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Abstract. In this paper, our approach allows to refine the results announced by Ebadian et al.
[Results Math., 36 (2013), 409—423]. Namely, we reduce the distance between approximate

and exact double derivations on Banach algebras and Lie C *-algebras up to 2,,%1 and 2,1%2 for

n > 2. Indeed, we give a correct utilization of fixed point theory in the sense of Diaz and Margolis
[Bull. Amer. Math. Soc., 74 (1968), 305-309] concerning the stability of double derivations.
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1. INTRODUCTION

A classical question in the theory of functional equations is the following:

when is it true that a mapping which approximately satisfies a functional equation
& must be somehow near to an exact solution of £?

In 1940, Ulam [7] gave a wide ranging talk and discussed a number of important
unsolved problems. Among those was the question concerning the stability of group
homomorphisms.

Let (Gy,-) be a group and let (Ga,*) be a metric group with the metric d(-,-).
Given € > 0, does there exist a § > 0, such that if a mapping h : Gy —> G, satis-
fies the inequality d(h(x.y),h(x) xh(y)) <& for all x,y € Gy, then there exists a
homomorphism H : G; —> Gp with d(h(x), H(x)) < € forall x € G1?

Generally, the concept of stability for a functional equation comes up when the
functional equation is replaced by an inequality which acts as a perturbation of that
equation. The case of approximately additive functions was solved by D. Hyers [5]
under certain assumptions. In 1950, Hyers’ Theorem was generalized by Aoki [1]
for additive mappings and independently, in 1978, by Rassias [0] for linear mappings
considering the Cauchy difference controlled by sum of powers of norms. For the
history and various aspects of this theory we refer the reader to [3] and the references
therein. Note that a functional equation { is stable if any function g satisfying the
equation ¢ approximately is near to true solution of .
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Recently, Ebadian et al. [3] used the fixed point alternative method to establish the
Hyers—Ulam stability of double derivations on Banach algebras and Lie x-double de-
rivations on Lie C *-algebras associated with the following additive functional equa-
tion

n k k+1 n n n—k+1
)ODED DD DEND LD DR D D2
k=2 i1=2i=i1+1 ip_p41=ip—k+1 i=1,iFi1,esin—k+1 r=1

n
+ 1O xi)=2""1f(x).
i=1
Throughout this paper following [3], we assume that # is a Banach algebra (Lie C*-
algebra). For given mapping f : 4 — o+, we define the difference operator D, f :
A" — A by

Dy f(xt1,....xp) =
n k k+1 n n n—k+1
SO D IS SRRV SRR U
k=2 i1=2ir=i1+1 iyp_g+1=in—k+1 i=1,iFi1,sin—k+1 r=1

n
+f(Q_uxi) =27 f(uxy)
i=1
forallpe{A eC:|A| =1}

In this paper, we improve main results of [3] and reduce the distance between
approximate and exact double derivations on Banach algebras and Lie C *-algebras
up to 2,1%1 and 2,1%2 forn > 2.

In section 2, we discuss on main results of [3] and improve some theorems and
corollaries including Theorem 2.3, 2.5 and Corollary 2.4, 2.6. In section 3, we also
refine some results of [3] including Theorem 3.2, 3.4 and Corollary 3.3, 3.5. Indeed,
we are going to weaken their assumptions and giving a correct utilization of fixed

point theory in the sense of Diaz and Margolis [2].

2. ALMOST DOUBLE DERIVATION

Throughout this section, we assume that + is a Banach algebra, f(0) = g(0) =
h(0) = 0, and for given mappings f, g,h : A —> A, we define

Crg.n(a,b):= f(ab)— f(a)b—af(b)—g(a)h(b)—h(a)g(b)
forall a,b € A.

Definition 1. Let 4 be a Banach algebra and let 8, ¢ : A —> 4 be C-linear map-
pings. A C-linear mapping f : A —> A is called a (8, €)-double derivation if

f(ab) = f(a)b+af(b)+8(a)e(b)+e(a)d(b)
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forall a,b € A.

