *N* of *M* is said to be a *prime submodule* if whenever $rm \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r \in (N :_R M)$. Clearly, if *N* is a prime submodule of *M*, then P = $(N :_R M)$ is a prime ideal of *R*. Let *M* be an R-module, T(M) its set of torsion elements and $\{N_\lambda\}_{\lambda\in\Omega}$ its set of all prime submodules. The R-module *M* is said to be *primeless* if $\Omega = \emptyset$. For a submodule *L* of an R-module *M*, the ideal $\{r \in R | rM \subseteq$ *L* and submodule $\{m \in M | rm \subseteq L\}$ will be denoted by $(L :_R M)$ and $(L :_M r)$, respectively. Let $N_A = \bigcup_{\lambda \in A} N_\lambda$ be a proper subset of *M*, and let $H_A = (N_A :_R M)$ for $\emptyset \neq \Lambda \subseteq \Omega$. It can be shown that $H_A = \bigcup_{\lambda \in A} P_\lambda$.

The total graph of R was introduced by Anderson and Badawi in [4], as the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$. Also they introduced in [5] the generalized total graph of R in which Z(R) is extended to H, a *multiplicative* – *prime* subset of R, in such away that $ab \in H$ for every $a \in H$ and $b \in R$, and whenever $ab \in H$ for all $a, b \in R$, then either $a \in H$ or $b \in H$. In fact, it is easily seen that H is a multiplicative-prime subset of R if and only if $R \setminus H$ is a saturated multiplicatively closed subset of R. Thus H is a multiplicative-prime subset of R if and only if H is a union of prime ideals of R.

© 2017 Miskolc University Press

In what follows, we extend the generalized total graph such that the extended total graph of M is a simple graph with vertex set M, and two distinct elements $x, y \in M$ are adjacent if and only if $x + cy \in N_A$ where $c \in U(R)$ and $c^{-1} = c$. This graph is denoted by $T\Gamma_c(M, N_A)$. In general, for $A, B \subseteq M, T\Gamma_c(A, B)$ is a simple graph with vertices all element of A, and two distinct vertices x and y are adjacent if and only if $x + cy \in B$.

The authors in [7] and [10] generalized the notion of a total graph to an *R*-module *M*. They considered the vertex set of a graph $T(\Gamma(M))$ as the elements of *M* such that two vertices are adjacent if and only if $x + y \in T(M)$. In [3], D. D. Anderson and Sangmin Chun proved that if $M \neq T(M)$, then T(M) is a union of prime submodules of *M*. Consequently, $T\Gamma_c(M, N_A)$ is a generalization of $T(\Gamma(M)$ too. Let c = -1, then $\overline{T\Gamma_c}(M, N_A)$, the complement graph of $T\Gamma_c(M, N_A)$ (i.e., $T\Gamma_c(M, M \setminus N_A)$), is a Cayley graph, also let M = R and N_A be the union of all the maximal ideals of *R* (i.e., $N_A = R \setminus U(R)$), then observe that $\overline{T\Gamma_1}(M, N_A)$ (i.e., $T\Gamma_{-1}(M, M \setminus N_A)$) is the unit graph of *R* in the sense of [6] and $\overline{T\Gamma_{-1}}(M, N_A)$ (i.e., $T\Gamma_{-1}(M, M \setminus N_A)$) is the unitary Cayley graph in the sense of [2] and [9].

For a proper submodule L of M, $M(L) = \{m \in M | rm \in L \text{ for some } r \in R \setminus (L :_R M)\}$. In section 2, we will show that if $M \neq M(L)$, then there is $\Lambda \subseteq \Omega$ such that $M(L) = N_A$. In [1], the authors introduce a generalization of total graph of a module with respect to the set M(L). For $\Lambda \subseteq \Omega$, N_A is more general than M(L) since there are R-modules M and $\Lambda \subseteq \Omega$ such that N_A is not of the form M(L) for all submodules L of M.

In section 3, we determine some basic properties of extended total graph specifically identifying its regularity and vertex transitivity. Since N_A is a union of prime submodules of M, the study of $T\Gamma_c(M, N_A)$ breaks naturally into two cases depending on whether or not N_A is a (prime) submodule of M. In section 4, we study the case when N is a (prime) submodule of M. In the final section, we do the case when N_A is not a submodule of M, and we improve Theorem 3.3 in [7] and Theorem 4.3 in [1] by Theorem 14, and Theorem 3.12 in [5] by Theorem 15.

Let Γ be a simple graph. We say that Γ is *totally disconnected* if none of two vertices of Γ are adjacent. A subgraph Γ_1 of Γ is an *induced subgraph* if vertex set of Γ_1 is contained in vertex set of Γ and two vertices of Γ_1 are adjacent if and only if they are adjacent in Γ . Throughout this paper, all subgraphs are induced. We say that two subgraphs Γ_1 and Γ_2 of Γ are *disjoint* if Γ_1 and Γ_2 have no common vertices and no vertex of Γ_1 (resp., Γ_2) is adjacent (in Γ) to any vertex not in Γ_1 (resp., Γ_2). If vertex x is an end point of edge e, then x and e are called incident. The degree of a vertex x in a graph Γ , written $deg_{\Gamma}(x)$ is the number of edges incident to x. Graph Γ is called k - regular if degree of each vertex of Γ is k. For vertices x and y of Γ , we define d(x, y) to be the length of the shortest path from x to y $(d(x, x) = 0 \text{ and } d(x, y) = \infty$ if there is no such path). The *diameter* of Γ is $diam(\Gamma) = sup\{d(x, y)|x \text{ and } y \text{ are vertices of } \Gamma\}$.

 $gr(\Gamma)$, is the length of a shortest cycle in Γ ($gr(\Gamma) = \infty$ if Γ contains no cycles). We denote the complete graph on *n* vertices by K^n and the complete bipartite graph on *m* and *n* vertices by $K^{m,n}$. We will call a $K^{1,n}$, a stargraph. A graph Γ is called vertex transitive if for every two vertices *x* and *y* there exists $\tau \in Aut(\Gamma)$ such that $\tau(x) = y$.

Throughout, all rings R are commutative with $1 \neq 0$, and M is an R-module with at least one prime submodule. For $A \subseteq M$, let $A^* = A \setminus \{0\}$. As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and integers modulo n, respectively.

