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1. INTRODUCTION

Many concrete problems of various nature, where the question of uniqueness of
a solution is essential, as is well-known, lead one to the study of regular values of a
certain bounded linear operator. Since it is always natural to try to get some useful
information on the base of as few initial data as possible, is appears that estimates of
the spectral radius of an operator which are derived from certain relations involving
its value on a single element only, should be of the best imaginéidesacy.

There is a vast literature devoted to this kind of estimates of spectra of linear
operators that are positive with respect to a cone in a Banach space (see, e. g., [6, 7]).
The main idea of such statements, dating back to O. Perron, P. Jentzsch, P. Urysohn,
L. Collatz, and M. Krein, was developed by many authors (see, €. g., [3,6,7,10, 13,
15)).

The conditions imposed on the operator and the space where it acts vary as well as
the assumed properties of the chosen element do. For example, the spectral radius of
A admits the estimate

r(A) >, (1.1)
wherey is a given positive constant, on the assumption [6] fksta bounded linear
operator leaving invariant a cofeand such that the relatiohy — yg € K is true for
a certain elemenj € (K — K) \ (-K). On the other hand, the numbgA) satisfies
the inequality

r(A) <y (1.2)
provided thatA (K) € K, K is a solid normal cone, and the inclusion
vg — Ag € K (1.3)

is true for some interior elemegtof K [7]. It is natural to find out that obtaining
the upper bounds for the spectral radius is mofeatilt, that a relation of type (1.3)
implies (1.2) only under additional conditions &mandK, and that these additional
conditions are stronger than those guaranteeing a similar estimate (1.1) from below.

In this paper, we establish a new theorem of the kind indicated for linear mappings
majorised by linear operators preserving a preordering which may not be a partial
ordering (Section 4). More precisely, we obtain dhcéent upper bound for the
spectral radius of a completely continuous linear mapgingX — X representable
in the form

A=A - A, (1.4)

where X is a Banach space with a wed#e(which, generally speaking, may not
be a cone), and the operatdkgs and A, leaveK invariant. The proof of the result
mentioned (namely, Theorem 4.1) uses an inequality satisfied by the so-Kalled
substantial eigenvalues #fand established in Section 3. Note that, in the theorem
mentioned, the property expressing a certain “strong positivity” of a test elegnent
from the corresponding relation (1.3) depends upon the structure of the image space
of the operatoA (see Remark 4.6).
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Theorem 4.1 is estabished under the condition that operator (1.4) is completely
continuous. This assumption is not unnatural because our present study of completely
continuous linear operators in a preordered Banach space is motivated mainly by the
related problems arising in the theory of functiondfeliential equations, and to a
boundary value problem for a linear functiondffdrential equation, a compact linear
operator is usually associated. For example, the set of absolutely continuous solutions
of the homogeneous initial value problem

u(t) = pu(w(),  telahb],
u(r) =0,

obviously, coincides with that of the equation

t
u(t) = f pOu@(®)ds  telab].

The linear operator

C(abl.R) > ur f POU(9) ds

as is easy to show, is a compact self-mapping of the s@4fa b], R) of contin-
uous functions on the intervah[b], wheneverp : [a,b] — R is integrable and
w :[a b] - [a,b]is measurable.

The paper is organised as follows. Section 2 contains some definitions and prelim-
inary results. In Section 3, we establish an estimate for the so-dalsabstantial
eigenvalues (see Definition 2.44) of a bounded linear operator in a Banach space
with a wedgeK. The main Theorem 4.1 of Section 4 provides a convenient upper
bound for the spectral radius of a completely continuous linear operator vanishing on
the blade of the wedgl containing elements that are strongly positive in the sense
of Definition 2.12. Finally, in the last Section 7, Theorem 4.1 is applied to obtain
conditions s#icient for the solvability of certain integro-functional equations.