A fundamental result in fixed point theory is the following theorem. We recall the
following theorem by Diaz and Margolis [2].

Theorem 1. Let (X,d) be a complete generalized metric space and let J : X —>

X be a strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for
each given element x € X, either d(J"x,J"T1x) = oo for all n > 0, or there exists
a natural number ng such that

(1) d(J"x,J"1x) < oo foralln > ny,

(2) the sequence {J"x} converges to a fixed point y* of J,

(3) y* is the unique fixed point of J in the set Y ={y € X : d(J"0x,y) < oo},

@) d(y,y*) < {2pd(y.Jy) forall y €Y.

The following theorem is a refined version of [3, Theorem 2.3]:

Theorem 2. Let f,g,h : A —> A be mappings for which there exist functions
@ : A" — [0,00) and ¥ : A% — |0, oo) such that
Xn

mh_r)noo2m<p( : ,z—m) =0, 2.1)
Jim 4y (e ) =0 (22)
Dy f(x1,....xn)l| §(p(x1,...,xn), (2.3)
I1Cr.g.n(a.b)|| < ¥ (a,b) (2.4)

forall a,b,xy,...,x2 € A and all u € TL If there exists a constant 0 < L < 1 such
that (X1, ...,Xp) < %go(le, v 2Xy) for all x1,...,xn € A, then there exist unique
C-linear mappings d 6, e : A — A such that

L
||f(X)—d(X)|| = (1 L)(p(x9xs0’70)’ (25)
L
||g(x)—8(x)|| = m(p(-x’xﬁov'“’o)’ (26)
[|h(x)—e(x)]] < (1L ) 0(x,x,0,...,0) 2.7)

for all x € A, where o = 2" =1 and n > 2. Moreover, d is a (8,¢)-double derivation
on A.

Proof. Put u =1,x1 = xp = x,and x3 = x4 = ... = x, = 01in (2.3) to reach
o
IIEf(ZX)—Otf(X)II <o¢(x,,x,0,...,0)

for all x € 4 and so

RFG) = Ol = 265, 5.0.00) = Cp(x, x,0..01 28)

X x
2°2°
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Define F := {f : A —> #A}. The metric defined on F by
o(f,g):=inf{c € [0,00] : || f(x) —g((X)|| < cep(x,x,0,...,0),Vx € A}.

is a generalized metric and (F, p) is a generalized complete metric space. Consider
the mapping (Jf)(x) :=2f(3) for all f € F and x € . Use [4, Lemma 1.3]
to see that J is a strictly contractive mapping with the Lipschitz constant L. It
follows from (2.8) that p(Jf, f) < é Therefore according to Theorem 1, the se-
quence {J™ f'} converges to a fixed point d such that d(x) = limp—c0 2" f(5)
and d(2x) = 2d(x). Note that d is the unique fixed point of J and

1 L

d, f)<——p(Jfif) < ——r.

p.f) = —PUff) = a(-1L)

This means that inequality (2.5) holds for all x € +. The proof of the linearity of d
and also the rest of the proof is similar to that of [3, Theorem 2.3] and we omitit. [J

The importance of our result becomes clear when we take

n
QX1 xn) = 01 ) ||xill?, ¥(a.b) = Ox(1all? +Ib|).

i=1

In this situation, by choosing L = 2177, we can get strong and close approxima-
tions of the functions f, g,k with linear mappings d, 8, e, where d is a (8, €)-double
derivation on «+. Thus, we improve [3, Corollary 2.4] up to 2,1%1 as follows:

Corollary 1. Let p,q, 01,0, be non-negative real numbers with p,q > 1. Suppose
that f,g,h : A —> A are mappings such that

n
1Dy f 1o xn) | < 00D [l
i=1
1Crgn(a.b)l| < 6x(]lall? +1b]|)

foralla,b,xi,...,x, € Aandall jn € T, Then there exist unique C-linear mappings
d,S,e: A — A such that

20

1) =A@l = 5 X117
26

l1g(x) —8(x)]] st_l_l)qup,
264

[17(x) —e(x)]| < mllxll”

for all x € A. Moreover, d is a (8, €)-double derivation on A.