2. M(L) As a UNION OF PRIME SUBMODULES

In this section, we consider the question of when for an R-module M, the set M(L) is a union of prime submodules and determine a family of non-primeless R-modules. We refer the reader to [1] for some properties concerning M(L). Throughout this section, L is a proper submodule of M over the commutative ring R. Let $M(L) = \{m \in M | rm \in L \text{ for some } r \in R \setminus (L :_R M)\}$. It is easy to see that M(L) is closed under the multiplication of scalars. However M(L) may not be an additive subgroup of M. Let M = M(L), then M(L) may or may not be a union of prime submodules. Also let M(L) be a proper submodule of M, then it is a prime submodule of M, by [1, Theorem 2.1]. For our main result in this section, we need to the below theorem.

Theorem 1. Let M be an R-module with $M \neq M(L)$, and let $\mathcal{A} = \{L_{\Delta} | L_{\Delta} \text{ is a submodule of } M$ with $L_{\Delta} \subseteq M(L)$, and $L_{\Delta} = \bigcup_{h \in \Delta} (L :_M h)$ for some $\Delta \subset R\}$. Then a maximal element of \mathcal{A} is a prime submodule.

Proof. Let $L_{\Delta} = \bigcup_{h \in \Delta} (L :_M h)$ be a maximal element of A. Suppose that $rm \in L_{\Delta}$ for some $r \in R$ and $m \in M$ such that $m \notin L_{\Delta}$. First, assume that $rh \in R \setminus (L :_R M)$ for every $h \in \Delta$. So each $(L :_M h) \subseteq (L :_M rh)$ and hence $L_{\Delta} \subseteq L'_{\Delta} = \bigcup_{h \in \Delta} (L :_M rh)$. Also, suppose $l_1, l_2 \in L'_{\Delta}$. Then $l_i \in (L :_M rh_i)$ for i = 1, 2. So $rl_i \in (L :_M h_i) \subseteq L_{\Delta}$ and hence $rl_1 + rl_2 \in L_{\Delta}$. Thus $rl_1 + rl_2 \in (L :_M h_j)$ for some $h_j \in \Delta$; so $l_1 + l_2 \in (L :_M rh_j) \subseteq L'_{\Delta}$. Since L'_{Δ} is clearly closed under scalar product, L'_{Δ} is submodule of M with $L'_{\Delta} \subseteq M(L)$. Thus by the maximality of $L_{\Delta}, L_{\Delta} = L'_{\Delta}$. Now $rm \in L_{\Delta}$ implies $rm \in (L :_M h)$ for some $h \in \Delta$. Hence $m \in (L :_M rh) \subseteq L'_{\Delta} = L_{\Delta}$; a contradiction. Thus $rh \in (L :_R M)$ for some $h \in \Delta$ and hence $rM \subseteq (L :_M h) \subseteq L_{\Delta}$. Therefore L_{Δ} is a prime submodule of M.

Theorem 2. Let M be an R-module with $M \neq M(L)$, then M(L) is a union of prime submodules.

Proof. Let $l \in M(L)$, $A_l = \{L_\Delta | L_\Delta \text{ is a submodule of } M, l \in L_\Delta \subseteq M(L)$, and $L_\Delta = \bigcup_{h \in \Delta} (L :_M h)$ for some $\Delta \subset R\}$, and $rl \in L$ where $r \in R \setminus (L :_R M)$. Then $l \in (L :_M r)$; thus $A_l \neq \emptyset$. By Zorn's Lemma, A_l has a maximal element L_l . By above theorem, L_l is a prime submodule of M(L). Therefore $M(L) = \bigcup_{l \in M(L)} L_l$ is a union of prime submodules of M.

In the next corollary, we determine a family of non-primeless R-modules.

Corollary 1. Let M be an R-module such that $M \neq M(L)$ for some proper submodule L of M, then M is not primeless.

Proof. This is clear from above theorem.

3. BASIC PROPERTIES OF THE EXTENDED TOTAL GRAPH

The basic properties of the extended total graph are given below, independent of whether or not N_A is a submodule of M. Since $(c+1)(c-1) = 0 \in H_A = \bigcup_{\lambda \in A} P_{\lambda}$, either $c+1 \in H_A$ or $c-1 \in H_A$. First, we determine properties of $T\Gamma_c(M, N_A)$ for some $c \in U(R)$.

Theorem 3. Let there is $c \in U(R)$ where $c \neq 1, -1$ and $c^2 = 1$.

- (1) If $x + y \in N_A$, then either $x + cy \in N_A$ or $x cy \in N_A$.
- (2) If $c + 1 \notin H_A$, then $T\Gamma_c(M, N_A) \cong T\Gamma_1(M, N_A)$.
- (3) If $c 1 \notin H_A$, then $T\Gamma_c(M, N_A) \cong T\Gamma_{-1}(M, N_A)$.
- *Proof.* (1) Let $x + y \in N_{\lambda}$ for some $\lambda \in \Lambda$, then $(c-1)(x-cy) \in N_{\lambda}$. Let $x cy \notin N_{\lambda}$, then $c-1 \in P_{\lambda}$ hence $x + y + (c-1)y = x + cy \in N_{\lambda}$.
- (2) Let $c + 1 \notin H_A$ and $x + y \in N_A$, then $x + cy \in N_A$ since $(c + 1)(x + cy) \in N_A$. Also if $x + cy \in N_A$, then $x + y \in N_A$, since $(c + 1)(x + y) \in N_A$ and $c + 1 \notin H_A$.
- (3) Let $c-1 \notin H_A$ and $x-y \in N_A$, then $x+cy \in N_A$ since $(c-1)(x+cy) \in N_A$. Also if $x+cy \in N_A$, then $x-y \in N_A$, since $(c-1)(x-y) \in N_A$ and $c-1 \notin H_A$.

Remark 1. Suppose that $x, y \in M$ are adjacent in $T\Gamma_1(M, N_A)$, then x and cy are adjacent in $T\Gamma_c(M, N_A)$, if $x \neq cy$.

Theorem 4. Let M be an R-module with $|N_A| = \alpha$ and $m \in M$. If $(c+1)m \notin N_A$, then $deg_{T\Gamma_c(M,N_A)}(m) = \alpha$; otherwise, $deg_{T\Gamma_c(M,N_A)}(m) = \alpha - 1$. In particular, $c+1 \in H_A$ if and only if $T\Gamma_c(M,N_A)$ is a $(\alpha - 1)$ -regular graph.

