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Received 24 February, 2015

Abstract. The aim of this paper is to prove new trigonometric and hyperbolic inequalities, which
constitute refinements or analogs of famous Cusa-Huygens, Wu-Srivastava, and related inequal-
ities. Most of the results are sharp.
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1. INTRODUCTION

Since the last decade many authors have been interested in finding upper and lower
bounds for expression f .x/=x, where f .x/ is a trigonometric or a hyperbolic func-
tion. We continue this line of research.

The inequalities

.cosx/1=3 <
sinx
x

<
cosxC2

3
(1.1)

hold for 0 < jxj < �=2. The left hand side inequality is due to by D.D. Adamović
and D.S. Mitrinović [9, p. 238], and the right hand side one was obtained by N. Cusa
and C. Huygens in 2005 [16]. The hyperbolic version of (1.1) is

.coshx/1=3 <
sinhx
x

<
coshxC2

3
; (1.2)

for x¤ 0. The left hand side inequality in (1.2) was obtained by Lazarević [9, p. 270],
and the right hand side inequality is called the hyperbolic Cusa-Huygens inequality
[11].

In 1989 J. Wilker [10] discovered the following inequality�
sinx
x

�2
C

tanx
x

> 2; 0 < jxj<
�

2
: (1.3)
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Numerous authors have studied this inequality by giving simpler proofs and gen-
eralization, e.g, see [2, 3, 11, 12, 17–19, 21, 22]. The following inequality is due to
Huygens [5]

2
sinx
x
C

tanx
x

> 3; 0 < jxj<
�

2
(1.4)

and is called Huygens inequality or the first Wilker inequality. In [18], Wu and
Srivastava introduced the following inequality� x

sinx

�2
C

x

tanx
> 2; 0 < jxj<

�

2
; (1.5)

which is called the second Wilker inequality.
We study inequalities (1.1)–(1.5) and our main results are the following five the-

orems. Our first main result is a generalization of Cusa-Huygens inequality (1.1).

Theorem 1. For x 2 Œ��=2;�=2�, we have
cosxC˛�1

˛
�

sinx
x
�

cosxCˇ�1
ˇ

; (1.6)

with the best possible constants ˛ D �=.� � 2/ � 2:75194 and ˇ D 3. The lower
bound is sharp for x 2 f��=2;0;�=2g and the upper bound is sharp for x D 0.

Remark 1. The upper bound of Theorem 1 is sharp at point x D 0 and the lower
bound at points x D��=2, x D 0 and x D �=2. For values x 2 Œ��=2;�=2� the dif-
ference between the function and the lower bound is less than 0.01 and the difference
between the function and the upper bound is less than 0.031. The right hand side
inequality holds true for all real numbers x and as a sharp inequality for all x ¤ 0.

In the following two theorems we introduce Wu-Srivastava type inequalities for
the trigonometric functions.

Theorem 2. For x 2 Œ��=2;�=2�, we have� x

sinx

�2
C

�
�2

4
�1

�
x

tanx
�
�2

4
(1.7)

and the equality is attained for x D��=2, x D 0 and x D �=2.

Remark 2. The upper bound of Theorem 2 is sharp at points x D ��=2, x D 0
and x D �=2. For values x 2 Œ��=2;�=2� the difference between the function and
the upper bound is less than 0.13.

Theorem 3. For x 2 Œ��=2;�=2�, we have

.˛�1/
x

sinx
C

x

tanx
� ˛; (1.8)� x

sinx

�˛
C

x

tanx
<
��
2

�˛
; (1.9)

with the best possible constant ˛D �=.��2/. The inequality (1.8) holds as equality
for x 2 f��=2;0;�=2g and the inequality (1.9) holds as equality for x 2 f��=2;�=2g.
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Remark 3. For values x 2 Œ��=2;�=2� the difference between the function ˛ and
the lower bound is less than 0.031. In inequality (1.9) the difference between the
function and the lower bound is between 1.45 and 1.9.

The next theorem is a generalization of the Huygens inequality.

Theorem 4. For x 2 .��=2;�=2/, we have

3cosx �
x

sinx
C2

x

tanx
� 2C cosx: (1.10)

The inequalities hold as equalities for x D 0.

The following result is a Wilker and Wu-Srivastava type result for the hyperbolic
functions.