In the following theorem we give an improved version of [3, Theorem 2.5]:
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Theorem 3. Suppose that f,g,h : A — A are mappings satisfying (2.3) and
(2.4) for which there exist functions ¢ : A" —> [0,00) and ¥ : A*> —> [0, 00) such
that

1
lim —(p(2mx1,...,2mxn)=0, (2.9)
m—)oo
lim —w(Zma 2"b) =0 (2.10)
m—>oo
foralla b,x1,...,x2 € A. Ifthere exists a constant 0 < L < 1 such that (x1,...,Xp) <
2L@(F, ..., %) for all X1,....x, € A, then there exist unique C-linear mappings
d,s,e: A — A such that
L X X
d —,—,0,...,0), 2.11
1700 =AW = 55005 5.0--0) @11)
1860~ 30| < ———(E. X0.....0) (2.12)
X X —,—,0,...,0), .
& =80-0)"'2"2
L X X
h(x)— <——¢(=,=,0,...,0 2.13
) el = 5505500 213

for all x € A, where B = 5 and n > 2. Moreover, d is a (8, ¢)-double derivation on
A.

Proof. It follows from (2.8) that
1 1 2L x x
Iz f2x)— f(0)| < —¢(x,,x,0,...,0) < —¢(=,=,0,...,0) (2.14)
2 o a 22
for all x € A. Consider the generalized complete metric (F, p) with the generalized
metric p defined by

p(f.8) :=inf{c € [0,00] : [| f(x) —g(x)|] = cso(%, %»0,---,0),\” € A}

Define the mapping (Jf)(x) := %f(Zx) forall f € F and x € 4. Apply [4, Lemma
1.2]) to find that J is a strictly contractive mapping with the Lipschitz constant L. It
follows from (2.14) that p(Jf, f) < %. Applying Theorem 1, we get the sequence
{J™ f} converges to a unique fixed point d of J such that

1 2L L
d’ < — J ) =< = .
o( f)_l_Lp(ff)_a(l_L) 50-1L)
i. e., inequality (2.11) holds for all x € 4. The rest of the proof is similar to that of
[3, Theorem 2.3]. ]

As we mentioned in Corollary 1, the importance of Theorem 3 becomes also clear
when we put L = 271 and

n
QX1 Xn) = 01+ 62 ) " ||xill7, ¥ (a.b) = 01+ 02(1|al|? +|b]|).
i=1
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However, we can improve [3, Corollary 2.6] up to 2,,%2 as follows:

Corollary 2. Let p,q, 01,0, be non-negative real numbers with p,q € (0,1). Sup-
pose that f,g,h : A —> A are mappings such that

n
1D f (o1, Xn) || < 01+ 62 ) [,

i=1
ICrgn(a.b)|| <01+ 62(||al|? +1b]]9)

foralla,b,x1,...,xn € Aand all i € T, Then there exist unique C-linear mappings
d,§,e: A — A such that

1 0 o

1/ () =d@)I| = 5575 Gy = + T 12117,
1 01 )

1800) =8COl < 575 (Grmp =7 + 757 IIX117)-
1 0 0

1700) =] = 555 Gy — + 7551 X117

for all x € A. Moreover, d is a (8, €)-double derivation on A.

3. ALMOST LIE *-DOUBLE DERIVATION

A unital C *-algebra 4, endowed with the Lie product [x, y] = xy — yx on A, is
called a Lie C*-algebra. In this section, we assume that + is a Lie C*-algebra and
U(A) ={u € A:uu* = u*u = e}. For given mappings f,g,h: A —> A, we let
f(0) = g(0) = h(0) = 0 and define

Jrenta.b) = f(la,b])—[f(a).D]—[a, f(D)] —[g(a),h(b)] —[h(a),g(D)]
forall a,b € A.