2. WEDGES IN BANACH SPACES AND LINEAR OPERATORS LEAVING THEM INVARIANT

In this section, we recall the basic definitions related to wedges in Banach spaces,
introduce some notation and definitions, and establish a number of statements relied
upon in the subsequent sections. Throughout the rest of this paper Banach
space over the fieli.

2.1. Wedges and related preorderingsA closed subseK of X is said to be a
wedge(see, €. g., [6]) if

1K + azK C K 2.1)

for all {a1, a2} C [0, +o0), where, as usuak; K +a2K = {a1Xg+aoXz | {X1, X2} € K}.
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In what follows, we assume implicitly that the wediges proper, i. e., is dierent
from both the singletof0} and the entire spack, for there is no meaningful theory
in those two extreme cases.

Remark2.1 In the original terminology introduced by M. Krein [10], a closed set
satisfying condition (2.1) is calledlaear semigroup.

The following standard definition introduces a natural preordering in a sface
with a wedgeK.

Definition 2.2. The relationx; <k Xy is said to be satisfied if, and only3 — x; €
K.

We also writex; 2k o if, and only if x, <k x;. Note that the relationg; <k X
andx; =k X2, generally speaking, do not imply the equaliy= X».

Definition 2.3. The setk N (-K) is referred to as thblade[6] of the wedgeK.

For the sake of brevity, we shall denote the blade of the wé&dbg the symbol
K®:
KO :={xeX|x=k OA Xk O}. (2.2)
Remark2.4. It is obvious from condition (2.1) and definition (2.2) that the blade
of an arbitrary wedg& is a closed linear subset Kf. One can readily show th&t®
coincides with the maximal linear subspace containggl.in

Definition 2.5. We write x; Ok Xz if, and only if eitherx; <k X2 Or X1 2k Xo.
The relationok is obviously reflexive and symmetric.

2.2. Measurable elements of a Banach spacéet f be an element fronX, g be
a real constant, andk g(f) be the set defined as follows:

Xk p(f) 1= {xe X| -Bf sk x =k Bf}. (2.3)

2.2.1. Basic properties of the setXkg(f). In the sequel, we need some proper-
ties of sets (2.3).

Lemma 2.6. Letg be a fixed real number. Then an elemgiitom X belongs to
the setXk g (f) if, and only if—x € Xk g (f).

Proor. Due to the symmetry of the left-hand and right-hand terms, the inequality

—Bf <k x =k Bf (2.4)
is equivalent to the relation

-t <k —x =k B, (2.5)
whereas the latter means that € Xk g (f). O

Lemma 2.7. The following assertions are true:
(i) Xko(f)=K®forall f e X;
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(i) Xkp(0) = K foranyp € R;

(i) The seXkg(f), whereg # Oandf # 0, is non-empty if, and only fif >k O;
(iv) If Bf 2k 0, thenXk 4(f) 2 K;

(v) If f € K®, thenXkg(f) = K® forall B € R;

(vi) Xkp(f)\ K® # @if, and only if3f 2x Oandpf ¢ K°.

Proor. Assertions (i) and (ii) are obvious from (2.3). Let us verify assertion (iii).
Indeed, letx belong toXk g(f). This is true if, and only if (2.4) holds or, which is
the same (see Lemma 2.6), relation (2.5) is satisfied. Combining (2.4) and (2.5) and
using property (2.1) oK, we obtain

-28f =x 0=k 28f,
i. e.,Bf 2k 0. Conversely, iBf 2k 0, then, in particular,

—Bf <k pf <k Bf.

This means that (2.4) is satisfied with= gf, i. e.,Bf € Xk g (f).

To prove assertion (iv), it is sticient to note that iBf >k 0, then (2.4) is true for
all elementsx satisfying the relation @k x ¢ 0.

Let f € K® be arbitrary. By (iv), we havi&® c Xk 4(f) for all 3 € R. On the
other hand, ifx € Xk 4(f), then, according to (2.4), we obtaine K¢ becausgf is
also an element df°. Thus, assertion (V) is true.

