AN EXTENSION OF TOTAL GRAPH OVER A MODULE

A. ABBASI AND A. RAMIN

Received 01 March, 2015

Abstract. Let R be a commutative ring with nonzero identity and $U(R)$ its multiplicative group of units. Let M be an R-module where the collection of prime submodules is non-empty and let N_A be an arbitrary union of prime submodules. Also, suppose that $c \in U(R)$ such that $c^{-1} = c$. We define the extended total graph of M as a simple graph $T^c(M, N)$ with vertex set M, and two distinct elements $x, y \in M$ are adjacent if and only if $x + cy \in N_A$. In this paper, we will study some graph theoretic results of $T^c(M, N)$.

2010 Mathematics Subject Classification: 05C25; 13C99

Keywords: total graph, prime submodule

1. INTRODUCTION

Let R be commutative ring with $1 \neq 0$, $U(R)$ its multiplicative group of units and $Z(R)$ its set of zero-divisors. A proper submodule N of M is said to be a prime submodule if whenever $rm \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r \in (N :_RM)$. Clearly, if N is a prime submodule of M, then $P = (N :_RM)$ is a prime ideal of R. Let M be an R-module, $T(M)$ its set of torsion elements and $\{N_\lambda\}_{\lambda \in \Omega}$ its set of all prime submodules. The R-module M is said to be primeless if $\Omega = \emptyset$. For a submodule L of an R-module M, the ideal $\{r \in R | rM \subseteq L\}$ and submodule $\{m \in M | rm \subseteq L\}$ will be denoted by $(L :_RM)$ and $(L :_MR)$, respectively. Let $N_A = \bigcup_{\lambda \in A} N_\lambda$ be a proper subset of M, and let $H_A = (N_A :_RM)$ for $\emptyset \neq A \subseteq \Omega$. It can be shown that $H_A = \bigcup_{\lambda \in A} P_\lambda$.

The total graph of R was introduced by Anderson and Badawi in [4], as the graph with all elements of R as vertices, and two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in Z(R)$. Also they introduced in [5] the generalized total graph of R in which $Z(R)$ is extended to H, a multiplicative prime subset of R, in such away that $ab \in H$ for every $a \in H$ and $b \in R$, and whenever $ab \in H$ for all $a, b \in R$, then either $a \in H$ or $b \in H$. In fact, it is easily seen that H is a multiplicative-prime subset of R if and only if $R \setminus H$ is a saturated multiplicatively closed subset of R. Thus H is a multiplicative-prime subset of R if and only if H is a union of prime ideals of R.

© 2017 Miskolc University Press
In what follows, we extend the generalized total graph such that the extended total graph of M is a simple graph with vertex set M, and two distinct elements $x, y \in M$ are adjacent if and only if $x + cy \in N_A$ where $c \in U(R)$ and $c^{-1} = c$. This graph is denoted by $T\Gamma_c(M, N_A)$. In general, for $A, B \subseteq M$, $T\Gamma_c(A, B)$ is a simple graph with vertices all element of A, and two distinct vertices x and y are adjacent if and only if $x + cy \in B$.

The authors in [7] and [10] generalized the notion of a total graph to an R-module M. They considered the vertex set of a graph $T(\Gamma(M))$ as the elements of M such that two vertices are adjacent if and only if $x + y \in T(M)$. In [3], D. D. Anderson and Sangmin Chun proved that if $M \neq T(M)$, then $T(M)$ is a union of prime submodules of M. Consequently, $T\Gamma_c(M, N_A)$ is a generalization of $T(\Gamma(M))$ too. Let $c = -1$, then $\overline{T\Gamma_c(M, N_A)}$, the complement graph of $T\Gamma_c(M, N_A)$ (i.e., $T\Gamma_c(M, M \setminus N_A)$), is a Cayley graph, also let $M = R$ and N_A be the union of all the maximal ideals of R (i.e., $N_A = R \setminus U(R)$), then observe that $\overline{T\Gamma_1(M, N_A)}$ (i.e., $T\Gamma_1(M, M \setminus N_A)$) is the unit graph of R in the sense of [6] and $\overline{T\Gamma_{-1}(M, N_A)}$ (i.e., $T\Gamma_{-1}(M, M \setminus N_A)$) is the unitary Cayley graph in the sense of [2] and [9].

For a proper submodule L of M, $M(L) = \{m \in M | rm \in L$ for some $r \in R \setminus L : R M\}$. In section 2, we will show that if $M \neq M(L)$, then there is $\Lambda \subseteq \Omega$ such that $M(L) = N_A$. In [1], the authors introduce a generalization of total graph of a module with respect to the set $M(L)$. For $\Lambda \subseteq \Omega$, N_A is more general than $M(L)$ since there are R-modules M and $\Lambda \subseteq \Omega$ such that N_A is not of the form $M(L)$ for all submodules L of M.

In section 3, we determine some basic properties of extended total graph specifically identifying its regularity and vertex transitivity. Since N_A is a union of prime submodules of M, the study of $T\Gamma_c(M, N_A)$ breaks naturally into two cases depending on whether or not N_A is a (prime) submodule of M. In section 4, we study the case when N is a (prime) submodule of M. In the final section, we do the case when N_A is not a submodule of M, and we improve Theorem 3.3 in [7] and Theorem 4.3 in [1] by Theorem 14, and Theorem 3.12 in [5] by Theorem 15.

Let Γ be a simple graph. We say that Γ is totally disconnected if none of two vertices of Γ are adjacent. A subgraph Γ_1 of Γ is an induced subgraph if vertex set of Γ_1 is contained in vertex set of Γ and two vertices of Γ_1 are adjacent if and only if they are adjacent in Γ. Throughout this paper, all subgraphs are induced. We say that two subgraphs Γ_1 and Γ_2 of Γ are disjoint if Γ_1 and Γ_2 have no common vertices and no vertex of Γ_1 (resp., Γ_2) is adjacent (in Γ) to any vertex not in Γ_1 (resp., Γ_2). If vertex x is an end point of edge e, then x and e are called incident. The degree of a vertex x in a graph Γ, written $\text{deg}_\Gamma(x)$ is the number of edges incident to x. Graph Γ is called k-regular if degree of each vertex of Γ is k. For vertices x and y of Γ, we define $d(x, y)$ to be the length of the shortest path from x to y ($d(x, x) = 0$ and $d(x, y) = \infty$ if there is no such path). The diameter of Γ is $\text{diam}(\Gamma) = \sup\{d(x, y) | x$ and y are vertices of $\Gamma\}$. The girth of Γ, denoted by
is a union of prime submodules of M above theorem, L scalar product, for some rM and hence rM is a submodule of M with $M.L/$ is a proper submodule of M. For $A \subseteq M$, let $A^* = A \setminus \{0\}$. As usual, \mathbb{Z} and \mathbb{Z}_n will denote the integers and integers modulo n, respectively.