Definition 2. Let 4 be a Lie C *-algebra and let §,¢ : A —> A be C-linear map-

pings. A C-linear mapping f : A —> A is called a Lie (8, €)-double derivation if
f(a,b]) =[f(a).b]+a. f(b)]+[8(a),e(b)] + [e(a),8(D)]
forall a,b € A.

The presented results in this section are refinements of [3, Theorem 3.2, 3.4] and
[3, Corollary 3.3, 3.5]:

Theorem 4. Let f,g,h : A —> A be mappings for which there exist functions
@ : A" — [0,00) and Y : A% — [0, 00) such that

i oM KLy

mh_r)nOOZ (p(zm,...,zm)—O, (3.1
) m a b .

mh_f)rcl)o“ W(z—m»z—m)—(), (3.2)

1Dy f(x1, ... xp)|] £ @(X1,....%n), 3.3)
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||Jfgh(a b)||<¢(a b) (3.4)

max{ f (5 - fGp)" g(2k> gGp)" hGE (e D =0CEsp) (G3)

for all a,b,xl,...,xz e k= 0,1,2,..., u € U(A), and we T If there exists a
constant 0 < L < 1 such that ¢(x1,...,xn) < %(p(le,...,an)for all x1,...,x, € A,
then there exist unique C-linear mappings d,§,¢ : A — A such that

max{[| f(x) =d(x)]],[|g(x) =8|, [[(x) —e()][} = 21— L)w(x,x,O,---,O)

for all x € A. Moreover, d is a Lie x-(8, €)-double derivation on A.

Proof. Using the same methods as in the proof of [3, Theorem 2.3, 3.2], we can
obtain the desired results. O

Corollary 3. Let p,q,01,6> be non-negative real numbers with p,q > 1. Suppose
that f,g,h : A —> A are mappings such that

n
1D f (1 x| < 61 ) |Ixi17,

i=1
||Jf,g h(u b)|| < 92(1+||b||q)
01+ 6,
maxt /(o) — /() g ()~ 8 )™ b))y = P

foralla,b,xq,....x, € ,A), k=0,1,2,..,uc U(A), and u € TL. There exist unique
C-linear mappings d,§,¢e : A — A such that

20
max{|| f(x) —d (0)]].[lg (x) =8| |[(x) —e(X)[]} = Wl_l_l)llﬂlp
for all x € A. Moreover, d is a (8, ¢€)-double derivation on A.
Proof. The results follows from above theorem by taking L = 21~7 and
n
QX100 xn) = 01 Y |Xil|7, W (a,b) = 62(1+|b]|%).
i=1
g

Theorem 5. Suppose that f,g,h : A —> A are mappings satisfying (3.3) and
(3.4) for which there exist functions ¢ : A" —> [0,00) and ¥ : A*> —> [0, 00) such
that

1
lim —<p(2 X1,...2"x,) =0,

mlgnoo4—mw(zma,2mb) =0
max{ f2*u*)— f*u)*, g 2*u*)— g 2K u)* h(2*u*) —h(2*u)*} < p(2%u, ..2Fu)
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forall a,b,x1,...,x20 €A, k=0,1,2,.., u e U(A), and 1 € T!. If there exists a

constant 0 < L < 1 such that ¢(x1,...,X5) < 2L(p( v X)) for all xq,..., Xy € A,
then there exist unique C-linear mappings d,$, ¢ : A — A such that
L
max{|| f(x) —d ()| [lg(x) =8| |2 (x) —e(x)[]} < A= )40( ,0,...,0)
forall x € A, where B = 5 andn > 2. Moreover, d is a Lie -(8, €)-double derivation
on A.
Proof. The proof is similar to that of [3, Theorem 2.5, 3.2]. ([l

Corollary 4. Let p,q, 01,02 be non-negative real numbers with p,q € (0,1). Sup-
pose that f,g,h : A —> A are mappings such that

n
1Dy f (X1 )| < 61+ 62 |1xi |7,
i=1
11,0, D)|| < 61+ 62(1+[1D]|7)
max{ f(2"u") = /(2Fu)*, g “u) — g (“w)* h2Fu) = h )"} < 912_;92
forall a,b,xq,....xn € A, k=0,1,2,.., u e U(A), and € T!. Then there exist
unique C-linear mappings d,§,¢€ : A — A such that
max{]| f(x) —d ()], |[g(x) =[] [[h(x) —e(x)][}

16 6 »
= 513 Gip—1 + Ty I¥117)

for all x € A. Moreover, d is a Lie x-(8, €)-double derivation on A.