Finally, assertion (vi) is obvious from (iii), (iv), and (v). O

Assertions (i) and (ii) of Lemma 2.7 show that there is no much sense to consider
the setsXk g(f) with sf = 0 because, in that case, they consist solely of those ele-
ments ofX which are 0-measurable with respectiian the sense of Definition 2.8
given below.

2.2.2. The definition of f-measurability. For the sake of brevity, we shall use
the following

Definition 2.8. An elementx from X is said to bef-measurable with respect &
if there exists a real constgfisuch thatx € Xy ().

In other words,x is f-measurable with respect to the wedg§evhenever (2.4)
holds for somes.

Remark2.9. Definition 2.8 difers from a similar notion introduced in [10] be-
cause the negative values@ére allowed in (2.4). For the purposes of this paper, the
definition mentioned seems to be advantageous due to the need to consider complex-
ifications (see Section 2.5 below). Note also that, according to Definition 2.8, the set
of f-measurable elements is never empty (see Proposition 2.11).

Definition 2.10. For every fixedf € X, the set of all the elements of that are
f-measurable with respect Kowill be denoted byXk (f).
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Clearly, Xk (f) := Upger Xk (f) . Moreover, it follows from Lemma 2.7 that, in
fact,

X (= | xg(h) (2.6)

BeR: pf2k0
foranyf € X.

Proposition 2.11. For any f € X, the setXk(f) is a linear manifold containing
K. Furthermore Xk (f) # K¢ if, and only if the element is such thatf ok 0 and
f g K.

Proor. The setXk (f) obviously satisfies the condition
a1 Xk (f) + a2Xk () € Xk ()

for all {a1, @2} c [0, +o0) and, therefore, Lemma 2.6 guarantees that it is a linear
manifold.

According to Definition 2.10 and assertion (i) of Lemma 2.7, we h¥éyéf) >
Xk o(f) = K®. Furthermore, equality (2.6) yields

X (VK= | ] Xep(HVKE. (2.7)
BeR: 08120

However, assertion (vi) of Lemma 2.7 guarantees that the conditipK © is neces-
sary and sflicient for the union in the right-hand side of (2.7) to contain non-empty
sets. |

2.3. Strict inequalities with respect to a wedge Given a wedgeK € X and a
linear manifoldH in X, we introduce the following binary relation ofi

Definition 2.12. For{fy, fo} c X, we write f; mk.y f2 if, and only if the inclusion
Xk (- f1) 2 H
is satisfied.
One can readily verify that the equality
Xi (=) = Xk (f)

holds for anyf and, hence, the relation introduced by Definition 2.12 is symmetric,
i e., fl OK:; H f2 if, and only if f2 OK:H fl.

Lemma 2.13.If f; MK:H, f, andH, 2 Ho, thenf; MK:H, fo.
The assertion of the last lemma is easily established by using Definition 2.12.

Lemma 2.14. For an arbitrary f from X, the relation
f mk:xe(f) O (2.8)

is true.
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Proor. By Proposition 2.11, the séfk(f) is a linear manifold inX. According
to Definition 2.12, relation (2.8) is equivalent to the inclusi(f) o Xk (f) and,
hence, is always satisfied. m]

In the case wherkl = X, we drop the corresponding subscript in the above nota-
tion and, instead of; mk.x f2, we write f; mk fa:

Definition 2.15. For{fy, fo} c X, we write fymk f» if, and only if Xk (f2 — f1) = X.
The above definition allows one to introduce the following

Definition 2.16. Two elements; and f, are said to be in the relatiol &x. 4 f2
(resp.,f1 3k:n fo) if they satisfy the conditiond; mk.n f2 and f; 2k f2 (resp.,
f1 2k f2).