2. $M(L)$ as a Union of Prime Submodules

In this section, we consider the question of when for an R-module M, the set $M(L)$ is a union of prime submodules and determine a family of non-primeless R-modules. We refer the reader to [1] for some properties concerning $M(L)$. Throughout this section, L is a proper submodule of M over the commutative ring R. Let $M(L) = \{m \in M \mid rm \in L \text{ for some } r \in R \setminus (L :_RM)\}$. It is easy to see that $M(L)$ is closed under the multiplication of scalars. However $M(L)$ may not be an additive subgroup of M. Let $M = M(L)$, then $M(L)$ may or may not be a union of prime submodules. Also let $M(L)$ be a proper submodule of M, then it is a prime submodule of M, by [1, Theorem 2.1]. For our main result in this section, we need to the below theorem.

Theorem 1. Let M be an R-module with $M \neq M(L)$, and let $A = \{L \in M \mid L \text{ is a submodule of } M \text{ with } L \subseteq M(L) \text{ and } L = \bigcup_{h \in A}(L :_M h) \text{ for some } A \subseteq R \}$. Then a maximal element of A is a prime submodule.

Proof. Let $L = \bigcup_{h \in A}(L :_M h)$ be a maximal element of A. Suppose that $rm \in L$ for some $r \in R$ and $m \in M$ such that $m \notin L$. First, assume that $rh \in R \setminus (L :_RM)$ for every $h \in A$. So each $(L :_M h) \subseteq (L :_M rh)$ and hence $L \subseteq L' = \bigcup_{h \in A}(L :_M rh)$. Also, suppose $l_1, l_2 \in L'$. Then $l_i \in (L :_M rh_i)$ for $i = 1, 2$. So $l_i \in (L :_M h_i) \subseteq L$ and hence $l_1 + l_2 \in L$. Thus $l_1 + l_2 \in (L :_M rh_i)$ for some $h_j \in A$; so $l_1 + l_2 \in (L :_M rh_i) \subseteq L'$. Since L' is clearly closed under scalar product, L' is a submodule of M with $L' \subseteq M(L)$. Now by the maximality of L, $L = L'$, so $rm \in L$ implies $rm \in (L :_M h)$ for some $h \in A$. Hence $m \in (L :_M rh) \subseteq L' = L$; a contradiction. Thus $rh \in (L :_RM)$ for some $h \in A$ and hence $rM \subseteq (L :_M h) \subseteq L$. Therefore L is a prime submodule of M. □

Theorem 2. Let M be an R-module with $M \neq M(L)$, then $M(L)$ is a union of prime submodules.

Proof. Let $l \in M(L)$, $A_l = \{L \in M(L) \mid L \subseteq M(L) \}$, and $L = \bigcup_{h \in A}(L :_M h)$ for some $A \subseteq R$}, and $r \in L$ where $r \in R \setminus (L :_RM)$. Then $l \in (L :_M r)$; thus $A_l \neq \emptyset$. By Zorn’s Lemma, A_l has a maximal element L. By above theorem, L is a prime submodule of $M(L)$. Therefore $M(L) = \bigcup_{l \in M(L)} L$ is a union of prime submodules of M. □
In the next corollary, we determine a family of non-primeless R-modules.

Corollary 1. Let M be an R-module such that $M \neq M(L)$ for some proper submodule L of M, then M is not primeless.

Proof. This is clear from above theorem.

3. **Basic properties of the extended total graph**

The basic properties of the extended total graph are given below, independent of whether or not N_A is a submodule of M. Since $(c+1)(c-1) = 0 \in H_A = \bigcup_{\lambda \in A} P_{\lambda}$, either $c + 1 \in H_A$ or $c - 1 \in H_A$. First, we determine properties of $T\Gamma_c(M, N_A)$ for some $c \in U(R)$.

Theorem 3. Let there is $c \in U(R)$ where $c \neq 1, -1$ and $c^2 = 1$.

1. If $x + y \in N_A$, then either $x + cy \in N_A$ or $x - cy \in N_A$.
2. If $c + 1 \notin H_A$, then $T\Gamma_c(M, N_A) \cong T\Gamma_1(M, N_A)$.
3. If $c - 1 \notin H_A$, then $T\Gamma_c(M, N_A) \cong T\Gamma_{-1}(M, N_A)$.

Proof.

(1) Let $x + y \in N_{\lambda}$ for some $\lambda \in A$, then $(c-1)(x-cy) \in N_{\lambda}$. Let $x - cy \notin N_{\lambda}$, then $c - 1 \notin P_{\lambda}$ hence $x + y + (c-1)y = x + cy \in N_{\lambda}$.

(2) Let $c + 1 \notin H_A$ and $x + y \in N_A$, then $x + cy \in N_A$ since $(c+1)(x+cy) \in N_A$. Also if $x + cy \in N_A$, then $x + y \in N_A$, since $(c+1)(x+y) \in N_A$ and $c+1 \notin H_A$.

(3) Let $c - 1 \notin H_A$ and $x - y \in N_A$, then $x + cy \in N_A$ since $(c-1)(x+cy) \in N_A$. Also if $x + cy \in N_A$, then $x - y \in N_A$, since $(c-1)(x-y) \in N_A$ and $c-1 \notin H_A$.

Remark 1. Suppose that $x, y \in M$ are adjacent in $T\Gamma_1(M, N_A)$, then x and cy are adjacent in $T\Gamma_c(M, N_A)$, if $x \neq cy$.

Theorem 4. Let M be an R-module with $|N_A| = \alpha$ and $m \in M$. If $(c+1)m \notin N_A$, then $\deg_{T\Gamma_c(M, N_A)}(m) = \alpha$; otherwise, $\deg_{T\Gamma_c(M, N_A)}(m) = \alpha - 1$. In particular, $c + 1 \in H_A$ if and only if $T\Gamma_c(M, N_A)$ is a $(\alpha - 1)$-regular graph.

