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Abstract. Let R be a commutative ring with nonzero identity and U(R) its multiplicative group
of units. Let M be an R-module where the collection of prime submodules is non-empty and let
N 4 be an arbitrary union of prime submodules. Also, suppose that ¢ € U(R) such that ¢~ = ¢.
We define the extended total graph of M as a simple graph T 1 (M, N 4) with vertex set M, and
two distinct elements x,y € M are adjacent if and only if x +cy € N 4. In this paper, we will
study some graph theoretic results of 71 (M, N 4).
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1. INTRODUCTION

Let R be commutative ring with 1 # 0, U(R) its multiplicative group of units
and Z(R) its set of zero-divisors. A proper submodule N of M is said to be a
prime submodule if whenever rm € N for some r € R and m € M, then either
meN orre (N :gM). Clearly, if N is a prime submodule of M, then P =
(N :r M) is a prime ideal of R. Let M be an R-module, T(M) its set of torsion
elements and { N }; < its set of all prime submodules. The R-module M is said to be
primeless if £ = @. For a submodule L of an R-module M, the ideal {r € R|rM <
L} and submodule {m € M |rm C L} will be denoted by (L :g M) and (L :ps 1),
respectively. Let Ny = J 2e4 N be aproper subsetof M, andlet Hy = (N4 :gp M)
for @ # A C £2. It can be shown that Hp = |, <4 Pa.-

The total graph of R was introduced by Anderson and Badawi in [4], as the graph
with all elements of R as vertices, and two distinct vertices x,y € R are adjacent if
and only if x + y € Z(R). Also they introduced in [5] the generalized total graph of
R in which Z(R) is extended to H, amultiplicative — prime subset of R, in such
away that ab € H forevery a € H and b € R, and whenever ab € H foralla,b € R,
then either a € H or b € H. In fact, it is easily seen that H is a multiplicative-prime
subset of R if and only if R\ H is a saturated multiplicatively closed subset of R.
Thus H is a multiplicative-prime subset of R if and only if H is a union of prime
ideals of R.
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18 A. ABBASI AND A. RAMIN

In what follows, we extend the generalized total graph such that the extended total
graph of M is a simple graph with vertex set M, and two distinct elements x,y € M
are adjacent if and only if x +cy € N4 where ¢ € U(R) and ¢~! = ¢. This graph
is denoted by TI.(M, N 4). In general, for A, B € M, TI.(A, B) is a simple graph
with vertices all element of A, and two distinct vertices x and y are adjacent if and
only if x +cy € B.

The authors in [7] and [10] generalized the notion of a total graph to an R-module
M . They considered the vertex set of a graph T(I"(M)) as the elements of M such
that two vertices are adjacent if and only if x +y € T(M). In [3], D. D. Anderson and
Sangmin Chun proved that if M # T(M ), then T' (M) is a union of prime submodules
of M. Consequently, TI.(M,N,) is a generalization of T'(I" (M) too. Let ¢ = —1,
then TT,(M, N 4), the complement graph of TT.(M,N ) (i.e., TT-(M,M \ N ,)),
is a Cayley graph, also let M = R and N 4 be the union of all the maximal ideals of
R (i.e., No = R\ U(R)), then observe that TT1 (M, N4) (i.e., T (M, M\ Np)) is
the unit graph of R in the sense of [0] and TI_1(M,N,) (i.e., TT_1(M,M \ N,))
is the unitary Cayley graph in the sense of [2] and [9].

For a proper submodule L of M, M(L) ={m € M|rm € L forsomer € R\ (L :g
M)}. In section 2, we will show that if M # M(L), then there is A C §2 such that
M(L) = N4. In[1], the authors introduce a generalization of total graph of a module
with respect to the set M(L). For A C £2, N4 is more general than M (L) since
there are R-modules M and A C 2 such that N4 is not of the form M (L) for all
submodules L of M.

In section 3, we determine some basic properties of extended total graph specific-
ally identifying its regularity and vertex transitivity. Since N4 is a union of prime
submodules of M, the study of T 1. (M, N 4) breaks naturally into two cases depend-
ing on whether or not N, is a (prime) submodule of M. In section 4, we study the
case when N is a (prime) submodule of M. In the final section, we do the case when
N 4 is not a submodule of M, and we improve Theorem 3.3 in [7] and Theorem 4.3
in [1] by Theorem 14, and Theorem 3.12 in [5] by Theorem 15.