By analogy with Definition 2.15, we introduce

Definition 2.17. Two elementsf; and f, are said to be in the relatiofh &k fo
(resp.,f1 3k f2) if they satisfy the condition§ ok f, andfy 2k 2 (resp.,f1 Sk f2).

The fulfilment of the relations described by Definition 2.17 is verified most easily
in the case of a solid wedge.

Definition 2.18. A wedge is said to beolid [10] if its interior is non-empty.

Following [10], we writex; <k X2 (resp.,X1 > Xo) if, and only if the diference
Xo — X1 (resp., X1 — xo) lies in the interior ofK.

Lemma 2.19.If K is a solid wedge ixX and an element € X is such thatf > O,
thenf satisfies the relation

f ek O. (2.9)

Proor. A statement equivalent to equality (2.14) fotying in the interior ofK is
well-known, e. g., from [10, 14]. m]

Remark2.20 WhenK is a minihedral cone ifX [10] (and, hence, the partial
orderingsk makesX into a vector lattice [1]), an elemeuntpossessing the property
u &k O is called astrong unit(see Definition XIII.1.5 in [14]). In this case, the
conditionX (u) = X means that the elemeunsatisfies Axiom V from [9].

Remark.21 Relation (2.9), generally speaking, does not imply thatk 0. For
example, in the spade, ([0, 1]) of essentially bounded functions endowed with the
usual norm and partial ordering [14], relation (2.9) is true, e. g.ffegual almost
everywhere to 1. However, the set of functions non-negative almost everywhere on
[0, 1] has empty interior it ([0, 1]).

For suitable linear manifoldd, the condition

fS—K;HO
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may be regarded as a certain “strong positivity” an elenfertx 0. The word
“suitable” here means that, roughly speaking, there should not be too many strongly
positive elements. For instance, there is no much sense to study the case where

HcK® (2.10)

because, by virtue of Proposition 2.11, the inclusion

(X)) 2K®

feX

is always true and, hence, under condition (2.10), the reldtierx.xo O is satisfied

by an arbitrary element from X. On the other hand, certain undesirable classes of
vectorsf (e. g.,f = 0 or, more generallyf satisfying the relation @¢ f <k 0), that

are unlikely candidates for strongly positive elements, should also be excluded from
consideration. These considerations lead us to the following

Proposition 2.22. LetH be a linear manifold inX such that
HgK® (2.11)
and f be an element oX such that either the relatioi ok O is not true or0 <k
f <k 0. Then the relation
f OK:H 0 (2.12)
is not satisfied.

Proor. Indeed, let, on the contrary, relation (2.12) holds. According to Defini-
tion 2.12, this means th&t C Xk (f) and, therefore, in view of condition (2.11), the
setXk (f) contains some elements not belongind<to. It then follows from Propo-
sition 2.11 thatf should satisfy the relations ok 0 andf ¢ K, contrary to the
assumption. O

In other words, Proposition 2.22 means that a strongly positive element should
always be comparable with zero and cannot be positive and negative simultaneously.
This agrees well with the intuitive idea of the strict inequality.

2.4. The mappingsnk,t : Xk(f) = [0, +c0). Taking a glance at Definition 2.10,
we see that the non-negative number

Nk, (X) = inf {181 | B € (—c0, +00) andx € Xk s(f) | (2.13)

is well-defined for an arbitraryx from X (f). It is also convenient to putg (X) :=
+oo for all x e X'\ Xk (f). Thus,nk f(X) < +co if, and only if x is f-measurable with
respect tK.

Remark2.23 One can show that, for anfy € X, the mappingw s : Xk (f) —
[0, +00) is @ seminorm on the linear manifoXk (f). This seminorm is a norm if, and



SPECTRA OF LINEAR OPERATORS IN A PREORDERED SPACE 61

only if K is a cone [5,10], i. e., if the blade &fis trivial. The mapping mentioned is
defined on the entire spageif, and only if

Xk(f) =X, (2.14)
which property, in contrast to the poorest case where

Xi(f) = K®,
may be regarded as a reflection of a reasonable choice of an elén@nt0. By
Lemma 2.19, condition (2.14) is satisfiedfif>k 0. It may happen, however, that
(2.14) does not hold for anfyfrom X (e. g., if X is the Banach space of the Lebesgue
integrable functions on a bounded intenallf] andK is the cone of integrable func-
tions [a, b] — R that are non-negative almost everywhere aib]).