Proof. There is a unique $x = n - cm \in M$ for every $n \in N_A$. Hence m is adjacent to x unless $x = m$. If $(c+1)m \notin N_A$, then $n - cm \neq m$ for every $n \in N_A$. Therefore $\deg_{T\Gamma_c(M, N_A)}(m) = \alpha$. Otherwise, let $(c+1)m \in N_A$, then $\deg_{T\Gamma_c(M, N_A)}(m) = \alpha - 1$ since m cannot be adjacent to itself. In particular, if $c + 1 \in H_A$, then $(c+1)m \in N_A$ and $\deg_{T\Gamma_c(M, N_A)}(m) = \alpha - 1$ for every $m \in M$. Now suppose that $T\Gamma_c(M, N_A)$ is a $(\alpha - 1)$-regular graph, $c + 1 \notin H_A$ and $m' \in M \setminus N_A$, then $\deg_{T\Gamma_c(M, N_A)}(m') = \alpha$ since $(c+1)m' \notin N_A$ for every $m' \in M \setminus N_A$, a contradiction. so $c + 1 \in H_A$.

Theorem 5. If $c - 1 \notin H_A$, then $T\Gamma_c(M, N_A)$ is vertex transitive.
Proof. For each \(m \in M \) the mapping \(\tau_m : x \mapsto x + m \) is a permutation of the elements of \(M \). Let \(c - 1 \notin H_A \), then \(x + cy \in N_A \) if and only if \(x + m + c(y + m) \in N_A \) since \((c - 1)(x + m + c(y + m)) = (c - 1)(x + cy) \in N_A \). Hence \(\tau_m \) is an automorphism of \(TG_c(M, N_A) \). The permutations \(\tau_m \) form a subgroup of the automorphism group of \(TG_c(M, N_A) \). This subgroup acts transitively on the vertices of \(TG_c(M, N_A) \) because for any two vertices \(m \) and \(m' \), the automorphism \(\tau_{m - m'} \) maps \(m \) to \(m' \).

The previous theorem gave an important property of \(TG_c(M, N_A) \). The vertex transitivity identifies some properties of graph such as the edge connectivity. For further investigation on vertex transitivity and edge connectivity, see \cite{8}. Hence if \(c - 1 \notin H_A \) and \(TG_c(M, N_A) \) is connected (i.e., \(M = \Phi N_A \) by Theorem 12), then the edge connectivity of \(TG_c(M, N_A) \) is equal to \(\alpha - 1 \).

Example 1. Let \(M = Z_3 \times Z_3, R = Z_{12}, c = 5, N_1 = Z_3 \times 0, N_2 = 0 \times Z_3, \) and \(N_A = N_1 \cup N_2, \) then by Theorem 3(3), \(TG_5(M, N_A) \) is a 4-regular graph by Theorem 4. Also, by Theorem 5, \(TG_5(M, N_A) \) is vertex transitive.

4. THE CASE WHEN \(N_A \) IS A SUBMODULE OF \(M \)

We know that \(N_A = \bigcup_{\lambda \in A} N_\lambda \) is a proper submodule of \(M \) if and only if \(N_A \) is a prime submodule of \(M \). Moreover \(P_\lambda = (N_\lambda :_R M) \) and \(H_A = (N_A :_R M) \) are prime ideals of \(R \).

Theorem 6. Let \(M \) be an \(R \)-module such that \(N_A \) is a proper submodule of \(M \). Then \(TG_c(N_A, N_A) \) is a complete subgraph of \(TG_c(M, N_A) \) and \(TG_c(N_A, N_A) \) is disjoint from \(TG_c(M \setminus N_A, N_A) \).

Proof. It is clear that \(TG_c(N_A, N_A) \) is a complete subgraph of \(TG_c(M, N_A) \). Suppose that \(y \in M \setminus N_A \) and \(x \in N_A \) are adjacent. Then \(x + cy \in N_A \) and \(cy \in N_A \) hence \(c \in H_A \) which is a contradiction since \(c \in U(R) \). Therefore, \(TG_c(N_A, N_A) \) is disjoint from \(TG_c(M \setminus N_A, N_A) \).

Definition 1. By a slice of \(TG_c(M, N_A) \) we mean a subgraph of \(TG_c(M, N_A) \) with a vertex set as the form \(x + N_A \), denoted by \(S_x \), for some \(x \in M \).

It is easy to see that a slice of \(TG_c(M, N_A) \) is an induced subgraph. So, two slices \(S_x \) and \(S_y \) are the same is and only if \(x - y \in N_A \).

The next theorem gives a complete description of \(TG_c(M, N_A) \). It also shows that non-isomorphic modules may have isomorphic total graphs. We allow \(\alpha \) and \(\beta \) to be infinite cardinals.

Theorem 7. Let \(M \) be an \(R \)-module such that \(N_A \) is a proper submodule of \(M \), and let \(H_A = (N_A :_R M), |N_A| = \alpha \) and \(|M/N_A| = \beta \).

1. If \(c + 1 \in H_A \), then \(TG_c(M \setminus N_A, N_A) \) is the union of \(\beta - 1 \) disjoint \(K^\alpha \)'s.
(2) If \(c + 1 \notin H_A\), then \(T \Gamma_c(M \setminus N_A, N_A)\) is the union of \((\beta - 1)/2\) disjoint \(K^{\alpha, \beta}\)s.

Proof. (1) Assume that \(c + 1 \in H_A\), and let \(x \in M \setminus N_A\). Then the slice \(S_x\) is a complete subgraph of \(T \Gamma_c(M \setminus N_A, N_A)\) since \((x + n_1) + c(x + n_2) = (c + 1)x + n_1 + n_2 \in N_A\) for all \(n_1, n_2 \in N_A\) since \(c + 1 \in H_A\) and \(N_A\) is a submodule of \(M\). Note that distinct slices form disjoint subgraphs of \(T \Gamma_c(M \setminus N_A, N_A)\) since \(x + n_1 + y + n_2\) are adjacent for some \(y \in M \setminus N_A\) and \(n_1, n_2 \in N_A\), then \(x + cy = (x + n_1) + c(y + n_2) - (n_1 + cn_2) \in N_A\) and only if \(x - y = (x + cy) - (c + 1)y \in N_A\) since \(c + 1 \in H_A\) and \(N_A\) is a submodule of \(M\). Then \(S_x = S_y\), a contradiction. Thus \(T \Gamma_c(M \setminus N_A, N_A)\) is the union of \(\beta - 1\) disjoint subgraphs \(S_x\), each of which is a \(K^{\alpha}\), where \(\alpha = |N_A| = |x + N_A|\).