Theorem 5. For x > 0, we have� x

sinhx

�2
C

x

tanhx
<

�
sinhx
x

�2
C

tanhx
x

<
1C cosh.2x=3/

2

�� x

sinhx

�2
C

x

tanhx

�
:

Our last result is a counterpart of the inequality

exp.�x2=6/ <
2C cosx

3
; (1.11)

x 2 .0;1/, which recently appeared in [20, Thm 2].

Theorem 6. For x 2 .0;�=2/, the following inequalities hold

exp
�
˛�

.� �2/x2

2�

�
<
.� �2/cos.x/C2

�
< exp

�
ˇ�

.� �2/x2

2�

�
;

with the best possible constants ˛ D .�2C 8 log.2=�/� 2�/=8 � �0:00328 and
ˇ D 0.

2. PRELIMINARIES AND LEMMAS

The following lemma was originally proved in [13], but can also be found in [4].

Lemma 1. For 0 < R �1. Let A.x/D
P1
nD0anx

n and C.x/D
P1
nD0 cnx

n be
two real power series converging on the interval .�R;R/. If the sequence fan=cng
is increasing (decreasing) and cn > 0 for all n, then the function A.x/=C.x/ is also
increasing (decreasing) on .0;R/.

For jxj < � , the following power series expansions can be found in [7, 1.3.1.4
(2)–(3)],

x cotx D 1�
1X
nD1

22n

.2n/Š
jB2njx

2n; (2.1)
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cotx D
1

x
�

1X
nD1

22n

.2n/Š
jB2njx

2n�1; (2.2)

and

cothx D
1

x
C

1X
nD1

22n

.2n/Š
jB2njx

2n�1; (2.3)

where B2n are the even-indexed Bernoulli numbers, see [6, p. 231]. We can get the
following expansions directly from (2.2) and (2.3),

1

.sinx/2
D�.cotx/0 D

1

x2
C

1X
nD1

22n

.2n/Š
jB2nj.2n�1/x

2n�2; (2.4)

1

.sinhx/2
D�.cothx/0 D

1

x2
�

1X
nD1

22n

.2n/Š
.2n�1/jB2njx

2n�2: (2.5)

For the following expansion formula

x

sinx
D 1C

1X
nD1

22n�2

.2n/Š
jB2njx

2n (2.6)

see [8].

Lemma 2 (Theorem 2 in [1]). For �1< a < b <1, let f;g W Œa;b�! R be con-
tinuous on Œa;b�, and differentiable on .a;b/. Let g

0

.x/¤ 0 on .a;b/. If f
0

.x/=g
0

.x/

is increasing (decreasing) on .a;b/, then so are

f .x/�f .a/

g.x/�g.a/
and

f .x/�f .b/

g.x/�g.b/
:

If f
0

.x/=g
0

.x/ is strictly monotone, then the monotonicity in the conclusion is also
strict.

Lemma 3. The following function

f1.x/D
.x=sinx/2�x cotx

1�x cotx
is strictly increasing from .0;�=2/ onto .�2=4/.

Proof. Let f1.x/D A1.x/=C1.x/, where

A1.x/D .x=sinx/2�x cotx and C1.x/D 1�x cotx:

By using expansion formulas (2.2) and (2.4) we get

A1.x/D 1C

1X
nD1

22n

.2n/Š
.2n�1/jB2njx

2n
�1C

1X
nD1

22n

.2n/Š
jB2njx

2n



NEW TRIGONOMETRIC AND HYPERBOLIC INEQUALITIES 129

D

1X
nD1

22n2n

.2n/Š
jB2njx

2n
D

1X
nD1

anx
2n;

and

C1.x/D

1X
nD1

22n

.2n/Š
jB2njx

2n
D

1X
nD1

cnx
2n:

Let dn D an=cn D 2n, which is increasing in n 2 N. Thus, by Lemma 1 f1.x/ is
strictly increasing in x 2 .0;�=2/. Applying l’Hôspital rule, we get limx!0f1.x/D
2 and limx!�=2f1.x/D �2=4. This completes the proof. �

Lemma 4. The following inequalities hold
tanhx
x
�

2
p
9C4x2�1

; x 2 R; (2.7)

sinhx
x

<
coshxC2

3
< .coshx/1=3

cosh.2x=3/C1
2

; x > 0: (2.8)

Proof. Clearly both sides of the inequality (2.7) get value 1 at xD 0. By symmetry
of the function we need to consider only the positive values of x. Let

f2.x/D

�
2x

tanhx
C1

�2
�4x2�9:

By differentiation we get

f 02.x/D 4

�
cothxC

x.1�2x cothx/
.sinhx/2

�
D 4

x2 coshx
.sinhx/3

 �
sinhx
x

�2
C

tanhx
x
�2

!