Proof. There is a unique $x = n - cm \in M$ for every $n \in N_A$. Hence *m* is adjacent to *x* unless x = m. If $(c + 1)m \notin N_A$, then $n - cm \neq m$ for every $n \in N_A$. Therefore $deg_{T\Gamma_c(M,N_A)}(m) = \alpha$. Otherwise, let $(c + 1)m \in N_A$, then $deg_{T\Gamma_c(M,N_A)}(m) =$ $\alpha - 1$ since *m* cannot be adjacent to itself. In particular, if $c + 1 \in H_A$, then $(c + 1)m \in N_A$ and $deg_{T\Gamma_c(M,N_A)}(m) = \alpha - 1$ for every $m \in M$. Now suppose that $T\Gamma_c(M,N_A)$ is a $(\alpha - 1)$ -regular graph, $c + 1 \notin H_A$ and $m' \in M \setminus N_A$, then $deg_{T\Gamma_c(M,N_A)}(m') = \alpha$ since $(c + 1)m' \notin N_A$ for every $m' \in M \setminus N_A$, a contradiction. so $c + 1 \in H_A$.

Theorem 5. If $c - 1 \notin H_{\Lambda}$, then $T\Gamma_{c}(M, N_{\Lambda})$ is vertex transitive.

20

Proof. For each $m \in M$ the mapping $\tau_m : x \mapsto x + m$ is a permutation of the elements of M. Let $c - 1 \notin H_A$, then $x + cy \in N_A$ if and only if $x + m + c(y + m) \in N_A$ since $(c - 1)(x + m + c(y + m)) = (c - 1)(x + cy) \in N_A$. Hence τ_m is an automorphism of $T\Gamma_c(M, N_A)$. The permutations τ_m form a subgroup of the automorphism group of $T\Gamma_c(M, N_A)$. This subgroup acts transitively on the vertices of $T\Gamma_c(M, N_A)$ because for any two vertices m and m', the automorphism $\tau_{m-m'}$ maps m to m'.

The previous theorem gave an important property of $T\Gamma_c(M, N_A)$. The vertex transitivity identifies some properties of graph such as the edge connectivity. For further investigation on vertex transitivity and edge connectivity, see [8]. Hence if $c-1 \notin H_A$ and $T\Gamma_c(M, N_A)$ is connected (i.e., $M = \langle N_A \rangle$ by Theorem 12), then the edge connectivity of $T\Gamma_c(M, N_A)$ is equal to $\alpha - 1$.

Example 1. Let $M = \mathbb{Z}_3 \times \mathbb{Z}_3$, $R = \mathbb{Z}_{12}$, c = 5, $N_1 = \mathbb{Z}_3 \times 0$, $N_2 = 0 \times \mathbb{Z}_3$, and $N_A = N_1 \cup N_2$, then by Theorem 3(3), $T\Gamma_5(M, N_A) \cong T\Gamma_{11}(M, N_A)$. $T\Gamma_5(M, N_A)$ is a 4-regular graph by Theorem 4. Also, by Theorem 5, $T\Gamma_5(M, N_A)$ is vertex transitive.

4. The case when N_A is a submodule of M

We know that $N_{\Lambda} = \bigcup_{\lambda \in \Lambda} N_{\lambda}$ is a proper submodule of M if and only if N_{Λ} is a prime submodule of M. Moreover $P_{\lambda} = (N_{\lambda} :_R M)$ and $H_{\Lambda} = (N_{\Lambda} :_R M)$ are prime ideals of R.

Theorem 6. Let M be an R-module such that N_A is a proper submodule of M. Then $T\Gamma_c(N_A, N_A)$ is a complete subgraph of $T\Gamma_c(M, N_A)$ and $T\Gamma_c(N_A, N_A)$ is disjoint from $T\Gamma_c(M \setminus N_A, N_A)$.

Proof. It is clear that $T\Gamma_c(N_A, N_A)$ is a complete subgraph of $T\Gamma_c(M, N_A)$. Suppose that $y \in M \setminus N_A$ and $x \in N_A$ are adjacent. Then $x + cy \in N_A$ and $cy \in N_A$ hence $c \in H_A$ which is a contradiction since $c \in U(R)$. Therefore, $T\Gamma_c(N_A, N_A)$ is disjoint from $T\Gamma_c(M \setminus N_A, N_A)$.

Definition 1. By a slice of $T\Gamma_c(M, N_A)$ we mean a subgraph of $T\Gamma_c(M, N_A)$ with a vertex set as the form $x + N_A$, denoted by S_x , for some $x \in M$.

It is easy to see that a slice of $T\Gamma_c(M, N_A)$ is an induced subgraph. So, two slices S_x and S_y are the same is and only if $x - y \in N_A$.

The next theorem gives a complete description of $T\Gamma_c(M, N_A)$. It also shows that non-isomorphic modules may have isomorphic total graphs. We allow α and β to be infinite cardinals.

Theorem 7. Let M be an R-module such that N_{Λ} is a proper submodule of M, and let $H_{\Lambda} = (N_{\Lambda} :_{R} M), |N_{\Lambda}| = \alpha$ and $|M/N_{\Lambda}| = \beta$.

(1) If $c + 1 \in H_A$, then $T\Gamma_c(M \setminus N_A, N_A)$ is the union of $\beta - 1$ disjoint K^{α} 's.

- (2) If $c + 1 \notin H_{\Lambda}$, then $T\Gamma_{c}(M \setminus N_{\Lambda}, N_{\Lambda})$ is the union of $(\beta 1)/2$ disjoint $K^{\alpha, \alpha}$'s.
- *Proof.* (1) Assume that $c + 1 \in H_A$, and let $x \in M \setminus N_A$. Then the slice S_x is a complete subgraph of $T\Gamma_c(M \setminus N_A, N_A)$ since $(x + n_1) + c(x + n_2) = (c + 1)x + n_1 + n_2 \in N_A$ for all $n_1, n_2 \in N_A$ since $c + 1 \in H_A$ and N_A is a submodule of M. Note that distinct slices form disjoint subgraphs of $T\Gamma_c(M \setminus N_A, N_A)$ since if $x + n_1$ and $y + n_2$ are adjacent for some $y \in M \setminus N_A$ and $n_1, n_2 \in N_A$, then $x + cy = (x + n_1) + c(y + n_2) - (n_1 + cn_2) \in N_A$ if and only if $x - y = (x + cy) - (c + 1)y \in N_A$ since $c + 1 \in H_A$ and N_A is a submodule of M. Then $S_x = S_y$, a contradiction. Thus $T\Gamma_c(M \setminus N_A, N_A)$ is the union of $\beta - 1$ disjoint subgraphs S_x , each of which is a K^{α} , where $\alpha = |N_A| = |x + N_A|$.
- (2) Assume that $c + 1 \notin H_A$, and let $x \in M \setminus N_A$. Then no two distinct elements in S_x are adjacent, suppose not. So, $(x + n_1) + c(x + n_2) \in N_A$ for $n_1, n_2 \in N_A$. This implies that $(c + 1)x \in N_A$ hence $c + 1 \in H_A$ since N_A is a prime submodule of M, a contradiction. On the other hand, two slices S_x and S_{-cx} are disjoint and each vertex of S_{-cx} is adjacent to all vertex of S_x . Thus $S_x \cup S_{-cx}$ is a complete bipartite subgraph of $T\Gamma_c(M \setminus N_A, N_A)$. Furthermore, if $x + n_1$ is adjacent to $y + n_2$ for some $y \in M \setminus N_A$ and $n_1, n_2 \in N_A$, then $y + cx \in N_A$ as in part(1) above, and hence $y + N_A = -cx + N_A$. Thus $T\Gamma_c(M \setminus N_A, N_A)$ is the union of $(\beta - 1)/2$ disjoint subgraphs $S_x \cup S_{-cx}$, each of which is $K^{\alpha,\alpha}$, where $\alpha = |N_A| = |x + N_A|$