Let I" be a simple graph. We say that I" is totally disconnected if none of two
vertices of I" are adjacent. A subgraph Iy of I is an induced subgraph if vertex
set of I'1 is contained in vertex set of I" and two vertices of I} are adjacent if and
only if they are adjacent in I". Throughout this paper, all subgraphs are induced. We
say that two subgraphs I} and I3 of I" are disjoint if Iy and I'; have no common
vertices and no vertex of I (resp., I») is adjacent (in I") to any vertex not in I
(resp., I5). If vertex x is an end point of edge e, then x and e are called incident. The
degree of a vertex x in a graph I", written deg (x) is the number of edges incident
to x. Graph I is called k — regular if degree of each vertex of I" is k. For vertices
x and y of I', we define d(x,y) to be the length of the shortest path from x to y
(d(x,x) =0 and d(x,y) = oo if there is no such path). The diameter of I' is
diam(I') = sup{d(x,y)|x and y are vertices of I"}. The girth of I", denoted by
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gr(I), is the length of a shortest cycle in I" (gr(I") = oo if I" contains no cycles).
We denote the complete graph on n vertices by K" and the complete bipartite graph
on m and n vertices by K" We will calla K" a stargraph. A graph I' is called
vertex transitive if for every two vertices x and y there exists t € Aut(I") such
that 7(x) = y.

Throughout, all rings R are commutative with 1 # 0, and M is an R-module with
at least one prime submodule . For 4 € M, let A* = A\ {0}. As usual, Z and Z,
will denote the integers and integers modulo 7, respectively.

2. M(L) AS A UNION OF PRIME SUBMODULES

In this section, we consider the question of when for an R-module M, the set M (L)
is a union of prime submodules and determine a family of non-primeless R-modules.
We refer the reader to [1] for some properties concerning M(L). Throughout this
section, L is a proper submodule of M over the commutative ring R. Let M(L) =
{me M|rm € L for some r € R\ (L :g M)}. Tt is easy to see that M (L) is closed
under the multiplication of scalars. However M (L) may not be an additive subgroup
of M. Let M = M(L), then M (L) may or may not be a union of prime submodules.
Also let M (L) be a proper submodule of M, then it is a prime submodule of M, by
[1, Theorem 2.1]. For our main result in this section, we need to the below theorem.

Theorem 1. Let M be an R-module with M # M(L), and let A = {La|L A is
a submodule of M with Ly € M(L), and Lo = Jpea(L :p h) for some A C R}.
Then a maximal element of A is a prime submodule.

Proof. Let Lo =|Jpea(L :pm h) be a maximal element of 4. Suppose that rm e
L for some r € R and m € M such that m ¢ L 4. First, assume that rh € R\
(L :r M) for every h € A. So each (L :ps h) € (L :pr rh) and hence Lo C L/, =
Unea(L :pm rh). Also, suppose l1,lp € L'y. Then I; € (L :pg rh;) for i =1,2.
Sorli € (L:p hi) € La and hence rly +rly € La. Thus rly +rly € (L iy hj)
for some hj € A;soly+1 € (L iy rhj) C L/A. Since L/A is clearly closed under
scalar product, L', is submodule of M with L’y € M(L). Thus by the maximality
of Lo, Lo =L'y. Now rm € L 5 implies rm € (L :ps h) for some h € A. Hence
m € (L :pp rh) € L', = L ; a contradiction. Thus rh € (L :g M) for some h € A
and hence rM C (L :pg h) € L 4. Therefore L 4 is a prime submodule of M. O

Theorem 2. Let M be an R-module with M # M (L), then M(L) is a union of
prime submodules.

Proof. Letl € M(L), A; ={La|L is asubmodule of M,] € L, € M(L), and
La=Upea(L :m h) for some A C R}, and rl € L where r € R\ (L :g M). Then
l € (L :pr); thus A; # @. By Zorn’s Lemma, #4; has a maximal element L;. By
above theorem, L; is a prime submodule of M(L). Therefore M(L) = ;¢ My L
is a union of prime submodules of M. O
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In the next corollary, we determine a family of non-primeless R-modules.

Corollary 1. Let M be an R-module such that M # M (L) for some proper sub-
module L of M, then M is not primeless.

Proof. This is clear from above theorem. O

3. BASIC PROPERTIES OF THE EXTENDED TOTAL GRAPH

The basic properties of the extended total graph are given below, independent of
whether or not N 4 is a submodule of M. Since (c+1)(c—1)=0e€ Hy =, c4 P2,
eitherc+ 1€ Hy orc—1 € H 4. First, we determine properties of 71, (M, N ) for
some ¢ € U(R).

Theorem 3. Let there is ¢ € U(R) where ¢ # 1,—1 and c? = 1.
(1) If x+y € Ny, then either x +cy € Npor x —cy € Ny4.
Q) Ifc+1¢ Hp, then TI.(M,Np) = TI'1(M,Ny,).
B)Ifc—1¢ Hp, then TT.(M,Np) = TI'_1(M,N,).

Proof. (1) Let x+y € N, for some A € A, then (¢ —1)(x —cy) € N;. Let
x—cy ¢ Nj,thenc—1¢€ Pyhencex+y+(c—1)y=x+cy € Ny.