D 4
x2 coshx
.sinhx/3

f3.x/ > 0;

where the last inequality follows since f3.x/ > 0 is equivalent to
sinhx
x
C

1

coshx
>

x

sinhx
;

which is clearly true because .sinhx/=x > 1. Now f2 is strictly increasing, and
limx!0f2.x/D 0 < f2.x/. This implies the proof of (2.7).

The first inequality in (2.8) is well known, for the second inequality we define

f4.x/D
coshxC2

3
� .coshx/1=3

cosh.2x=3/C1
2

:

Simple computation gives

f 04.x/D
sinh x

3
�2sinhxC4cosh2=3x sinhx�3sinh 5x

3

12.coshx/2=3
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and clearly sinh x
3
� 2sinhx < 0. We prove that 4cosh2=3x sinhx � 3sinh 5x

3
< 0,

which is equivalent to

f5.x/D 4sinhxC2sinh.3x/C
11

8
sinh.5x/�

81

8
sinh

5x

3
> 0:

Since

f 005 .x/D 4sinhxC18sinh.3x/C
275

8
sinh.5x/�

225

8
sinh

5x

3

�
275

8
sinh.5x/�

225

8
sinh

5x

3
> 0

for all x > 0, it is clear that f 05.x/ > f
0
5.0/D 0 and f5.x/ is increasing. Thus f5.x/ >

f5.0/D 0. �

Remark 4. In Lemma (2.7) the difference between the function and the upper
bound is less than 0.02. The upper bound is asymptotically sharp 2p

9C4x2�1
�

tanhx
x
! 0 as x!˙1.

3. PROOFS OF THE MAIN RESULTS

In this section we prove our main theorems.

Proof of Theorem 1. Sharpness of the bounds is obvious. Since the bounds and
the function sinx

x
are even we need to prove sharp inequality for x 2 .0;�=2/. Let

f6.x/D
cosx�1

.sinx/=x�1
D
.sinx/=x�x cotx
x=sinx�1

D
A2.x/

C2.x/
:

Using series expansion formulas (2.1) and (2.6), we get

A2.x/D

1X
nD1

22n�2

.2n/Š
jB2njx

2n
C

1X
nD1

22n

.2n/Š
jB2njx

2n

D

1X
nD1

2.22n�1/

.2n/Š
jB2njx

2n
D

1X
nD1

Qanx
2n;

and

C2.x/D

1X
nD1

22n�2

.2n/Š
jB2njx

2n
D

1X
nD1

Qcnx
2n:

We denote Qd D Qa= Qc D 2.22n � 1/=.22n � 2/. Clearly Qd is a decreasing function
of n 2 N. Hence f6 is decreasing by Lemma 1. Applying l’Hôspital rule, we get
limx!0f6.x/D 3 and limx!�=2f6.x/D �=.� �2/, this finishes the proof. �
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Proof of Theorem 2. Equality in the claim is clearly attained at points x D��=2,
x D 0 and x D �=2. Since the left hand side of the inequality is an even function we
need to show that the inequality is sharp for x 2 .0;�=2/. Let

x=sinx� cosx
.sinx/=x�x cotx

D
.x=sinx/2�x cotx

1�x cotx
D f1.x/:

By Lemma 3, we get

2 <
x=sinx� cosx
.sinx/=x�x cotx

<
�2

4
;

which implies the following inequalities

4

�2

�
x

sinx
C

�
�2

4
�1

�
cosx

�
<

sinx
x

<
1

2

� x

sinx
C cosx

�
: (3.1)

The first inequality of (3.1) can be written as (1.7). This completes the proof. �

The second inequality of (3.1) is also proved by Neuman and Sándor, see [11,
Theorem 2.3]. They pointed out that it can be written as the Wu-Srivastava inequality.

Lemma 5. Let ˛ D �=.� �2/ as in Theorem 1. The function

f˛.b/D

�
˛

˛Cb�1

�˛
C

˛b

˛Cb�1

is decreasing from .0;1/ onto .2;k/, where k D .�=2/˛ � 3:46505.