From the above theorem, one can easily deduce when $T\Gamma_c(M \setminus N_A, N_A)$ is a complete or connected graph. The next theorem determines when $T\Gamma_c(M \setminus N_A, N_A)$ is either complete or connected.

Theorem 8. Let M be an R-module such that N_{Λ} is a proper submodule of M, and let $H_{\Lambda} = (N_{\Lambda} :_{R} M)$.

- (1) Let $T\Gamma_c(M \setminus N_A, N_A)$ be a complete graph, then either $|M/N_A| = |M| = 3$ or $|M/N_A| = 2$. Its converse is true when either $|M/N_A| = |M| = 3$ and $c + 1 \notin (0:_R M)$ or $|M/N_A| = 2$.
- (2) Let $T\Gamma_c(M \setminus N_A, N_A)$ be a connected graph, then either $|M/N_A| = 3$ or $|M/N_A| = 2$. Its converse is true when either $|M/N_A| = 3$ and $c 1 \in H_A$ or $|M/N_A| = 2$.
- (3) $T\Gamma_c(M \setminus N_\Lambda, N_\Lambda)$ (and hence $T\Gamma_c(N_\Lambda, N_\Lambda)$ and $T\Gamma_c(M, N_\Lambda)$) is a totally disconnected graph if and only if $N_\Lambda = \{0\}$ and $c + 1 \in (0:_R M)$.

Proof. Let $|M/N_A| = \beta$ and $\alpha = |N_A|$

(1) Let $T\Gamma_c(M \setminus N_A, N_A)$ be a complete graph. Then by Theorem 7, $T\Gamma_c(M \setminus N_A, N_A)$ is a single K^{α} or $K^{1,1}$. If $c + 1 \in H_A$, then $\beta - 1 = 1$ thus $\beta = 2$,

and hence $|M/N_A| = 2$. If $c + 1 \notin H_A$, then $\alpha = 1$ and $(\beta - 1)/2 = 1$. Thus $N_A = \{0\}$ and $\beta = 3$; hence $|M/N_A| = |M| = 3$. Conversely, suppose first that $M/N_A = \{N_A, x + N_A\}$, where $x \notin N_A$. Since $cx \notin N_A$, so, $x + N_A = -cx + N_A$ which implies that $(c + 1)x \in N_A$. Let $m, m' \in M \setminus N_A$. Then $m + x, m' + x \in N_A$ since none of $m + x + N_A$ and $m' + x + N_A$ are equal to $x + N_A$ so $m + cm' = (m + x) + c(m' + x) - (c + 1)x \in N_A$ since N_A is a submodule of M. Thus $T\Gamma_c(M \setminus N_A, N_A)$ is complete. Next, suppose that $|M/N_A| = |M| = 3$; hence $H_A = (0 : R M)$ since $N_A = \{0\}$. By Theorem 7, $T\Gamma_c(M \setminus N_A, N_A)$ is a complete graph since $c + 1 \notin (0 :_R M)$.

- (2) Let *T*Γ_c(*M* \ *N*_A, *N*_A) be connected. Then by Theorem 7, *T*Γ_c(*M* \ *N*_A, *N*_A) is a single *K*^α or *K*^{α,α}. If *c* + 1 ∈ *H*_A, then β − 1 = 1, and hence |*M*/*N*_A| = 2. If *c* + 1 ∉ *H*_A, then (β − 1)/2 = 1, and hence |*M*/*N*_A| = 3. Conversely, by part (1) above if |*M*/*N*_A| = 2 then *T*Γ_c(*M* \ *N*_A, *N*_A) is complete and so it is connected. Suppose that |*M*/*N*_A| = 3 and *c* − 1 ∈ *H*_A. First, we show that *c* + 1 ∉ *H*_A. Suppose not. Let *c* + 1 ∈ *H*_A and *M*/*N*_A = {*N*_A, *x* + *N*_A, *y* + *N*_A}, where *x*, *y* ∉ *N*_A; it is easy to see that *x* + *cy* ∈ *N*. This yields that *x* and *y* are adjacent, a contradiction, by the proof of Theorem 7(1). Thus *c* + 1 ∉ *H*_A. Therefore, *T*Γ_c(*M* \ *N*_A, *N*_A) is the complete bipartite graph *K*^{α,α}, by Theorem 7(2).
- (3) $T\Gamma_c(M \setminus N_A, N_A)$ is totally disconnected if and only if it be a disjoint union of K^1 's. so by Theorem 7, $|N_A| = 1$. Further, since *m* and -cm are adjacent for all $m \in M$, it follows that m = -cm, hence $c + 1 \in (0:_R M)$.

The next theorem gives a more explicit description of the diameter of $T\Gamma_c(M \setminus N_A, N_A)$ when N_A is a proper submodule of M.

Theorem 9. Let M be an R-module such that N_A is a proper submodule of M, and let $H_A = (N_A :_R M)$.

- (1) $diam(T\Gamma_c(M \setminus N_A, N_A)) = 0$ if and only if |M| = 2.
- (2) $diam(T\Gamma_c(M \setminus N_A, N_A)) = 1$ if and only if either $N_A \neq \{0\}$ and $|M/N_A| = 2$ or |M| = 3 and $c + 1 \notin (0:_R M)$.
- (3) $diamT\Gamma_c(M \setminus N_A, N_A)) = 2$ if and only if $N_A \neq \{0\}$, $|M/N_A| = 3$ and $c-1 \in H_A$.
- (4) Otherwise, $diam(T\Gamma_c(M \setminus N_\Lambda, N_\Lambda)) = \infty$.

Proof. It is clear by the proof of the Theorem 8.

The next theorem describes the girth of $T\Gamma_c(M \setminus N_A, N_A)$ and $T\Gamma_c(M, N_A)$ when N_A is a proper submodule of M.