(2) Letc+1¢ Hyandx+y € Ny, then x +cy € Ny since (c+ 1)(x +cy) €
Np. Alsoif x+cy € Ny, then x +y € Ny, since (c +1)(x + y) € N4 and
C+1¢HA.

(3) Letc—1¢ Hpand x —y € Ny, then x +cy € N4 since (c —1)(x +cy) €
Ny. Alsoif x +cy € Ny, then x —y € Ny, since (c—1)(x —y) € N4 and
c—1¢ Hy.

g

Remark 1. Suppose that x,y € M are adjacentin 71y (M, N 4), then x and cy are
adjacentin TT.(M,N,), if x # cy.

Theorem 4. Let M be an R-module with [No| =a andm € M. If (c +1)m & Ny,
then degrr.m,N ,)(m) = o; otherwise, degrr..m,n ) (M) = a— 1. In particular,
c+leHyifandonly if TTo(M,N,) is a (o — 1)-regular graph.

Proof. There is aunique x =n—cm € M for every n € N . Hence m is adjacent
to x unless x =m. If (c + 1)m ¢ N4, then n —cm # m for every n € N 4. Therefore
degrr.m,N,)(m) = a. Otherwise, let (¢ + 1)m € Ny, then degrr.(m,n ) (M) =
o — 1 since m cannot be adjacent to itself. In particular, if ¢ + 1 € H 4, then (¢ +
I)m € Np and degrr.m,n,)(m) = a—1 for every m € M. Now suppose that
TT.(M,N,)isa(a—1)-regular graph,c +1¢ Hy and m’ € M \ Ny, then
degrr.om,n,)(m') = a since (c + 1)m’ ¢ N4 for every m’ € M \ N4, a contradic-
tion.soc+1€ Hy. ]

Theorem 5. [fc —1 ¢ Hy, then TI.(M, N ,) is vertex transitive.
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Proof. For each m € M the mapping 7, : x —> X 4+ m is a permutation of the
elements of M. Letc—1¢ Hy, then x +cy € Ny if and only if x +m +c(y +
m) € Ny since (c—1)(x +m+c(y +m)) = (c —1)(x +cy) € Na. Hence 1, is
an automorphism of 71.(M,N,4). The permutations 7, form a subgroup of the
automorphism group of 71 (M, N 4). This subgroup acts transitively on the vertices
of TT.(M,N4) because for any two vertices m and m’, the automorphism T;,—y,
maps m to m’. O

The previous theorem gave an important property of TI.(M,N4). The vertex
transitivity identifies some properties of graph such as the edge connectivity. For
further investigation on vertex transitivity and edge connectivity, see [8]. Hence if
c—1¢ Hpand TT.(M,N 4) is connected (i.e., M =< N4 > by Theorem 12), then
the edge connectivity of T1.(M, N 4) is equal to o — 1.

Example 1. Let M = Z3xZ3, R=2Z15,c =5, Ny =2Z3x0, N =0xZ3, and
N = N1 UN,, thenby Theorem 3(3), TI'5(M,Np) = TI'11(M,Np). TI's(M,N4)
is a 4-regular graph by Theorem 4. Also, by Theorem 5, T15(M, N 4) is vertex trans-
itive.

4. THE CASE WHEN N4 IS A SUBMODULE OF M

We know that Ng = (J, o 4 N is a proper submodule of M if and only if N is
a prime submodule of M. Moreover Py = (Ny :g M) and Hy = (Ng :g M) are
prime ideals of R.

Theorem 6. Let M be an R-module such that N 4 is a proper submodule of M.
Then TI'c(Na,N,) is a complete subgraph of TI'.(M,N ) and TI(NA,N4) is
disjoint from TTo(M \ N4, N 7).

Proof. Ttisclearthat TI.(N 4, N) is a complete subgraph of T I (M, N 4). Sup-
pose that y € M \ N4 and x € N, are adjacent. Then x +cy € Ny and cy € Ny
hence ¢ € H 4 which is a contradiction since ¢ € U(R). Therefore, TI (N4, N,) is
disjoint from TT.(M \ No,N4). O

Definition 1. By a slice of T1.(M, N4) we mean a subgraph of T1.(M,N,)
with a vertex set as the form x + N4, denoted by Sy, for some x € M.

It is easy to see that a slice of 71, (M, N 4) is an induced subgraph. So, two slices
Sx and Sy are the same is and only if x —y € N 4.

The next theorem gives a complete description of 71 (M, N 4). It also shows that
non-isomorphic modules may have isomorphic total graphs. We allow « and § to be
infinite cardinals.