Proof. By differentiation we obtain

f 0˛.b/D
a
�
a�1� .aCb�1/.a=.aCb�1//a

�
.aCb�1/2

D�
�.��=.��2/.2C�.� �2//.2��/=2�2/

.2Cb.� �2//2
;

which is negative, and f˛.b/! k as b! 0 and f˛.b/! 2 as b! 1. �

Proof of Theorem 3. The inequality (1.8) follows from the first inequality of (1.6).
Again, utilizing the same inequality

x

sinx
<

˛

˛�1C cosx
;

we get� x

sinx

�˛
C

x

tanx
<

�
˛

˛�1C cosx

�˛
C

˛ cosx
˛�1C cosx

D f˛.cosx/ <
��
2

�˛
by Lemma 5, because f˛.cosx/ is strictly increasing and limx!1f˛.cosx/D .�=2/˛.

�
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An other proof for (1.8). Let

f .x/D .˛�1/
x

sinx
C

x

tanx
for x 2 .0;�=2/. An easy computation gives

.sinx/2 �f 0.x/D .˛�1/sinx� .˛�1/x cosxC sinx cosx�x D g.x/:

Now g0.x/D .2.sinx/=x/ �h.x/, where h.x/D .˛�1/=2� .sinx/=x. The function
.sinx/=x is strictly decreasing as the function of x, and thus the equation .˛�1/=2D
.sinx/=x has at most a single root in .0;�=2/.

Suppose that .˛� 1/=2 < 1, then the equation has exactly one root x0 � 0:8795.
As h.x/ < 0 for x < x0 and h.x/ > 0 for x > x0, the function g.x/ will be strictly
decreasing for x in .0;x0/, and strictly increasing in .x0;�=2/.

Suppose that ˛ > �=2C1, which is equivalent to .˛�1/=2 > �=4. Then we get
g.�=2/D ˛�1��=2 > 0. As g.0/D 0 we have g.x0/ < 0, and g will have a single
root x1 in interval .x0;�=2/. Then we get g.x/ < 0 for x in .0;x1/, and g.x/ > 0
for x in .x1;�=2/, where x1 � 1:1559. This means that at the points 0 and �=2
the function f .x/ will obtain its maximum values. If f .�=2/� f .0/, the inequality
f .x/ � ˛ is true. The inequality f .�=2/ � f .0/ is equivalent to ˛ � �=.� � 2/.
Remark that for the best possible ˛ D �=.� � 2/ one has also ˛ > �=2C 1 and
.˛ � 1/=2 < 1, so the assumed properties in the proof are valid. This finishes the
proof of the inequality f .x/� ˛, with best possible ˛ D �=.� �2/. �

Remark 5. Indeed, the point x1 above is the minimum point of f .x/ on .0;�=2/.
In fact the following converse of inequality (1.8)

.˛�1/
x

sinx
C

x

tanx
� f .x1/� 2:7219 (3.2)

holds true for ˛D �=.��2/; .˛�1/=2 < 1 and ˛ >�=2C1 (as ˛ < 3, it is sufficient
to suppose �=2C1 < ˛ � �=.� �2/).

Proof of Theorem 4. Clearly the function, its lower and upper bound get value 3
at origin. By symmetry of the function we consider only values x 2 .0;�=2/. The
second inequality in (1.10) is equivalent to write

f7.x/D

�
2C cosx
3cosx

�
�

�
2x

sinx
C

x

sinx cosx

�
> 0:

It is sufficient to prove that f7 > 0. Using the the following inequalities

.cos.x=2//4=3 <
sinx
x

<
2C cosx

3

we get

f7.x/ >
3

cosx
sinx
x
�

x

sinx

�
2C

1

cosx

�
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D
3x

sinx cosx

 �
sinx
x

�2
�
2cosxC1

3

!

>
3x

sinx cosx

 �
1C cosx

2

�4=3
�
2cosxC1

3

!

D
6x

sin2x
f8.x/:

For showing that f8 is positive, we define the function

f9.y/D
.1Cy/4

.2yC1/3
; y 2 .0;1/;

and get

f 09.y/D
.1�y/.1Cy/3

.1C2y/4
< 0;

with f9.1/D 16=27. This implies that f8 is positive, and this completes the proof of
the second inequality. �

Remark 6. The upper bound of Theorem 4 holds true for values x 2 .��;�/. The
difference between the function and the lower bound is less than 1.6 and between the
function and the upper bound is less than 0.55. In both cases the difference is less
than x2.