(2) Assume that \(c + 1 \notin H_A\), and let \(x \in M \setminus N_A\). Then no two distinct elements in \(S_x\) are adjacent, suppose not. So, \((x + n_1) + c(x + n_2) \in N_A\) for \(n_1, n_2 \in N_A\). This implies that \((c + 1)x \in N_A\) hence \(c + 1 \in H_A\) since \(N_A\) is a prime submodule of \(M\), a contradiction. On the other hand, two slices \(S_x\) and \(S_{-cx}\) are disjoint and each vertex of \(S_{-cx}\) is adjacent to all vertex of \(S_x\). Thus \(S_x \cup S_{-cx}\) is a complete bipartite subgraph of \(T \Gamma_c(M \setminus N_A, N_A)\). Furthermore, if \(x + n_1\) is adjacent to \(y + n_2\) for some \(y \in M \setminus N_A\) and \(n_1, n_2 \in N_A\), then \(y + cx \in N_A\) as in part (1) above, and hence \(y + N_A = -cx + N_A\). Thus \(T \Gamma_c(M \setminus N_A, N_A)\) is the union of \((\beta - 1)/2\) disjoint subgraphs \(S_x \cup S_{-cx}\), each of which is \(K^{\alpha, \beta}\), where \(\alpha = |N_A| = |x + N_A|\).

\[\square \]

From the above theorem, one can easily deduce when \(T \Gamma_c(M \setminus N_A, N_A)\) is a complete or connected graph. The next theorem determines when \(T \Gamma_c(M \setminus N_A, N_A)\) is either complete or connected.

Theorem 8. Let \(M\) be an \(R\)-module such that \(N_A\) is a proper submodule of \(M\), and let \(H_A = (N_A : R M)\).

(1) Let \(T \Gamma_c(M \setminus N_A, N_A)\) be a complete graph, then either \(|M/N_A| = |M| = 3\) or \(|M/N_A| = 2\). Its converse is true when either \(|M/N_A| = |M| = 3\) and \(c + 1 \notin (0 : R M)\) or \(|M/N_A| = 2\).

(2) Let \(T \Gamma_c(M \setminus N_A, N_A)\) be a connected graph, then either \(|M/N_A| = 3\) or \(|M/N_A| = 2\). Its converse is true when either \(|M/N_A| = 3\) and \(c + 1 \notin H_A\) or \(|M/N_A| = 2\).

(3) \(T \Gamma_c(M \setminus N_A, N_A)\) (and hence \(T \Gamma_c(N_A, N_A)\) and \(T \Gamma_c(M, N_A)\)) is a totally disconnected graph if and only if \(N_A = \{0\}\) and \(c + 1 \in (0 : R M)\).

Proof. Let \(|M/N_A| = \beta\) and \(\alpha = |N_A|\).

(1) Let \(T \Gamma_c(M \setminus N_A, N_A)\) be a complete graph. Then by Theorem 7, \(T \Gamma_c(M \setminus N_A, N_A)\) is a single \(K^{\alpha}\) or \(K^{1,1}\). If \(c + 1 \in H_A\), then \(\beta - 1 = 1\) thus \(\beta = 2\),
and hence \(|M/N_A| = 2 \). If \(c + 1 \notin H_A \), then \(\alpha = 1 \) and \((\beta - 1)/2 = 1 \). Thus \(N_A = \{0\} \) and \(\beta = 3 \); hence \(|M/N_A| = |M| = 3 \). Conversely, suppose first that \(M/N_A = \{N_A, x + N_A\} \), where \(x \notin N_A \). Since \(cx \notin N_A \), so \(x + N_A = -cx + N_A \) implies that \((c + 1)x \in N_A \). Let \(m, m' \in M \setminus N_A \). Then \(m + x, m + x \in N_A \) since none of \(m + x + N_A \) and \(m + x + N_A \) are equal to \(x + N_A \) so \(m + cm' = (m + x) + (m' + x) - (c + 1)x \in N_A \) since \(N_A \) is a submodule of \(M \). Thus \(\Gamma_c(M \setminus N_A, N_A) \) is complete. Next, suppose that \(|M/N_A| = |M| = 3 \); hence \(H_A = (0 : R M) \) since \(N_A = \{0\} \). By Theorem 7, \(\Gamma_c(M \setminus N_A, N_A) \) is a complete graph since \(c + 1 \notin (0 : R M) \).

(2) Let \(\Gamma_c(M \setminus N_A, N_A) \) be connected. Then by Theorem 7, \(\Gamma_c(M \setminus N_A, N_A) \) is a single \(K^\alpha \) or \(K^{\alpha, \alpha} \). If \(c + 1 \in H_A \), then \(\beta - 1 = 1 \), and hence \(|M/N_A| = 2 \). If \(c + 1 \notin H_A \), then \((\beta - 1)/2 = 1 \), and hence \(|M/N_A| = 3 \). Conversely, by part (1) above if \(|M/N_A| = 2 \) then \(\Gamma_c(M \setminus N_A, N_A) \) is complete and so it is connected. Suppose that \(|M/N_A| = 3 \) and \(c - 1 \in H_A \). First, we show that \(c + 1 \notin H_A \). Suppose not. Let \(c + 1 \in H_A \) and \(M/N_A = \{N_A, x + N_A, y + N_A\} \), where \(x, y \notin N_A \); it is easy to see that \(x + cy \in N \). This yields that \(x \) and \(y \) are adjacent, a contradiction, by the proof of Theorem 7(1). Thus \(c + 1 \notin H_A \). Therefore, \(\Gamma_c(M \setminus N_A, N_A) \) is the complete bipartite graph \(K^{\alpha, \alpha} \), by Theorem 7(2).

(3) \(\Gamma_c(M \setminus N_A, N_A) \) is totally disconnected if and only if it be a disjoint union of \(K^1 \)'s. so by Theorem 7, \(|N_A| = 1 \). Further, since \(m \) and \(-cm \) are adjacent for all \(m \in M \), it follows that \(m = -cm \), hence \(c + 1 \in (0 : R M) \).

The next theorem gives a more explicit description of the diameter of \(\Gamma_c(M \setminus N_A, N_A) \) when \(N_A \) is a proper submodule of \(M \).