Theorem 7. Let M be an R-module such that N 4 is a proper submodule of M,
andlet Hy = (Np:r M), INpA| =a and |M/N 4| = B.
(1) Ifc+1€ Hyp, then TT. (M \ Ny, N4) is the union of B — 1 disjoint K%’s.
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Q) If c+1¢ Hp, then TT;(M \ Npo,N) is the union of (B —1)/2 disjoint
K%%s,

Proof. (1) Assume that c 4+ 1 € Hy, and let x € M \ N4. Then the slice Sy
is a complete subgraph of TT.(M \ N4, N4) since (x +n1) +c(x +n3) =
(c+1)x+ny+nye Ny forall ny,ny € Ny sincec+ 1€ Hy and Ny
is a submodule of M. Note that distinct slices form disjoint subgraphs of
TIc(M\Ny,Ny)sinceif x +n1 and y + n, are adjacent for some y € M \
Npandny,np e Ny, thenx+cy=(x+n1)+c(y+nz)—(ni+cnz) e Ny
ifandonlyif x—y =(x+cy)—(c+1)ye Ngysincec+1le Hypand Ny isa
submodule of M. Then Sx = S, a contradiction. Thus T1.(M \ Na,N,)
is the union of B — 1 disjoint subgraphs Sy, each of which is a K¢, where
a=|Ng|=|x+ Nyl

(2) Assumethatc+1¢ H 4, andlet x € M \ N4. Then no two distinct elements
in Sy are adjacent, suppose not. So, (x +n1)+c(x +ny) € Ny forny,n, €
N 4. This implies that (c + 1)x € N4 hence ¢ + 1 € H 4 since N4 is a prime
submodule of M, a contradiction. On the other hand, two slices Sy and S_.
are disjoint and each vertex of S_. is adjacent to all vertex of S,. Thus S, U
S_cx is a complete bipartite subgraph of TI.(M \ N, N,). Furthermore,
if x +ny is adjacent to y +n, for some y € M \ N4 and ny,ny € Ny, then
y+cx € Ny as in part(1) above, and hence y + N4 = —cx + N4. Thus
TT.(M\Ng,N_,) is the union of (8 —1)/2 disjoint subgraphs Sy U S_cx,
each of which is K*%, where & = |Na| = |x + N 4|

]

From the above theorem, one can easily deduce when T1.(M \ Np,Ny4) is a
complete or connected graph. The next theorem determines when 71 (M \ NA, N 4)
is either complete or connected.

Theorem 8. Let M be an R-module such that N 4 is a proper submodule of M,
andlet Hpy = (NA ‘R M)

(1) Let TT . (M \ N, N ) be a complete graph, then either M/ N | =|M|=3
or |[M/N a| = 2. Its converse is true when either |M/N | = |M| = 3 and
c+1¢0:rg M)or|M/Ny|=2.

(2) Let TT (M \ NAo,NA) be a connected graph, then either |M/N | = 3 or
|M/N A| = 2. Its converse is true when either | M/Np| =3 andc—1¢€ Hy
or |M/Ny| =2.

(B) TT,(M\Np,Np) (and hence TT.(Npo,Np) and TT.(M, N 5)) is a totally
disconnected graph if and only if NA = {0} andc+ 1€ (0:g M).

Proof. Let  M/Ng| =B and o = | N 4|

(1) Let TTe(M \ Na,N,) be a complete graph. Then by Theorem 7, T1.(M \
Na,Ny)isasingle K¥or KU If c 4+ 1€ Hy, then B—1=1thus 8 =2,
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and hence |[M/Np|=2.1fc+1¢ Hp,thenoe =1and (8—1)/2 = 1. Thus
Ny = {0} and B8 = 3; hence |M/N 4| = |M| = 3. Conversely, suppose first
that M/Nop ={Na,x+ N4}, where x ¢ Njy. Sincecx € Ny,s0,x+ Ny =
—cx + N4 which implies that (¢ + 1)x € N4. Let m,m € M\ N4. Then
m—l—x,m/ +x € Ny sincenoneof m+x+ Ny and m’ + x + N4 are equal
tox+Ngsom+em = (m+x)+c(m +x)—(c+1)x € Ny since N4 is
a submodule of M. Thus TT.(M \ N4, N 4) is complete. Next, suppose that
|[IM/Np|=|M|=23;hence Hy = (0:g M) since N4 = {0}. By Theorem
7, TT(M\ Np,Nyp) is acomplete graph sincec +1 ¢ (0:g M).

(2) LetTT.(M\ N4, N 4)be connected. Then by Theorem 7, T T (M \N A, N 4)
isasingle K¥ or K**. Ifc+1€ Hyp,then f—1 =1, and hence |[M/Ny| =
2. Ifc+1¢ Hy, then (8 —1)/2 =1, and hence |[M/Ny| = 3. Con-
versely, by part (1) above if |M/Nj| =2 then TT,(M \ Ng,N,) is com-
plete and so it is connected. Suppose that |M/Ns| =3 and c —1 € Hy.
First, we show that c + 1 ¢ H 4. Suppose not. Letc+1€ Hy and M/Ny =
{NA,x+ NaA,y+ Na}, where x,y ¢ Ny;itis easy to see that x +cy € N.
This yields that x and y are adjacent, a contradiction, by the proof of The-
orem 7(1). Thus ¢ + 1 ¢ H 4. Therefore, TI'.(M \ N 4, N 4) is the complete
bipartite graph K%%, by Theorem 7(2).