Theorem 10. Let M be an R-module such that N_A is a proper submodule of M, and let $H_A = (N_A :_R M)$.

(1) (a) $gr(T\Gamma_c(M \setminus N_A, N_A)) = 3$ if and only if $c + 1 \in H_A$ and $|N_A| \ge 3$.

(b) $gr(T\Gamma_c(M \setminus N_A, N_A)) = 4$ if and only if $c + 1 \notin H_A$ and $|N_A| \ge 2$.

- (c) Otherwise, $gr(T\Gamma_c(M \setminus N_A, N_A)) = \infty$.
- (2) (a) $gr(T\Gamma_c(M, N_A)) = 3$ if and only if $|N_A| \ge 3$. (b) $gr(T\Gamma_c(M, N_A)) = 4$ if and only if $a + 1 \neq H$, and
 - (b) $gr(T\Gamma_c(M, N_A)) = 4$ if and only if $c + 1 \notin H_A$ and $|N_A| = 2$. (c) Otherwise, $gr(T\Gamma_c(M, N_A)) = \infty$.

Proof. Apply Theorem 7 and Theorem 6.

Example 2. Let $M = \mathbb{Z}_2 \times \mathbb{Z}_3$, $R = \mathbb{Z}_{12}$ and $N_A = \mathbb{Z}_2 \times 0$, then $T\Gamma_c(M \setminus N_A, N_A)$ is the union of 2 disjoint K^2 's, if c = 5 or 11, by Theorem 7(1) and $T\Gamma_c(M \setminus N_A, N_A)$ is a $K^{2,2}$, if c = 1 or 7, by Theorem 7(2). Now, if c = 1 or 7, then $T\Gamma_c(M \setminus N_A, N_A)$ is connected with $diam T\Gamma_c(M \setminus N_A, N_A)$ = 2 and $gr(T\Gamma_c(M \setminus N_A, N_A)) = 4$ by Theorem 8(2), 9(3) and 10(1)(b), respectively, and $gr(T\Gamma_c(M, N_A)) = 4$ by Theorem 10(2)(b).

5. The case when N_A is not a submodule of M

In this section, we consider the remaining case when N_A is not a submodule of M, this implies that $|N_A| \ge 3$. So there are distinct $x, y \in N_A^*$ such that $x + cy \in M \setminus N_A$. In this case, we show that $T\Gamma_c(N_A, N_A)$ is always connected but never complete. Moreover $T\Gamma_c(N_A, N_A)$ and $T\Gamma_c(M \setminus N_A, N_A)$ are never disjoint subgraphs of $T\Gamma_c(M, N_A)$. We first show that $T\Gamma_c(M, N_A)$ is connected when $T\Gamma_c(M \setminus N_A, N_A)$ is connected. However, we give an example to show that the converse fails.

Theorem 11. Let M be an R-module and N_{Λ} a union of prime submodules of M that is not a submodule of M.

- (1) $T\Gamma_c(N_A, N_A)$ is connected with $diam(T\Gamma_c(N_A, N_A)) = 2$.
- (2) Some vertices of T Γ_c(N_Λ, N_Λ) are adjacent to a vertex of T Γ_c(M \ N_Λ, N_Λ). In particular, the subgraphs T Γ_c(N_Λ, N_Λ) and T Γ_c(M \ N_Λ, N_Λ) of T Γ_c(M, N_Λ) are not disjoint.
- (3) If $T\Gamma_c(M \setminus N_A, N_A)$ is connected, then $T\Gamma_c(M, N_A)$ is connected.
- *Proof.* (1) Every $x \in N_A^*$ is adjacent to 0. Thus x 0 y is a path in $T\Gamma_c(N_A, N_A)$ of length two between any two distinct $x, y \in N_A^*$. Moreover, there are nonadjacent $x, y \in N_A^*$ since N_A is not a submodule of M; so $diam(T\Gamma_c(N_A, N_A)) = 2$.
- (2) Since N_A is not a submodule of M, there are distinct $x, y \in N_A^*$ such that $x + cy \in M \setminus N_A$. Then $-y \in N_A^*$ and $x + cy \in M \setminus N_A$ are adjacent vertices in $T\Gamma_c(M, N_A)$ since $x + cy cy = x \in N_A$. The "in particular" statement is clear.
- (3) By part (1) above, it suffices to show that there is a path from x to y in $T\Gamma_c(M, N_A)$ for every $x \in N_A$ and $y \in M \setminus N_A$. By part (2) above, there are adjacent vertices u and v in $T\Gamma_c(N_A, N_A)$ and $T\Gamma_c(M \setminus N_A, N_A)$, respectively. Since $T\Gamma_c(N_A, N_A)$ is connected, there is a path from x to

u in $T\Gamma_c(N_A, N_A)$; and since $T\Gamma_c(M \setminus N_A, N_A)$ is connected, there is a path from *v* to *y* in $T\Gamma_c(M \setminus N_A, N_A)$, then there is a path from *x* to *y* in $T\Gamma_c(M, N_A)$ since *u* and *v* are adjacent in $T\Gamma_c(M, N_A)$. Thus $T\Gamma_c(M, N_A)$ is connected.

$$\square$$

Next, we determine an equivalent condition for connectedness of $T\Gamma_c(M, N_A)$ and compute $diam(T\Gamma_c(M, N_A))$. As usual, if $A \subseteq M$, then $\langle A \rangle$ denotes the submodule of M generated by A.

Theorem 12. Let M be an R-module and N_A a union of prime submodule of M. Then $T\Gamma_c(M, N_A)$ is connected if and only if $M = \langle N_A \rangle$ (i.e., $m = n_1 + n_2 + \cdots + n_k$ for every $m \in M$ and for some $n_1, \ldots, n_k \in N_A$ and $k \in \mathbb{N}$).

Proof. Suppose that $T\Gamma_c(M, N_A)$ is connected, let $m \in M$. Then there is a path $0 - m_1 - \cdots - m_l - m$ from 0 to m in $T\Gamma_c(M, N_A)$. Thus $m_1, m_2 + cm_1, \dots, m + cm_l \in N_A$. Hence $m \in < m_1, m_2 + cm_1, \dots, m + cm_l > \subseteq < N_A >$; thus $M = < N_A >$. Conversely, suppose that $M = < N_A >$. We show that there is a path from 0 to m in $T\Gamma_c(M, N_A)$ for every $0 \neq m \in M$. By hypothesis, $m = n_1 + n_2 + \cdots + n_k$ for some $n_1, \dots, n_k \in N_A$ and $k \in \mathbb{N}$. Also we define a function, denoted by f(t), which is equal to 0 where t is even and equal to 1 where t is odd. Let $a_0 = 0$ and $a_j = (-1)^{f(k-j)} c^{f(k-j)} (n_1 + \cdots + n_j)$ for every integer j with $1 \leq j \leq k$. Then $a_j + ca_{j+1} \in N_A$ for every integer j with $0 \leq j \leq k - 1$, and thus $0 = a_0 - a_1 - \cdots - a_{k-1} - a_k = m$ is a path from 0 to m in $T\Gamma_c(M, N_A)$ of length at most k. Now, let $0 \neq u, w \in M$. Then by the preceding argument, there are paths from u to 0 and 0 to w in $T\Gamma_c(M, N_A)$. Hence there is a path from u to w in $T\Gamma_c(M, N_A)$; so $T\Gamma_c(M, N_A)$ is connected.