Theorem 9. Let \(M \) be an \(R \)-module such that \(N_A \) is a proper submodule of \(M \), and let \(H_A = (N_A : R M) \).

(1) \(\text{diam}(\Gamma_c(M \setminus N_A, N_A)) = 0 \) if and only if \(|M| = 2 \).

(2) \(\text{diam}(\Gamma_c(M \setminus N_A, N_A)) = 1 \) if and only if either \(N_A \neq \{0\} \) and \(|M/N_A| = 2 \) or \(|M| = 3 \) and \(c + 1 \notin (0 : R M) \).

(3) \(\text{diam}(\Gamma_c(M \setminus N_A, N_A)) = 2 \) if and only if \(N_A \neq \{0\} \), \(|M/N_A| = 3 \) and \(c - 1 \in H_A \).

(4) Otherwise, \(\text{diam}(\Gamma_c(M \setminus N_A, N_A)) = \infty \).

Proof. It is clear by the proof of the Theorem 8.

The next theorem describes the girth of \(\Gamma_c(M \setminus N_A, N_A) \) and \(\Gamma_c(M, N_A) \) when \(N_A \) is a proper submodule of \(M \).

Theorem 10. Let \(M \) be an \(R \)-module such that \(N_A \) is a proper submodule of \(M \), and let \(H_A = (N_A : R M) \).

(1) \(\text{gr}(\Gamma_c(M \setminus N_A, N_A)) = 3 \) if and only if \(c + 1 \in H_A \) and \(|N_A| \geq 3 \).
(b) \(\text{gr}(T \Gamma_c(M \setminus N_A, N_A)) = 4 \) if and only if \(c + 1 \not\in H_A \) and \(|N_A| \geq 2 \).

(c) Otherwise, \(\text{gr}(T \Gamma_c(M \setminus N_A, N_A)) = \infty \).

(2) (a) \(\text{gr}(T \Gamma_c(M, N_A)) = 3 \) if and only if \(|N_A| \geq 3 \).

(b) \(\text{gr}(T \Gamma_c(M, N_A)) = 4 \) if and only if \(c + 1 \not\in H_A \) and \(|N_A| = 2 \).

(c) Otherwise, \(\text{gr}(T \Gamma_c(M, N_A)) = \infty \).

Proof. Apply Theorem 7 and Theorem 6. \(\square \)

Example 2. Let \(M = \mathbb{Z}_2 \times \mathbb{Z}_3 \), \(R = \mathbb{Z}_{12} \) and \(N_A = \mathbb{Z}_2 \times 0 \), then \(T \Gamma_c(M \setminus N_A, N_A) \) is the union of 2 disjoint \(K^2 \)'s, if \(c = 5 \) or 11, by Theorem 7(1) and \(T \Gamma_c(M \setminus N_A, N_A) \) is a \(K^2.2 \), if \(c = 1 \) or 7, by Theorem 7(2). Now, if \(c = 1 \) or 7, then \(T \Gamma_c(M \setminus N_A, N_A) \) is connected with \(\text{diam} T \Gamma_c(M \setminus N_A, N_A) = 2 \) and \(\text{gr}(T \Gamma_c(M \setminus N_A, N_A)) = 4 \) by Theorem 8(2), 9(3) and 10(1)(b), respectively, and \(\text{gr}(T \Gamma_c(M, N_A)) = 4 \) by Theorem 10(2)(b).

5. The Case When \(N_A \) is Not a Submodule of \(M \)

In this section, we consider the remaining case when \(N_A \) is not a submodule of \(M \), this implies that \(|N_A| \geq 3 \). So there are distinct \(x, y \in N_A \) such that \(x + cy \in M \setminus N_A \).

In this case, we show that \(T \Gamma_c(N_A, N_A) \) is always connected but never complete. Moreover \(T \Gamma_c(N_A, N_A) \) and \(T \Gamma_c(M \setminus N_A, N_A) \) are never disjoint subgraphs of \(T \Gamma_c(M, N_A) \). We first show that \(T \Gamma_c(M, N_A) \) is connected when \(T \Gamma_c(M \setminus N_A, N_A) \) is connected. However, we give an example to show that the converse fails.

Theorem 11. Let \(M \) be an \(R \)-module and \(N_A \) a union of prime submodules of \(M \) that is not a submodule of \(M \).

1. \(T \Gamma_c(N_A, N_A) \) is connected with \(\text{diam}(T \Gamma_c(N_A, N_A)) = 2 \).

2. Some vertices of \(T \Gamma_c(N_A, N_A) \) are adjacent to a vertex of \(T \Gamma_c(M \setminus N_A, N_A) \). In particular, the subgraphs \(T \Gamma_c(N_A, N_A) \) and \(T \Gamma_c(M \setminus N_A, N_A) \) of \(T \Gamma_c(M, N_A) \) are not disjoint.

3. If \(T \Gamma_c(M \setminus N_A, N_A) \) is connected, then \(T \Gamma_c(M, N_A) \) is connected.

Proof. (1) Every \(x \in N_A \) is adjacent to 0. Thus \(x - 0 - y \) is a path in \(T \Gamma_c(N_A, N_A) \) of length two between any two distinct \(x, y \in N_A \). Moreover, there are nonadjacent \(x, y \in N_A \) since \(N_A \) is not a submodule of \(M \); so \(\text{diam}(T \Gamma_c(N_A, N_A)) = 2 \).

(2) Since \(N_A \) is not a submodule of \(M \), there are distinct \(x, y \in N_A \) such that \(x + cy \in N_A \). Then \(-y \in N_A \) and \(x + cy \in M \setminus N_A \) are adjacent vertices in \(T \Gamma_c(M, N_A) \) since \(x + cy - cy = x \in N_A \). The “in particular” statement is clear.

(3) By part (1) above, it suffices to show that there is a path from \(x \) to \(y \) in \(T \Gamma_c(M, N_A) \) for every \(x \in N_A \) and \(y \in M \setminus N_A \). By part (2) above, there are adjacent vertices \(u \) and \(v \) in \(T \Gamma_c(N_A, N_A) \) and \(T \Gamma_c(M \setminus N_A, N_A) \), respectively. Since \(T \Gamma_c(N_A, N_A) \) is connected, there is a path from \(x \) to
u in $\Gamma_G(M, N_A)$; and since $\Gamma_G(M \setminus N_A, N_A)$ is connected, there is a path from v to y in $\Gamma_G(M \setminus N_A, N_A)$, then there is a path from x to y in $\Gamma_G(M, N_A)$ since u and v are adjacent in $\Gamma_G(M, N_A)$. Thus $\Gamma_G(M, N_A)$ is connected.