(3) TI:(M\ N4, Ny) is totally disconnected if and only if it be a disjoint union
of K1’s. so by Theorem 7, |N4| = 1. Further, since m and —cm are adjacent
for all m € M, it follows that m = —cm, hence c +1 € (0:g M).

O

The next theorem gives a more explicit description of the diameter of 71, (M \
N4, N4) when Ny is a proper submodule of M.

Theorem 9. Let M be an R-module such that N 4 is a proper submodule of M,
andlet Hy = (Njg :r M).

(1) diam(TT,(M\Np,Ny)) =0ifand only if [ M| = 2.

2) diam(TT,(M\Ng,N4))=1ifand only if either N g # {0} and |M/N 4| =
2or|M|=3andc+1¢ (0:g M).

3) diamTT,(M\ Np,Na)) =2 if and only if Ny # {0}, |[M/N 4| =3 and
c—1¢€ Hy.

(4) Otherwise, diam(TT,(M \Na,N4)) = oc.

Proof. It is clear by the proof of the Theorem 8. g

The next theorem describes the girth of TI.(M \ Nao,N4) and TIT.(M,N,)
when N 4 is a proper submodule of M.

Theorem 10. Let M be an R-module such that N 4 is a proper submodule of M,
andlet Hy = (Np:p M).
(1) @) gr(TT:(M\Ng,Np))=3ifandonlyifc+1€ Hy and |[Ny| > 3.
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(b) gr(TT:(M\Na,Np))=4difandonlyifc+1¢ Hyp and |N 4| > 2.
(¢) Otherwise, gr(TT,(M\ Ng,Nyp)) = 0.
(2) (@ gr(TTe(M,Na)) =3 ifand only if [Na| = 3.
(b) gr(TI:(M,Np))=4ifandonlyifc+1¢ Hp and |[Ny| = 2.
(¢) Otherwise, gr(TT,(M,N,)) = oo.

Proof. Apply Theorem 7 and Theorem 6. g

Example 2. Let M = Zy xZ3, R =713 and Ny = Z» x 0, then TI (M \
Nj,N,) is the union of 2 disjoint K?%s, if c =5 or 11, by Theorem 7(1) and
TI.(M\Np,Ny)isa K*2,if c =1 or 7, by Theorem 7(2). Now, if ¢ =1 or
7, then TT.(M \ Ny, N4) is connected with diamTT,(M \ Nao,N4)) = 2 and
gr(TT(M\ Nyg,N4)) =4 by Theorem 8(2), 9(3) and 10(1)(b), respectively, and
gr(TT.(M,N,)) = 4by Theorem 10(2)(b).

5. THE CASE WHEN N4 IS NOT A SUBMODULE OF M

In this section, we consider the remaining case when N 4 is not a submodule of M,
this implies that | N 4| > 3. So there are distinct x,y € Ny suchthat x +cy € M \ N4.
In this case, we show that TI.(N 4, N4) is always connected but never complete.
Moreover TT.(Nao,Ng) and TI (M \ Na,N4) are never disjoint subgraphs of
TI.(M,N 4). We first show that T I (M, N 4) is connected when TT (M \ N, N7)
is connected. However, we give an example to show that the converse fails.

Theorem 11. Let M be an R-module and N 4 a union of prime submodules of M
that is not a submodule of M.

(1) TI:(Na,Np) is connected with diam(TT.(Nag,Np)) = 2.

(2) Some vertices of TT-(N A, N p) are adjacent to a vertex of TT.(M\ N4, N 4).
In particular, the subgraphs TTc(NA,NA) and TT (M \ NA,N4) of
TT.(M,N,) are not disjoint.

(B) If TT.(M\ Na,Nyp) is connected, then TT'.(M, N ») is connected.

Proof. (1) Every x € N} is adjacent to 0. Thus x —0— y is a path in
TTc(Na,Ny) of length two between any two distinct x, y € N 1. Moreover,
there are nonadjacent x,y € N} since N, is not a submodule of M; so
diam(TT;(Ng,Np)) =2.

(2) Since N4 is not a submodule of M, there are distinct x,y € N} such that
x+cy€e€M\Ny. Then—y € N} and x +cy € M\ N4 are adjacent vertices
inTI.(M,N,)since x +cy—cy = x € Nj. The “in particular” statement
is clear.

