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Abstract. In the papers [11,12] starting with the Bernstein operators, some Stancu type operators
are constructed
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The aim of this paper is to give some estimates for this operators using moduli of smoothness
of first and second order.
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1. INTRODUCTION

First of all, we recall some notions and operators which will be used in the paper.
Let ˘ be the algebra of polynomials with real coefficients and ˘n be the linear

space of all real polynomials of degree � n.
For k 2N , ´ 2C let .´/0 D 1 and .´/k D ´.´C1/:::.´Ck�1/:
For n2N, letBn W Y !˘n be the Bernstein operators, defined for any f 2C Œ0;1�

by
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where
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are the Bernstein fundamental polynomials.
For g W Œ0;1�! R the Stancu operators S<b>
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where b 2 Œ0;1� is a real parameter (see [13, 24, 25]).

2. THE CONSTRUCTION OF THE MODIFIED BERNSTEIN-STANCU OPERATORS

Approximation theory has been used in the theory of approximation of continuous
functions by means of sequences of positive linear operators and still there remains
a very active area of research. There are many approximating operators that their
Korovkin type approximation properties and rates of convergence are investigated.

We list some of the mathematicians that relate their names to this fields of con-
structing and studding approximation properties of the linear and positive operators:
A. Lupaş [20], O. Agratini [5], D. Bărbosu [8], [9], I. Gavrea, H.H. Gonska and D.P.
Kacso [16], [17], O. Dogru [14], U. Abel, M. Ivan, R. Păltănea [1] and Y. Kageyama
[18].

A new direction of generalization of the linear and positive operators are q-calculus
as we can see in the pioneering works of A. Lupaş [19] and G.M. Philips [23]. Some
of the most recent appearances in this direction are the papers of O. Agratini [6], P.N.
Agrawal, Z. Finta and A. Sathish Kumar [15], [7], G. Nowak and V. Gupta [21], A.M.
Acu, C.V. Muraru, D. Bărbosu and D.F. Sofonea [2], [4] and [3].

In [11] was constructed a new class of linear and positive operators starting with
the derivatives of the Bernstein operators.
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Starting with (2.1), we investigated the modifications
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where the real numbers
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are selected in order to preserve some important
properties of Bernstein operators.

Observe that from (2.2)8̂̂̂̂
<̂
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In the following we shall consider that m0;n D 1 and lim
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Then the operator Cn from (2.2), denoted further by C n, becomes�
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C n are called Bernstein-Stancu operators, when an 2 .0;1/ (see [11], Definition
11).

3. A SUMMING UP OF THE APPROXIMATION PROPERTIES OF C n OPERATOR

First, in [12], it is demonstrated that C n is a linear and positive operator that
transform any polynomial of degree s� n into a polynomial of degree s and preserves
the convexity of order j , if j;n 2N�;0� j � n�2.

Also, the operator C n from (2.3) may be written in the Bernstein basis in the form
([11], Theorem 10)
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In the same time C n can be written using Stancu functionals.
Observe that

C 0f D C 0;0Œf � WD f .0/
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In order to provide the convergence theorem, the following identities hold true
([11], Lemma 8):8̂<̂
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Applying the Bohman - Korovkin theorem and the above assertions ([12], The-
orem 5) we can see that the sequence fC nf gn�1 converges to f, uniformly on Œ0;1�
for any f 2 Y .

The asymptotic behavior of the sequence
�
C n
�1
nD1

on a certain subspaces of
C Œ�1;1� is given in the following proposition ([11], Theorem 15) and it was demon-
strated applying a version of a general proposition given by R. G. Mamedov:
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In order to obtain an overview of the approximation properties of this ope- rator,
we add here some more properties.
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Lemma 1. If f 2 C Œ0;1�, then jjC nf jj � jjf jj, where jj � jj is the uniform norm
on C Œ0;1�.

Proof. Using the fact that the operator is linear and positive we have the identity

jjC njj D jjC ne0jj:

And from the above property .Cne0/.x/D e0 then jjC njj D 1. �

Lemma 2. The operator C nf can be represented by the following expansion
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point 0 of the function f, that is
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Proof. By making use of the following relation between divided differences and
finite differences
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Replacing it in (2.3) we are led to the desired formula. �

Remark 1. If we set x D 0 in the expansion formula from above, then we find

.C nf /.0/D f .0/:

Naturally follows the fact that the polynomial (2.3) is interpolating at the end 0 of
the interval Œ0;1� i.e. .C nf /.0/D f .0/.

4. ESTIMATES FOR C n IN TERMS OF MODULI OF SMOOTHNESS

The main tools to estimating the degree of approximation by positive linear func-
tionals and operators are the moduli of smoothness of first and second order, given
by (see, for example, [10])
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for f 2 C.I / and ı � 0:
For f 2 C Œa;b�, a useful modification represents the least concave majorant of

!.f I �/ given by

Q!.f I�/D
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Q!.f I�/D !.f Ib�a/ if � > b�a

First, using the result obtained by O. Shisha and B. Mond in 1968, we recall from
[12] the estimation for Cn using the modulus of continuity.
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The main results of this paper are direct estimates via !, Q! and !2.
Let K D Œa;b� and K 0 � K be also compact and let L W C.K/! C.K 0/ be a

positive linear operator. The following result was obtain by H.H. Gonska in [17].

Theorem 4. For the linear and positive operator L that reproduce the constant
functions, the following inequality holds:
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Due to the fact that !2 annihilates linear functions, it is advantageous to measure
the degree of approximation by means of this modulus of smoothness.

Further, we recall the following results given by R. Păltănea in [22].
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Proof. The assertion follows from the Păltănea’s theorem using inequality (3.1).
�
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