Next, we determine an equivalent condition for connectedness of $\Gamma_G(M, N_A)$ and compute $\text{diam}(\Gamma_G(M, N_A))$. As usual, if $A \subseteq M$, then $< A >$ denotes the submodule of M generated by A.

Theorem 12. Let M be an R-module and N_A a union of prime submodule of M. Then $\Gamma_G(M, N_A)$ is connected if and only if $M = < N_A >$ (i.e., $m = n_1 + n_2 + \cdots + n_k$ for every $n_1, \ldots, n_k \in N_A$ and $k \in \mathbb{N}$).

Proof. Suppose that $\Gamma_G(M, N_A)$ is connected, let $m \in M$. Then there is a path $0 = m_1 - m_2 + \cdots - m_i - m$ from 0 to m in $\Gamma_G(M, N_A)$. Thus $m_1, m_2 + cm_1, \ldots, m + cm_i \in N_A$. Hence $m = n_1 + n_2 + \cdots + n_k > 0 < N_A >$; thus $M = < N_A >$. Conversely, suppose that $M = < N_A >$. We show that there is a path from 0 to m in $\Gamma_G(M, N_A)$ for every $m \neq 0 \in M$. By hypothesis, $m = n_1 + n_2 + \cdots + n_k$ for some $n_1, \ldots, n_k \in N_A$ and $k \in \mathbb{N}$. Also we define a function, denoted by $f(t)$, which is equal to 0 where t is even and equal to 1 where t is odd. Let $a_0 = 0$ and $a_j = (-1)^j f(k-j) c_i f(k-j) (n_1 + \cdots + n_j)$ for every integer j with $1 \leq j \leq k$. Then $a_j + ca_{j+1} \in N_A$ for every integer j with $0 \leq j \leq k - 1$, and thus $0 = a_0 - a_1 - \cdots - a_{k-1} - a_k = m$ is a path from 0 to m in $\Gamma_G(M, N_A)$ of length at most k. Now, let $0 \neq u, w \in M$. Then by the preceding argument, there are paths from u to 0 and 0 to w in $\Gamma_G(M, N_A)$. Hence there is a path from u to w in $\Gamma_G(M, N_A)$; so $\Gamma_G(M, N_A)$ is connected.

In the next theorem and its corollary, we determine a relation between $\Gamma_G(R, H_A)$ and $\Gamma_G(N_A, N_A)$, where $H_A = (N_A :_R M)$.

Theorem 13. Let M be an R-module, and N_A a union of prime submodules of M where $H_A = (N_A :_R M)$. If $\Gamma_G(R, H_A)$ is connected, then $\Gamma_G(M, N_A)$ is connected as well.

Proof. Suppose that $\Gamma_G(R, H_A)$ is connected and let $m \in M$. Then there is a path $0 = r_1 - r_2 + \cdots - r_k = 0$ from 0 to m in $\Gamma_G(R, H_A)$. Then $r_1, r_2 + cr_1, \ldots, r_k + cr_{k-1}, 1 + cr_k \in H_A$. Hence $0 = r_1 m - \cdots - r_k m - m$ is a path from 0 to m in $\Gamma_G(M, N_A)$. Since all vertices may be connected via 0, $\Gamma_G(M, N_A)$ is a connected graph.

Corollary 2. Let M be an R-module, and N_A a union of prime submodules of M and $H_A = (N_A :_R M)$. If $R = < H_A >$, then $\Gamma_G(M, N_A)$ is connected.

Proof. This follows directly from Theorem 12 and 13.

Remark 2. According to the proof of the Theorem 13, if $d(0, 1) = k$ in $\Gamma_G(R, H_A)$, then $d(0, m) \leq k$ in $\Gamma_G(M, N_A)$ for every $m \in M$.
In next theorem, we improve Theorem 3.3 of [7] and Theorem 4.3 of [1] without considering M as a finitely generated R-module.

Theorem 14. Let M be an R-module and N_A a union of prime submodule of M that is not a submodule of M such that $M = \langle N_A \rangle$ (i.e., $TT_G(M, N_A)$ is connected). If there is $k \geq 2$ is a greatest integer i such that $m = n_1 + n_2 + \cdots + n_i$ and for every $m \in M$ and for some $n_1, \ldots, n_i \in N_A$ where $n_1 + n_2 + \cdots + n_i$ is a shortest representation of the element m, then $diam(TT_G(M, N_A)) = k$. Otherwise, $diam(TT_G(M, N_A)) = \infty$.

Proof. Let m and m' be distinct elements in M such that they are not adjacent. We show that there is a path from m to m' in $TT_G(M, N_A)$ with length at most k. We define a function, denoted by $f(i)$, which is equal to 0 where t is even and equal to 1 where t is odd. By the proof of Theorem 12, we can consider two path $(m - m') - x_1 - \cdots - x_{k-1} - 0$ and $(m + cm') - y_1 - \cdots - y_{k-1} - 0$ of lengths at most k. Let $a_0 = m$, $a_k = m'$, $a_j = (-1)^{f(k-j)} c^{f(k-j)} m + x_j f(k-1) + y_j f(k)$ for every integers j with $1 \leq j \leq k-1$. Then $a_j + ca_j + 1 \in N_A$ for every integers j with $0 \leq j \leq k-1$, and thus $m = a_0 - a_1 - \cdots - a_{k-1} - a_k = m'$ is a path from m to m' in $TT_G(M, N_A)$ of length at most k. Now we show that any path from 0 to m in $TT_G(M, N_A)$ has length at least k. Suppose that $0 - b_1 - \cdots - b_{k-1} - m$ is a path from 0 to m in $TT_G(M, N_A)$ of length t and let $m = n_1 + \cdots + n_k$ be a shortest representation of the element m. Thus $b_1, b_2 + cb_1, \ldots, b_{k-1} + cb_{k-2}, m + cb_{k-1} \in N_A$, and hence $m = b_1, b_2 + cb_1, \ldots, b_{k-1} + cb_{k-2}, m + cb_{k-1} >$. Thus $i \geq k$ and so the shortest path between 0 and m in $TT_G(M, N_A)$ has length k. Therefore $diam(TT_G(M, N_A)) = k$.