In the next theorem and its corollary, we determine a relation between $T\Gamma_c(R, H_A)$ and $T\Gamma_c(M, N_A)$, where $H_A = (N_A :_R M)$.

Theorem 13. Let M be an R-module, and N_{Λ} a union of prime submodules of M where $H_{\Lambda} = (N_{\Lambda} :_{R} M)$. If $T\Gamma_{c}(R, H_{\Lambda})$ is connected, then $T\Gamma_{c}(M, N_{\Lambda})$ is connected as well.

Proof. Suppose that $T\Gamma_c(R, H_A)$ is connected and let $m \in M$. Then there is a path $0-r_1-\cdots-r_k-1$ from 0 to 1 in $T\Gamma_c(R, H_A)$. Then $r_1, r_2+cr_1, \ldots, r_k+cr_{k-1}, 1+cr_k \in H_A$. Hence $0-r_1m-\cdots-r_km-m$ is a path from 0 to m in $T\Gamma_c(M, N_A)$. Since all vertices may be connected via $0, T\Gamma_c(M, N_A)$ is a connected graph. \Box

Corollary 2. Let M be an R-module, and N_{Λ} a union of prime submodules of M and $H_{\Lambda} = (N_{\Lambda} :_{R} M)$. If $R = \langle H_{\Lambda} \rangle$, then $T\Gamma_{c}(M, N_{\Lambda})$ is connected.

Proof. This follows directly from Theorem 12 and 13.

Remark 2. According to the proof of the Theorem 13, if d(0,1) = k in $T\Gamma_c(R, H_A)$, then $d(0,m) \le k$ in $T\Gamma_c(M, N_A)$ for every $m \in M$.

In next theorem, we improve Theorem 3.3 of [7] and Theorem 4.3 of [1] without cosidering M as a finitely generated R-module.

Theorem 14. Let M be an R-module and N_{Λ} a union of prime submodule of Mthat is not a submodule of M such that $M = \langle N_{\Lambda} \rangle$ (i.e., $T\Gamma_{c}(M, N_{\Lambda})$ is connected). If there is $k \geq 2$ which is a greatest integer i such that $m = n_{1} + n_{2} + \cdots + n_{i}$ for every $m \in M$ and for some $n_{1}, \dots, n_{i} \in N_{\Lambda}$ where $n_{1} + n_{2} + \cdots + n_{i}$ is a shortest representation of the element m, then $diam(T\Gamma_{c}(M, N_{\Lambda})) = k$. Otherwise, $diam(T\Gamma_{c}(M, N_{\Lambda})) = \infty$.

Proof. Let m and m' be distinct elements in M such that they are not adjacent. We show that there is a path from m to m' in $T\Gamma_c(M, N_A)$ with length at most k. We define a function, denoted by f(t), which is equal to 0 where t is even and equal to 1 where t is odd. By the proof of Theorem 12, we can consider two path (m - m') - m' $x_1 - \dots - x_{k-1} - 0$ and $(m + cm') - y_1 - \dots - y_{k-1} - 0$ of lengths at most k. Let $a_0 = m$, $a_k = m'$, $a_j = (-1)^{f(k-j)} c^{f(k-j)} m' + x_j f(k-1) + y_j f(k)$ for every integers *j* with $1 \le j \le k-1$. Then $a_j + ca_{j+1} \in N_A$ for every integers *j* with $0 \le j \le k-1$, and thus $m = a_0 - a_1 - \dots - a_{k-1} - a_k = m'$ is a path from m to m' in $T\Gamma_c(M, N_A)$ of length at most k. Now we show that any path from 0 to m in $T\Gamma_c(M, N_A)$ has length at least k. Suppose that $0 - b_1 - \dots - b_{l-1} - m$ is a path from 0 to m in $T\Gamma_c(M, N_A)$ of length ι and let $m = n_1 + \cdots + n_k$ be a shortest representation of the element m. Thus $b_1, b_2 + cb_1, \dots, b_{l-1} + cb_{l-2}, m + cb_{l-1} \in N_A$, and hence $m \in <$ $b_1, b_2 + cb_1, \dots, b_{\iota-1} + cb_{\iota-2}, m + cb_{\iota-1} >$. Thus $\iota \ge k$ and so the shortest path between 0 and m in $T\Gamma_c(M, N_A)$ has length k. Therefore $diam(T\Gamma_c(M, N_A)) = k$. If there is no such k, then we show that $diam(T\Gamma_c(M, N_A)) = \infty$. Suppose not. Let $diam(T\Gamma_c(M, N_A)) = t$ where $t < \infty$. Since $k = \infty$, there is $m \in M$ such that $m = n_1 + \dots + n_{t+1}$ is a shortest representation of the element m. According what is proved, it is contradiction since there is a path from 0 to m in $T\Gamma_c(M, N_A)$ of length at most t.

Remark 3. Let $N_{\Lambda} = \bigcup_{\lambda \in \Lambda} N_{\lambda}$ and $M = \langle N_{\Lambda} \rangle$, then it is clear that $1 \leq k \leq |\Lambda|$ where k is as mentioned in Theorem 14.

Corollary 3. Let M be an R-module and N_A a union of prime submodule of M such that $T\Gamma_c(M, N_A)$ is connected. Let $m = n_1 + \dots + n_k$ be a shortest representation of the element m and k is as mentioned in Theorem 14.

- (1) $diam(T\Gamma_c(M, N_A)) = d(0, m)$
- (2) If $diam(T\Gamma_c(M, N_\Lambda)) = k$ then $diam(T\Gamma_c(M \setminus N_\Lambda, N_\Lambda)) \ge k 2$.

Proof. (1) This is clear from the proof of Theorem 14.