Corollary 1. For x 2 .0;�=2/, we have
�

2
C cosx <

x

sinx
C2

x

tanx
< 2C cosx: (3.3)

Proof. Let f .x/D x=sinxC 2x= tanx–cosx for x 2 .0;�=2/. After elementary
computations, we get

f 0.x/ � .sinx/2 D sinx�x cosxC2sinx cosx�2xC .sinx/3 D h.x/:

Now h0.x/D sinx �k.x/; where

k.x/D x�4sinxC3sinx cosx:

As k0.x/ D 4.cosx/2 � 4cosx � 2.sinx/2; and 0 < cosx < 1 we obtain k0.x/ <
0. Thus k.x/ < k.0/ D 0, implying h.x/ < h.0/ D 0. Finally, we get f 0.x/ < 0.
Thus f .x/ is strictly decreasing, this implies f .�=2/ < f .x/ < f .0/, so the result
follows. �

We remark here that the first inequality of (3.3) cannot be compared with the first
inequality of (1.10), and obviously the right hand sides of both inequalities are equal.

Corollary 2. The inequality (2.7) implies the hyperbolic version of the Wu-
Srivastava inequality (1.5).
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Proof. It is easy to see that the inequality (2.7) is equivalent to� x

tanhx

�2
C

x

tanhx
�x2�2 > 0:

The above inequality can be written as� x

sinhx

�2
C

x

tanhx
> 0;

by observing that � x

sinhx

�2
�x2 D

x

sinhx
> 0: �

Proof of Theorem 5. The first inequality is well known and follows from (1.2).
Similarly the second inequality follows from (2.8). �

In 2010 J. Sándor (see [15]) proved that the best positive constants a and b such
that �

cosxC2
3

�a
<

sinx
x

<

�
cosxC2

3

�b
;

are aD log.�=2/= log.3=2/� 1:113 and b D 1.
Now, we state two similar results:

Theorem 7. For x 2 .��=2;�=2/, we have

(1)
cosxC2
3˛1

<
sinx
x

<
cosxC2
3ˇ1

;

(2)
cosxC2˛2

3
<

sinx
x

<
cosxC2ˇ2

3
;

with best possible constants ˛1D log.�/= log.3/� 1:04198; ˛2D log.�=6/= log.2/�
0:93345, ˇ1 D 1 and ˇ2 D 1.

Proof. For (1), let f10.x/D
x.2Ccosx/

sinx , with x 2 .0;�=2/. One has

.sinx/2 �f 010.x/D 2sinx�2x cosxC sinx cosx�x D f11.x/:

As f 011.x/ D 2.sinx/.x � sinx/ > 0, we get f11.x/ > f11.0/ D 0, so f 010.x/ > 0,
proving that f10.x/ is strictly increasing. This implies that the function

f12.x/D
1

log3
log

�
x.cosxC2/

sinx

�
is strictly increasing in x 2 .0;�=2/, and we get

ˇ1 D f12.0C/ < f12.x/ < f12.�=2/D ˛1;

thus (1) follows.
To prove (2) we write f13 D 3.sinx/=x� cosx; for x 2 .0;�=2/. Now

x2f 013.x/D 3x cosxCx2 sinx�3sinx D f14.x/;
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and f 014.x/D x.x cosx� sinx/ < 0, since x cosx < sinx. This shows that f14.x/ <
f14.0/D 0, implying f 013.x/ < 0 and proving that f13.x/ is strictly decreasing. Now
f13.x/ < f13.0C/D 2 and f13.x/ > f13.�=2/D 6=� . As 2D 2ˇ2 for ˇ2 D 1, and
6=� D 2˛2 for ˛2 D log.6=�//= log.2/, the result follows. �

Proof of Theorem 6. Let

f .x/D log
�
.� �2/cosxC2

�

�
C
.� �2/x2

2�
:

Simple calculation yields

f 0.x/D .� �2/

�
x

�
�

sinx
2C .� �2/cosx

�
;

which is negative by Theorem 1. Thus, the f function is strictly decreasing, and

˛ D lim
x!�=2

f .x/ < f .x/ < 0D ˇ D lim
x!0

f .x/:

This implies the proof. �

We finish the paper by giving a new type of Kober’s inequality [9, 14], which
follows easily from (1.11) and Theorem 6.

Corollary 3. For x 2 .0;�=2/, the following inequalities hold

3exp
�
�
x2

6

�
�2 < cosx <

� exp.�.� �2/x2=.2�//�2
� �2

:
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