(3) By part (1) above, it suffices to show that there is a path from x to y in
TI.(M,N,) forevery x € Np and y € M\ N4. By part (2) above, there
are adjacent vertices ¥ and v in TI,(Ng,Ny) and TT.(M \ Ng,Ny), re-
spectively. Since TI.(Na,N,) is connected, there is a path from x to
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uin TI,(NA,N4); and since TI.(M \ Np,N,4) is connected, there is a
path from v to y in TT.(M \ N4, N4), then there is a path from x to y in
TT.(M,N ) since u and v are adjacentin T1.(M,N,). Thus TT.(M,Ny)
is connected.

O

Next, we determine an equivalent condition for connectedness of T1.(M,Ny)
and compute diam(T1.(M,N,)). As usual, if A € M, then < A > denotes the
submodule of M generated by A4.

Theorem 12. Let M be an R-module and N 4 a union of prime submodule of M.
Then TI.(M,N ) is connected if and only if M =< Np > (i.e, m =ny+np+
.-+ 4 ny for everym € M and for some ny,....ny € No and k € N).

Proof. Suppose that T1.(M, N ,) is connected, let m € M. Then there is a path
0—my—---—m,—m from O tom in TI.(M,Np). Thus my,my +cmy,....m+
cm, € No. Hencem e<my,my~+cmyq,...m+cm, >C< Ny >;thus M =< Ny >.
Conversely, suppose that M =< N, >. We show that there is a path from 0 to
min TI.(M,N,) for every 0 £ m € M. By hypothesis, m =ny +ny +---+ ng
for some ny,...,n; € Ny and k € N. Also we define a function, denoted by f(z),
which is equal to O where ¢ is even and equal to 1 where ¢ is odd. Let ap = 0 and
a; = (=) C=D e f k=1 (5, +---+n;) for every integer j with 1 < j < k. Then
aj +cajy1 € Ny for every integer j with 0 < j <k —1, and thus 0 = ag —a; —
-eo—ap_1—ap =misapath fromOtomin TI,.(M,N 4) of length at most k. Now,
let 0 # u,w € M. Then by the preceding argument, there are paths from u to 0
and O to w in TT.(M, N ). Hence there is a path from u to w in T1.(M,N 4); so
TI.(M,N ,) is connected. O

In the next theorem and its corollary, we determine a relation between T 1 (R, H 4)
and TT,(M,N4), where Hy = (Np:g M).
Theorem 13. Let M be an R-module, and N o a union of prime submodules of

M where Hy = (Npo :g M). If TT:(R,H,) is connected, then TI,(M,N,) is
connected as well.

Proof. Suppose that T I, (R, H 4) is connected and let m € M. Then there is a path
O0—ri—--—rg—1from0to1inTI (R,Hy). Thenry,rao+cry,....,rp+crp_1, 1+
cry € Hy. Hence 0—rym —---—rpm —m is a path from 0 to m in TT.(M,Ny).
Since all vertices may be connected via 0, 71 (M, N 4) is a connected graph. t

Corollary 2. Let M be an R-module, and N 4 a union of prime submodules of M
and Hy = (NpA:g M). If R=< Hp >, then TI':(M, N 4) is connected.

Proof. This follows directly from Theorem 12 and 13. U

Remark 2. According to the proof of the Theorem 13, if d(0,1) = k in
TI.(R,Hp),thend(0,m) <kin TI.(M,N,) foreveryme M.



26 A. ABBASI AND A. RAMIN

In next theorem, we improve Theorem 3.3 of [7] and Theorem 4.3 of [1] without
cosidering M as a finitely generated R-module.

Theorem 14. Let M be an R-module and N 4 a union of prime submodule of M
that is not a submodule of M such that M =< Nj > (i.e., TI.(M,N4) is con-
nected). If there is k > 2 which is a greatest integer i such that m = ny +np +
---+n; for every m € M and for some ny,...,nj € NgA whereny +n~+---+n; isa
shortest representation of the element m, then diam(TT;(M, N 4)) = k. Otherwise,
diam(TT.(M,N,)) = oc.