(2) Since $k = diam(T\Gamma_c(M, N_A)) = d(0, m)$ by part (1) above, let $0-b_1-\dots - b_{k-1}-m$ be a shortest path from 0 to m in $T\Gamma_c(M, N_A)$. Clearly $b_1 \in N_A$. If $b_i \in N_A$ for some integer i with $2 \le i \le k-1$, then the path $0-b_i$ - $\dots - b_{k-1} - m$ from 0 to *m* has length less than *k*, a contradiction. Thus $b_i \in M \setminus N_A$ for every integer *i* with $2 \le i \le k-1$. Hence $b_2 - \dots - b_{k-1} - m$ is a shortest path from b_2 to *m* in $T\Gamma_c(M \setminus N_A, N_A)$ of length k-2. Thus $diam(T\Gamma_c(M \setminus N_A, N_A)) \ge k-2$.

We next investigate the girth of $T\Gamma_c(N_A, N_A)$, $T\Gamma_c(M \setminus N_A, N_A)$, and $T\Gamma_c(M, N_A)$ when N_A is not a submodule of M. Recall that $H_A = (N_A :_R M) = \bigcup_{\lambda \in A} P_{\lambda}$ where N_A is proper subset of M with $|N_A| \ge 3$ and $P_{\lambda} = (N_{\lambda} :_R M)$.

Theorem 15. Let M be an R-module, and let $N_A = \bigcup_{\lambda} N_{\lambda}$ for prime submodules N_{λ} of M, that is not a submodule of M and $H_A = (N_A :_R M)$. Suppose that $m_1 - m_2 - m_3$ is a path of length two in $T\Gamma_c(M \setminus N_A, N_A)$ for distinct elements $m_1, m_2, m_3 \in M \setminus N_A$.

- (1) If c + 1 ∈ H_Λ and ∩_λ N_λ ≠ {0}, then gr(TΓ_c(M \ N_Λ, N_Λ)) = 3.
 (2) If (c + 1)m_i ≠ 0 for all integers i with 1 ≤ i ≤ 3, then gr(TΓ_c(M \ N_Λ, N_Λ)) ≤ 4.
- *Proof.* (1) Suppose that there is a $0 \neq h \in \bigcap_{\lambda} N_{\lambda}$. If $m_2 \neq m_1 + h$, then $m_1 m_2 (m_1 + h) m_1$ is a cycle of length three in $T\Gamma_c(M \setminus N_A, N_A)$ since $(c+1)m_1 \in N_A$. Hence, assume that $m_2 = m_1 + h$. Since $(m_1 + h) + cm_3 = m_2 + cm_3 \in N_A$ and $h \in \bigcap_{\lambda} N_{\lambda}$, we have $m_1 + cm_3 \in N_A$. Thus $m_1 m_2 m_3 m_1$ is a cycle of length three in $T\Gamma_c(M \setminus N_A, N_A)$. Thus $gr(T\Gamma_c(M \setminus N_A, N_A)) = 3$.
 - (2) Suppose that $(c + 1)m_i \neq 0$ for all integers *i* with $1 \leq i \leq 3$. Then $m_i \neq -cm_i$ for every *i* with $1 \leq i \leq 3$. There are distinct integer *j*, *k* with $1 \leq j, k \leq 3$ such that they are adjacent and $m_j \neq -cm_k$ since if $m_1 + cm_2 = m_3 + cm_2 = 0$, then $m_1 = m_3$, a contradiction. Thus $m_j m_k (-cm_k) (-cm_j) m_j$ is a 4-cycle in $T\Gamma_c(M \setminus N_A, N_A)$; so $gr(T\Gamma_c(M \setminus N_A, N_A)) \leq 4$.

In the above theorem, we improve the proof of Theorem 3.12(1) in [5]. Also in the part (2) of the above theorem, $0 \neq (c+1)m_i$ can belongs to N_A unlike Theorem 3.12(3) in [5].

Corollary 4. Let M be an R-module, and let $N_A = \bigcup_{\lambda} N_{\lambda}$ for prime submodules N_{λ} of M, that is not a submodule of M and $H_A = (N_A :_R M)$. Suppose that $m_1 - m_2 - m_3$ is a path of length two in $T\Gamma_c(M \setminus N_A, N_A)$ for distinct elements $m_1, m_2, m_3 \in M \setminus N_A$. If $(c + 1)m_i = 0$ for some integer i with $1 \le i \le 3$ and $c + 1 \notin (0 :_R M)$, then $gr(T\Gamma_c(M \setminus N_A, N_A)) = 3$.

Proof. Suppose that $c + 1 \notin (0:_R M)$. Thus $c + 1 \neq 0$. Since $m_i \in M \setminus N_A$ for all integers *i* with $1 \le i \le 3$ and $(c + 1)m_i = 0$ for some *i* with $1 \le i \le 3$, we have $c + 1 \in P_\lambda$ for every P_λ where $P_\lambda = (N_\lambda :_R M)$. Hence $0 \ne c + 1 \in \bigcap_\lambda P_\lambda$.

Since $c + 1 \notin (0:_R M)$, there is a $m \in M$ such that $0 \neq (c + 1)m \in \bigcap_{\lambda} N_{\lambda}$. Thus $gr(T\Gamma_c(M \setminus N_A, N_A)) = 3$ by Theorem 15(1).

Corollary 5. Let M be an R-module, and let $N_A = \bigcup_{\lambda} N_{\lambda}$ for prime submodules N_{λ} of M and $H_A = (N_A :_R M)$. Suppose that $m_1 - m_2 - m_3$ is a path of length two in $T\Gamma_c(M \setminus N_A, N_A)$ for distinct elements $m_1, m_2, m_3 \in M \setminus N_A$, $c + 1 \in H_A$, $\bigcap_{\lambda} N_{\lambda} \neq \{0\}$ and $|N_A| \ge 3$, then $gr(T\Gamma_c(M \setminus N_A, N_A)) = 3$.

Proof. This follows directly from Theorem 10(1)(a) and Theorem 15(1).

Theorem 16. Let M be an R-module and N_A a union of prime submodule of M that is not a submodule of M.