If there is no such k, then we show that $diam(TT_G(M, N_A)) = \infty$. Suppose not. Let $diam(TT_G(M, N_A)) = t$ where $t < \infty$. Since $k = \infty$, there is $m \in M$ such that $m = n_1 + \cdots + n_t + 1$ is a shortest representation of the element m. According to what is proved, it is contradiction since there is a path from 0 to m in $TT_G(M, N_A)$ of length at most t.

Remark 3. Let $N_A = \bigcup_{k \in A} N_k$ and $M = \langle N_A \rangle$, then it is clear that $1 \leq k \leq |A|$ where k is as mentioned in Theorem 14.

Corollary 3. Let M be an R-module and N_A a union of prime submodule of M such that $TT_G(M, N_A)$ is connected. Let $m = n_1 + \cdots + n_k$ be a shortest representation of the element m and k is as mentioned in Theorem 14.

(1) $diam(TT_G(M, N_A)) = d(0, m)$
(2) If $diam(TT_G(M, N_A)) = k$ then $diam(TT_G(M \setminus N_A, N_A)) \geq k - 2$.

Proof.
(1) This is clear from the proof of Theorem 14.
(2) Since $k = diam(TT_G(M, N_A)) = d(0, m)$ by part (1) above, let $0 - b_1 - \cdots - b_{k-1} - m$ be a shortest path from 0 to m in $TT_G(M, N_A)$. Clearly $b_1 \in N_A$. If $b_i \in N_A$ for some integer i with $2 \leq i \leq k - 1$, then the path $0 - b_i -
\[\cdots - b_{k-1} - m \] from 0 to \(m \) has length less than \(k \), a contradiction. Thus \(b_i \in M \setminus N_A \) for every integer \(i \) with \(2 \leq i \leq k-1 \). Hence \(b_2 - \cdots - b_{k-1} - m \) is a shortest path from \(b_2 \) to \(m \) in \(T\Gamma_c(M \setminus N_A, N_A) \) of length \(k-2 \). Thus \(\text{diam}(T\Gamma_c(M \setminus N_A, N_A)) \geq k-2 \).

We next investigate the girth of \(T\Gamma_c(N_A, N_A) \), \(T\Gamma_c(M \setminus N_A, N_A) \), and \(T\Gamma_c(M, N_A) \) when \(N_A \) is not a submodule of \(M \). Recall that \(H_A = (N_A :_R M) = \bigcup_{\lambda \in \Lambda} P_\lambda \) where \(N_A \) is proper subset of \(M \) with \(|N_A| \geq 3 \) and \(P_\lambda = (N_\lambda :_R M) \).

Theorem 15. Let \(M \) be an \(R \)-module, and let \(N_A = \bigcup_{\lambda} N_\lambda \) for prime submodules \(N_\lambda \) of \(M \), that is not a submodule of \(M \) and \(H_A = (N_A :_R M) \). Suppose that \(m_1 - m_2 - m_3 \) is a path of length two in \(T\Gamma_c(M \setminus N_A, N_A) \) for distinct elements \(m_1, m_2, m_3 \in M \setminus N_A \).

1. If \(c + 1 \in H_A \) and \(\bigcap_{\lambda} N_\lambda \neq \{0\} \), then \(\text{gr}(T\Gamma_c(M \setminus N_A, N_A)) = 3 \).
2. If \((c+1)m_i \neq 0 \) for all integers \(i \) with \(1 \leq i \leq 3 \), then \(\text{gr}(T\Gamma_c(M \setminus N_A, N_A)) \leq 4 \).

Proof.

1. Suppose that there is a \(0 \neq h \in \bigcap_{\lambda} N_\lambda \). If \(m_2 \neq m_1 + h \), then \(m_1 - m_2 - (m_1 + h) - m_1 \) is a cycle of length three in \(T\Gamma_c(M \setminus N_A, N_A) \) since \((c+1)m_1 \in N_A \). Hence, assume that \(m_2 = m_1 + h \). Since \((m_1 + h) + cm_3 = m_2 + cm_3 \in N_A \) and \(h \in \bigcap_{\lambda} N_\lambda \), we have \(m_1 + cm_3 \in N_A \). Thus \(m_1 - m_2 - m_3 - m_1 \) is a cycle of length three in \(T\Gamma_c(M \setminus N_A, N_A) \). Thus \(\text{gr}(T\Gamma_c(M \setminus N_A, N_A)) = 3 \).
2. Suppose that \((c+1)m_i \neq 0 \) for all integers \(i \) with \(1 \leq i \leq 3 \). Then \(m_i \neq -cm_j \) for every \(i \) with \(1 \leq i \leq 3 \). There are distinct integer \(j, k \) with \(1 \leq j, k \leq 3 \) such that they are adjacent and \(m_j \neq -cm_k \) since if \(m_1 + cm_2 = m_3 + cm_2 = 0 \), then \(m_1 = m_3 \), a contradiction. Thus \(m_j - m_k - (-cm_k) - (-cm_j) - m_j \) is a 4-cycle in \(T\Gamma_c(M \setminus N_A, N_A) \); so \(\text{gr}(T\Gamma_c(M \setminus N_A, N_A)) \leq 4 \).

In the above theorem, we improve the proof of Theorem 3.12(1) in [5]. Also in the part (2) of the above theorem, \(0 \neq (c+1)m_i \) can belongs to \(N_A \) unlike Theorem 3.12(3) in [5].

Corollary 4. Let \(M \) be an \(R \)-module, and let \(N_A = \bigcup_{\lambda} N_\lambda \) for prime submodules \(N_\lambda \) of \(M \), that is not a submodule of \(M \) and \(H_A = (N_A :_R M) \). Suppose that \(m_1 - m_2 - m_3 \) is a path of length two in \(T\Gamma_c(M \setminus N_A, N_A) \) for distinct elements \(m_1, m_2, m_3 \in M \setminus N_A \). If \((c+1)m_i = 0 \) for some integer \(i \) with \(1 \leq i \leq 3 \) and \(c+1 \notin (0 :_R M) \), then \(\text{gr}(T\Gamma_c(M \setminus N_A, N_A)) = 3 \).