Proof. Let m and m’ be distinct elements in M such that they are not adjacent. We
show that there is a path from m to m’ in TT.(M, N 4) with length at most k. We
define a function, denoted by f(¢), which is equal to O where ¢ is even and equal to
1 where ¢ is odd. By the proof of Theorem 12, we can consider two path (m —m’) —
X1 —-+—xg_1—0and (m+cm’)—y; —---— yr_1 — 0 of lengths at most k. Let ag =
m,ar =m',a; = (1) & DS E=Dy’ 4 x; f(k —1) 4 y; f(k) for every integers
Jjwithl1 <j <k—1.Thena; +caj;1 € N4 foreveryintegers j with0< j <k—1,
and thus m = ag—ay —---—ay_; —ay = m’ is a path from m tom’ in TIT, (M, N )
of length at most k. Now we show that any path from O to m in T1.(M, N,) has
length at least k. Suppose that 0 —by —---—b,_1 —m is a path from O to m in
TI.(M,N,)oflength ¢ and let m = n +---+ ny be a shortest representation of the
element m. Thus by,by +cby,...,b—1 +cb,—a,m +cb,—1 € Ny, and hence m €<
b1,by +cby,....b—1 + cb,—2,m + cb,—1 >. Thus ¢ > k and so the shortest path
between 0 and m in TT.(M, N ) has length k. Therefore diam(TT.(M,N4)) =k.
If there is no such k, then we show that diam(TT.(M,N4)) = co. Suppose not.
Letdiam(TI,(M,N4)) =t where t < co. Since k = oo, there is m € M such that
m=n1+---+n;41 is a shortest representation of the element m. According what is
proved, it is contradiction since there is a path from 0 to m in TI.(M, N 4) of length
at most ¢. g

Remark 3. Let Ny = |J Nj and M =< N4 >, then it is clear that 1 <k < |A]|
A€A
where k is as mentioned in Theorem 14.

Corollary 3. Let M be an R-module and N 4 a union of prime submodule of M
such that TTI':(M, N p) is connected. Let m = ny + ---+ ny be a shortest represent-
ation of the element m and k is as mentioned in Theorem 14.

Q) Ifdiam(TT,(M,Np)) =k thendiam(TT(M\Np,Np)) >k —2.

Proof. (1) This is clear from the proof of Theorem 14.
(2) Sincek =diam(TT,(M,N,))=d(0,m) by part (1) above, let0—by —---—
by _1 —m be a shortest path from O to m in T, (M, N 4). Clearly by € N4.
If bj € Ny for some integer i with 2 <i < k — 1, then the path 0 — b; —
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-+« —br_1 —m from 0 to m has length less than k, a contradiction. Thus
b;i € M\ N forevery integeri with2 <i <k—1. Hence by —---—bj_1—m
is a shortest path from by to m in TT.(M \ N, N4) of length k —2. Thus
diam(TTe(M\Ng,Np)) >k —2.

O

We next investigate the girth of TI.(Ng,Na), TT.(M\ N4, N4), and
TI.(M,N4) when N4 is not a submodule of M. Recall that Hy = (Ngp:g M) =
Usea P2 where N4 is proper subset of M with [N4|> 3 and Py = (N, :r M).

Theorem 15. Let M be an R-module, and let Ny =\, Ny for prime submod-
ules N), of M, that is not a submodule of M and Hy = (Np :r M). Suppose that
my —mg —ms is a path of length two in TI'.(M \ N, N4) for distinct elements
my,my,m3z € M\ Ny.

(1) Ifc+1€ Hp and () N), # {0}, then gr(TT.(M \ Na,N4)) = 3.
2) If (c + 1)m; # 0 for all integers i with 1 <i <3,
then gr(TT,(M\NA,Np)) <4.

Proof. (1) Suppose that there is a 0 # h € (|, Nj. If my # my + h, then
my —my — (m1 + h) —my is a cycle of length three in TI.(M \ Nao,N4)
since (¢ + 1)m1 € N 4. Hence, assume that m, = mq + h. Since (m1 +h) +
cmz =my+cm3 € Ny and h € (), Ny, we have m; + cm3 € Nj. Thus
my —my —m3—mj is a cycle of length three in T, (M \ N4, N4). Thus
gr(TTe(M\Na,Ny)) =3.

(2) Suppose that (¢ + 1)m; # 0 for all integers i with 1 <i < 3. Then m; #
—cm; for every i with 1 <i < 3. There are distinct integer j,k with 1 <
J.k < 3 such that they are adjacent and m; # —cmy since if my +cmy =
ms3 +cmy = 0, then m = m3, a contradiction. Thus m; —my — (—cmy) —
(—cmj)—mjisad-cyclein TI.(M\Na,Na);s0gr(TTe:(M\Na,Np)) <
4,

O

In the above theorem, we improve the proof of Theorem 3.12(1) in [5]. Also in
the part (2) of the above theorem, 0 # (¢ + 1)m; can belongs to N 4 unlike Theorem
3.12(3) in [5].

Corollary 4. Let M be an R-module, and let Ny = | J, N, for prime submod-
ules Ny of M, that is not a submodule of M and Hp = (N4 :r M). Suppose that
my —my —m3 is a path of length two in TI.(M \ Ny, N,) for distinct elements
my,ma,m3z € M\ Ng. If (c + 1)m; = 0 for some integer i with 1 <i <3 and
c+1¢0:g M), then gr(TTo(M\Ng,Ny)) =3.