- (1) Either $gr(T\Gamma_c(N_A, N_A)) = 3$ or $gr(T\Gamma_c(N_A, N_A)) = \infty$. Moreover, if one has $gr(T\Gamma_c(N_A, N_A)) = \infty$, then $|N_{\lambda}| = 2$ for any $\lambda \in \Lambda$ where N_{λ} is a non-zero submodule of M. Also, $T\Gamma_c(N_A, N_A)$ is a star graph.
- (2) $gr(T\Gamma_c(M, N_A)) = 3$ if and only if $gr(T\Gamma_c(N_A, N_A)) = 3$.
- (3) $gr(T\Gamma_c(M, N_A)) \leq 4.$
- (4) $gr(T\Gamma_c(M, N_A)) = 4$ if and only if $gr(T\Gamma_c(N_A, N_A)) = \infty$.
- *Proof.* (1) If $n + cn' \in N_A$ for some distinct $n, n' \in N_A^*$, then 0 n n' 0 is a 3-cycle in $T\Gamma_c(N_A, N_A)$; so $gr(T\Gamma_c(N_A, N_A)) = 3$. Otherwise, $n + cn' \in M \setminus N_A$ for all distinct $n, n' \in N_A^*$. So in this case, every $n \in N_A$ is adjacent to 0, and no two distinct $n, n' \in N_A^*$ are adjacent. Thus $T\Gamma_c(N_A, N_A)$ is a star graph with center 0; so $gr(T\Gamma_c(N_A, N_A)) = \infty$. Moreover, let $N_A = \bigcup_{\lambda \in A} N_\lambda$ is not a submodule of M where N_λ is a prime submodule of M so $|A| \ge 2$. Assume that $gr(T\Gamma_c(N_A, N_A)) = \infty$. Then $x + cy \in M \setminus N_A$ for all distinct $x, y \in N_A^*$, and thus if $N_\lambda \neq \{0\}$, then each $|N_\lambda| = 2$.
- (2) It suffices to show that $gr(T\Gamma_c(N_A, N_A)) = 3$ when $gr(T\Gamma_c(M, N_A)) = 3$. Let $(c+1)n \neq 0$ for some $n \in N_A^*$, then 0-n-(-cn)-0 is a 3-cycle in $T\Gamma_c(N_A, N_A)$. Otherwise, (c+1)n = 0 for all $n \in N_A$. Since N_A is not a submodule of M, there are distinct elements $n, n' \in N_A$ such that $n + n' \in M \setminus N_A$. Then (c+1)(n+n') = 0, thus $c+1 \in H_A$. Let $m-m_1-m_2-m$ be a 3-cycle in $T\Gamma_c(M, N_A)$. Then $n_1 = cm + m_1, n_2 = cm + m_2, m_1 + cm_2 \in N_A$. Thus $0-n_1-n_2-0$ is a 3-cycle in $T\Gamma_c(N_A, N_A)$; therefore $gr(T\Gamma_c(N_A, N_A)) = 3$.
- (3) Since N_A is not a submodule of M, there are distinct elements $n, n' \in N_A$ such that $n + n' \in M \setminus N_A$. Then 0 (-cn) n + n' (-cn') 0 is a 4-cycle in $T\Gamma_c(M, N_A)$.
- (4) This follows by parts (1), (2) and (3) above.

Example 3. (a) Let $M = \mathbb{Z}[X]$ be an $\mathbb{Z}[X]$ -module. Then $N_A = \mathbb{Z}[X] \setminus \mathbb{Z}^*$ is a union of prime submodule of M, that is not a submodule of M. Thus $T\Gamma_c(N_A, N_A)$ is connected with $diam(T\Gamma_c(N_A, N_A)) = 2$ by Theorem

11(1). Moreover, by Theorem 12 and 14, $T\Gamma_c(M, N_A)$ is connected with $diam(T\Gamma_c(M, N_A)) = 2$ since z = X + z - X for $X, z - X \in N_A$ for every $z \in \mathbb{Z}^*$. However, $T\Gamma_c(M \setminus N_A, N_A)$ is not connected since there is no path from 1 to 2 in $T\Gamma_c(M \setminus N_A, N_A)$. Thus the converse of Theorem 11(3) need not hold.

(b) Let $k \in \mathbb{N}$, $M = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $R = \mathbb{Z}_{2k}$, $N_1 = \mathbb{Z}_2 \times 0 \times 0$, $N_2 = 0 \times \mathbb{Z}_2 \times 0$, $N_3 = 0 \times 0 \times \mathbb{Z}_2$ and $N_A = \bigcup N_j$ for $1 \le j \le 3$, then by Theorem 12 and 14, $T\Gamma_c(M, N_A)$ is connected with $diam(T\Gamma_c(M, N_A)) = 3$, note that (1,1,0) is the sum of two elements of N_A but (1,1,1) is the sum of three element of N_A , and $T\Gamma_c(R, H_A)$ is disconnected so the converse of Theorem 13 is fails, also $gr(T\Gamma_c(N_A, N_A)) = \infty$ and $gr(T\Gamma_c(M, N_A)) = 4$ by Theorem 16.

REFERENCES

- A. Abbasi and S. Habibi, "The total graph of a module over a commutative ring with respect to proper submodules," *J. Algebra Appl.*, vol. 11, no. 3, p. 13pp, 2012, doi: 10.1142/S0219498811005762.
- [2] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimènez, R. Karpman, A. Kinzel, and D. Pritikin, "On the unitary Cayley graph of a finite ring," *Electron. J. Combin.*, vol. 16, p. 13pp, 2009.
- [3] D. D. Anderson and S. Chun, "The Set of Torsion Element of a Module," *Comm. Algebra*, vol. 42, no. 4, pp. 1835–1843, 2014, doi: 10.1080/00927872.2013.796555.
- [4] D. F. Anderson and A. Badawi, "The total graph of a commutative ring," J. Algebra, vol. 320, no. 7, pp. 2706–2719, 2008, doi: 10.1016/j.jalgebra.2008.06.028.
- [5] D. F. Anderson and A. Badawi, "The generalized total graph of a commutative ring," J. Algebra Appl., vol. 12, no. 5, p. 18pp, 2013, doi: 10.1142/S021949881250212X.
- [6] N. Ashrafi, H. R. Maimani, M. R. Pournaki, and S. Yassemi, "Unit graphs associated with rings," *Comm. Algebra*, vol. 38, pp. 2851–2871, 2010, doi: 10.1080/00927870903095574.
- [7] S. Ebrahimi Atani and S. Habibi, "The total torsion element graph of a module over a commutative ring," An. St. Univ. Ovidius Constanta, vol. 19, no. 1, pp. 23–34, 2011.
- [8] C. Godsil and G. F. Royle, Algebraic Graph Theory. New York: Springer-Verlag, 2001. doi: 10.1007/978-1-4613-0163-9.
- [9] C. Lanski and A. Maròti, "Rings elements as sums of units," *Cent. Eur. J. Math.*, vol. 7, pp. 395–399, 2009, doi: 10.2478/s11533-009-0024-5.
- [10] Z. Pucanovic, "The total graph of a module," *Matematicki vesnik*, vol. 63, no. 4, pp. 305–312, 2011.

Authors' addresses

A. Abbasi

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

E-mail address: aabbasi@guilan.ac.ir

A. Ramin

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran

E-mail address: ramin2068@webmail.guilan.ac.ir