Proof. Suppose that \(c+1 \notin (0 :_R M) \). Thus \(c+1 \neq 0 \). Since \(m_i \in M \setminus N_A \) for all integers \(i \) with \(1 \leq i \leq 3 \) and \((c+1)m_i = 0 \) for some \(i \) with \(1 \leq i \leq 3 \), we have \(c+1 \in P_\lambda \) for every \(P_\lambda \) where \(P_\lambda = (N_\lambda :_R M) \). Hence \(0 \neq c+1 \in \bigcap_{\lambda} P_\lambda \).
Corollary 5. Let M be an R-module, and let $N_A = \bigcup \lambda N_\lambda$ for prime submodules N_λ of M and $H_A = (N_A :_R M)$. Suppose that $m_1 - m_2 - m_3$ is a path of length two in $TT_c(M \setminus N_A, N_A)$ for distinct elements $m_1, m_2, m_3 \in M \setminus N_A$, $c + 1 \in H_A$, \(\bigcap \lambda N_\lambda \neq \{0\} \) and $|N_A| \geq 3$, then $gr(TT_c(M \setminus N_A, N_A)) = 3$.

Proof. This follows directly from Theorem 10(1)(a) and Theorem 15(1).

Theorem 16. Let M be an R-module and N_A a union of prime submodule of M that is not a submodule of M.

1. Either $gr(TT_c(N_A, N_A)) = 3$ or $gr(TT_c(N_A, N_A)) = \infty$. Moreover, if one has $gr(TT_c(N_A, N_A)) = \infty$, then $|N_\lambda| = 2$ for any $\lambda \in \Lambda$ where N_λ is a non-zero submodule of M. Also, $TT_c(N_A, N_A)$ is a star graph.

2. $gr(TT_c(M, N_A)) = 3$ if and only if $gr(TT_c(N_A, N_A)) = 3$.

3. $gr(TT_c(M, N_A)) \leq 4$.

4. $gr(TT_c(M, N_A)) = 4$ if and only if $gr(TT_c(N_A, N_A)) = \infty$.

Proof. (1) If $n + cn' \in N_A$ for some distinct $n, n' \in N_A^*$, then $0 - n - n' - 0$ is a 3-cycle in $TT_c(N_A, N_A)$; so $gr(TT_c(N_A, N_A)) = 3$. Otherwise, $n + cn' \in M \setminus N_A$ for all distinct $n, n' \in N_A^*$. So in this case, every $n \in N_A$ is adjacent to 0, and no two distinct $n, n' \in N_A^*$ are adjacent. Thus $TT_c(N_A, N_A)$ is a star graph with center 0; so $gr(TT_c(N_A, N_A)) = \infty$. Moreover, let $N_A = \bigcup \lambda \subseteq A N_\lambda$ is not a submodule of M where N_λ is a prime submodule of M so $|\lambda| \geq 2$. Assume that $gr(TT_c(N_A, N_A)) = \infty$. Then $x + cy \in M \setminus N_A$ for all distinct $x, y \in N_A^*$, and thus if $N_\lambda \neq \{0\}$, then each $|N_\lambda| = 2$.

(2) It suffices to show that $gr(TT_c(N_A, N_A)) = 3$ when $gr(TT_c(M, N_A)) = 3$. Let $(c + 1)n \neq 0$ for some $n \in N_A^*$, then $0 - n - (cn) - 0$ is a 3-cycle in $TT_c(N_A, N_A)$. Otherwise, $(c + 1)n = 0$ for all $n \in N_A$. Since N_A is not a submodule of M, there are distinct elements $n, n' \in N_A$ such that $n + n' \in M \setminus N_A$. Then $(c + 1)(n + n') = 0$, thus $c + 1 \in H_A$. Let $m - m_1 - m_2 - m$ be a 3-cycle in $TT_c(M, N_A)$. Then $n_1 = cm + m_1, n_2 = cm + m_2, m_1 + cm_2 \in N_A$. Thus $0 - n_1 - n_2 - 0$ is a 3-cycle in $TT_c(N_A, N_A)$; therefore $gr(TT_c(N_A, N_A)) = 3$.

(3) Since N_A is not a submodule of M, there are distinct elements $n, n' \in N_A$ such that $n + n' \in M \setminus N_A$. Then $0 - (cn) - n + n' - (cn') - 0$ is a 4-cycle in $TT_c(N_A, N_A)$.

(4) This follows by parts (1), (2) and (3) above.

Example 3. (a) Let $M = \mathbb{Z}[X]$ be an $\mathbb{Z}[X]$-module. Then $N_A = \mathbb{Z}[X] \setminus \mathbb{Z}^*$ is a union of prime submodule of M, that is not a submodule of M. Thus $TT_c(N_A, N_A)$ is connected with $diam(TT_c(N_A, N_A)) = 2$ by Theorem

Since $c + 1 \notin (0 :_R M)$, there is a $m \in M$ such that $0 \neq (c + 1)m \in \bigcap \lambda N_\lambda$. Thus $gr(TT_c(M \setminus N_A, N_A)) = 3$ by Theorem 15(1).
Moreover, by Theorem 12 and 14, $T \Gamma_c(M, N_A)$ is connected with $\text{diam}(T \Gamma_c(M, N_A)) = 2$ since $z = X + z - X$ for $X, z - X \in N_A$ for every $z \in \mathbb{Z}^*$. However, $T \Gamma_c(M \setminus N_A, N_A)$ is not connected since there is no path from 1 to 2 in $T \Gamma_c(M \setminus N_A, N_A)$. Thus the converse of Theorem 11(3) need not hold.

(b) Let $k \in \mathbb{N}$, $M = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $R = \mathbb{Z}_{2k}$, $N_1 = \mathbb{Z}_2 \times 0 \times 0$, $N_2 = 0 \times \mathbb{Z}_2 \times 0$, $N_3 = 0 \times 0 \times \mathbb{Z}_2$ and $N_A = \bigcup_{1 \leq j \leq 3} N_j$ then by Theorem 12 and 14, $T \Gamma_c(M, N_A)$ is connected with $\text{diam}(T \Gamma_c(M, N_A)) = 3$, note that $(1, 1, 0)$ is the sum of two elements of N_A but $(1, 1, 1)$ is the sum of three element of N_A, and $T \Gamma_c(R, H_A)$ is disconnected so the converse of Theorem 13 is fails, also $gr(T \Gamma_c(N_A, N_A)) = \infty$ and $gr(T \Gamma_c(M, N_A)) = 4$ by Theorem 16.

REFERENCES

Authors’ addresses

A. Abbasi
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
E-mail address: aabbasi@guilan.ac.ir

A. Ramin
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Guilan, Rasht, Iran
E-mail address: ramin2068@webmail.guilan.ac.ir