Proof. Apply above theorem by putting L = 27~! and

n
QX1 Xn) = 01+ 62 ) [1xi||7, ¥(a,b) = 61+ 62(1+]|]|9).

i=1

4. CONCLUSION

Our results can give the results proved by Ebadian et al. [3]. For instance, un-
der the hypotheses of Theorem 2 we can conclude [3, Theorem 2.3], but not vice
versa. In other words, if there exists a constant 0 < L < 1 such that ¢(x1,...,x5) <
%¢(2x1,...,2xn) for all x1,...,x, € A, then @(x1,...,x,) < %L@(le,...,bcn), i€,
all of the hypotheses of [3, Theorem 2.3] hold. On the other hand, Theorem 2 says
that there exist unique C-linear mappings d,§, ¢ : A — 4 such that

L
I1f(x) —d(x)]| = 21— )w(X»x,O,---,O),
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g =800 | £ ——g(x,x,0,..,0),

a(l—L)
[[h(x)—e(x)]] < Lgo(x x,0,...,0)
“oa(l-L) R
for all x € A, where @« = 2"~ and n > 2. Since a(lL—L) < &, we have

170 —d(l] = - p(x.x,0....0),
I8 =300l = 7 p(x..0,...0),

L
[|h(x) —e(x)]] < E(p(x,x,o, R

which coincide with the results of [3, Theorem 2.3]. The same arguments can be
applied for Theorem 2.5, 3.2, 3.4 and Corollary 2.4, 2.6, 3.3, 3.5 of [3].

REFERENCES

[1] T. Aoki, “On the stability of the linear transformation in banach spaces,” J. Math. Soc. Japan.,
vol. 2, pp. 64—66, 1950, doi: 10.2969/jmsj/00210064.

[2] J. B. Diaz and B. Margolis, “A fixed point theorem of the alternative for contractions on a general-
ized complete metric space,” Bull. Amer. Math. Soc., vol. 74, pp. 305-309, 1968.

[3] A. Ebadian and N. Ghobadipour, “A fixed point approach to almost double derivations and lie *-
double derivations,” Results Math., vol. 36, pp. 409-423, 2013, doi: 10.1007/s00025-011-0205-y.

[4] A. Ebadian, 1. Nikoufar, T. M. Rassias, and N. Ghobadipour, “Stability of generalized derivations
on hilbert c*-modules associated to a pexiderized cauchy—jensen type functional equation,” Acta
Math. Sci., vol. 32, no. 3, pp. 1226-1238, 2012, doi: 10.1016/S0252-9602(12)60094-0.

[5] D. H. Hyers, “On the stability of the linear functional equation,” Proc. Natl. Acad. Sci., vol. 27, pp.
222-224, 1941.

[6] T. M. Rassias, “On the stability of the linear mapping in banach spaces,” Proc. Amer. Math. Soc.,
vol. 72, pp. 297-300, 1978, doi: 10.1090/S0002-9939-1978-0507327-1.

[7]1 S. M. Ulam, Problems in Modern Mathematics. New York: Science Editions, Wiley, 1960.

Author’s address

Ismail Nikoufar
Department of Mathematics, Payame Noor University, P.O. BOX 19395-3697 Tehran, Iran
E-mail address: nikoufar@pnu.ac.ir


http://dx.doi.org/10.2969/jmsj/00210064
http://dx.doi.org/10.1007/s00025-011-0205-y
http://dx.doi.org/10.1016/S0252-9602(12)60094-0
http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1

	1. Introduction
	2. Almost double derivation
	3. Almost Lie *-double derivation
	4. Conclusion
	References