Proof. Suppose that ¢ +1 ¢ (0:g M). Thus ¢+ 1 # 0. Since m; € M\ Ny
for all integers i with 1 <i <3 and (¢ + 1)m; = 0 for some i with 1 <i < 3, we
have ¢ + 1 € P, for every P, where P, = (N, :g M). Hence 0 #c+ 1€ (), P;.
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Since ¢ +1 ¢ (0:g M), there is a m € M such that 0 # (c + 1)m € (), N;. Thus
gr(TT.(M\ Na,Ny4)) =3 by Theorem 15(1). O

Corollary 5. Let M be an R-module, and let N y = | J, N;, for prime submodules
N; of M and Hy = (Np :r M). Suppose that my —my —ms is a path of length
two in TTe(M \ Na, N p) for distinct elements my,mp,m3 € M\ Ny, c+ 1€ Hy,
(s Ny # 10} and [N4| > 3, then gr(TT-(M \Na,N4)) = 3.

Proof. This follows directly from Theorem 10(1)(a) and Theorem 15(1). ]

Theorem 16. Let M be an R-module and N g a union of prime submodule of M
that is not a submodule of M.

(1) Either gr(TT:(NaA,Np)) =30rgr(TIT.(Na,N4)) = oc. Moreover, if one
has gr(TT¢:(Na,NA)) = oo, then |Ny| = 2 for any A € A where Ny is a
non-zero submodule of M. Also,TT.(N 4, N 4) is a star graph.

2) gr(TT¢(M,Np))=3ifand only if gr(TT-(Ng,N4)) =3.

(3) gr(TIe(M,Ny)) <4

@) gr(TI,(M,Np))=4ifandonlyif gr(TT;(Na,N4)) = o0.

Proof. (1) If n +cn’ € Ny for some distinct n,n’ € N*, then0—n—n’—01is
a3-cyclein TI,(NA,Na);s0gr(TT.(Na,Ny))=3. Otherwise, n +cn’ €
M \ N4 for all distinct n,n" € N}. So in this case, every n € N4 is adjacent
to 0, and no two distinct n,n’ € NZ are adjacent. Thus TI,.(Na,N4) is a
star graph with center 0; so gr(TI¢(Na,N4)) = co. Moreover, let Ny =
Uiea N2 is not a submodule of M where N, is a prime submodule of M so
|A| > 2. Assume that gr(TT.(Na,Np)) = o0. Then x +cy € M \ N for
all distinct x, y € N%, and thus if N # {0}, then each |N;| = 2.

(2) It suffices to show that gr(TIT¢.(Na,Na)) =3 when gr(TI.(M,N4)) =3.
Let (¢ + 1)n # 0 for some n € N%, then 0—n — (—cn) — 0 is a 3-cycle in
TT:(Na,N4). Otherwise, (c + 1)n =0 for all n € N4. Since N4 is not a
submodule of M, there are distinct elements n,n’ € N4 such that n +n’ €
M\N4. Then (c+1)(n+n’)=0,thusc+1€ Hy. Letm—mqy —mo—m
be a 3-cycle in TI.(M,Ny). Then ny =cm+my,np =cm+mp,mp +
cmpy € Ng. Thus 0—ny —np—0is a 3-cycle in TI.(N4,Ny); therefore
gr(TTo(Na,Na)) = 3.

(3) Since N4 is not a submodule of M, there are distinct elements n,n’ € Ny
such thatn +n’ € M\ N4. Then 0— (—cn) —n +n’—(—cn’)—0is a 4-cycle
inTl.(M,Ny,).

(4) This follows by parts (1), (2) and (3) above.

O

Example 3. (a) Let M = Z[X] be an Z[X]-module. Then Ny = Z[X]\ Z*
is a union of prime submodule of M, that is not a submodule of M. Thus
TIc(Na,Np) is connected with diam(TT;(Na,N4)) = 2 by Theorem
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11(1). Moreover, by Theorem 12 and 14, TI.(M,N ) is connected with
diam(TT,(M,Ny))=2sincez = X +z— X for X,z— X € N4 for every
z € Z*. However, TT.(M \ N4, N,) is not connected since there is no path
from 1to2in TI,(M \ N4, N 4). Thus the converse of Theorem 11(3) need
not hold.

(b) Letke Ny M =Zy xZyXZy, R="2Z5}, N1 =Z,x0x0, Ny =0x2Z, x0,
N3 =0x0xZand Ny =|JN; for 1 < j <3, then by Theorem 12 and 14,
TT.(M,N,) isconnected with diam(TT'.(M,N,)) = 3, note that (1,1,0)
is the sum of two elements of N4 but (1,1,1) is the sum of three element
of Ny, and TI.(R, H,) is disconnected so the converse of Theorem 13 is
fails, also gr(TI¢(Ng,Np)) = oo and gr(T1.(M,N,)) = 4 by Theorem
16.
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