In the case wher& is a solid cone and > 0, formula (2.13) determines the
so-calledf-norm [7, 10]

X+ = inf {8 € [0, +c0) | relation (2.4) is trug (2.15)
of an arbitrary element from X. Functional (2.15) is also used in [9] in studies of
vector lattices.

Itis clear from (2.13) thatk  (0) = 0 independently of the choice éf Moreover,
the following lemma holds.

Lemma 2.24. Let f € X. Then an element e Xsatisfies the equality
nkf(x) =0 (2.16)
if, and only ifx € K©.

Proor. Let f € X and letx be an element from the corresponding (non-empty)
setXk (f). In view of Proposition 2.11, we can suppose thatk 0. Then, clearly,
of 2k 0 for somes € {-1, 1}.

Let x € K®. The elemenk belongs to the blade df if, and only if

0=k x=k 0, (2.17)
which means that (2.4) is true with an arbitrary consfastich that sigB = o. In
particular,

_zf <k X< gf

k ==Kk
forallk e N. Taking (2.13) into account, we conclude that @ ¢(x) < infyen k™t =
0, i. e., relation (2.16) holds.

Conversely, ifx satisfies equality (2.16), then there exists a sequeBET] c
(—o00, +00) such that lim_, ;. Bk = 0 and, for allk > 1,

—Bkf =k X =k Bkf. (2.18)

Passing to the limit ak — +co in relation (2.18) or, which is the same, in the
inclusion
Bcf — %, pf +x} K
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and taking into account the fact thiatis a closed set, we arrive at relation (2.17n

Remark2.25 The existence of an elemehtsatisfying equality (2.14) implies, in
particular, that the wedgK is reproducing [10], i. e K — K = X. The converse
implication, generally speaking, is not true (in particular, the cone mentioned in Re-
mark 7.4 is reproducing but relation (2.14) is never satisfied there).

2.5. Complexification of a wedge and the related objectdn the sequel, the
complex counterparts of some of the notions defined above will be needed. Through-
out this section, where the related notions are introduced, we fix a real Banach space
X and wedge in X.

2.5.1. Basic issuesThe complexification (see, e. g., [4], Chapt. X§B) of a real
Banach spacéX, ||-||y is convenient to be interpreted as the complex Banach space
of formal sumsx + iy, {X, y} c X, i2 = -1, equipped with the linear operations

(Xp +iy1) + (X2 + iy2) == Xg + X2 + i (y1 + y2)

(v+ip) (X +iy) == vX—uy + i (uxX+vy), (2.19)
where{xq, X2, y1, y2, X, y} C X, {v,u} C R, and with the norm
X +iyll := 9'1[“60(] lIXxcosd + y sindl, Xy} c X (2.20)
ve[-n,m

The same technigue allows one to define a natural complexification of an arbitrary
wedge in a real Banach space.

Definition 2.26. The set

K:={x+iy|xe KAyeK} (2.22)
will be referred to as theomplexificatiorof a wedgeK in a Banach spac¥ overR.

It is easy to verify that the sét, represented alternatively Ks= K +iK, is closed
with respect to norm (2.20) and forms a wedgiim the sense that

a1K + apK ¢ K for all {a1, s} € [0, +0). (2.22)

By analogy with Sections 2.1 and 2.3, one can extend the binary relatijoaad
<k to X2 in a natural way. More precisely, given two elemefzisz} c X, we shall
write z; 2 2 (resp..z1 > ) if, and only ifz; — 2, € K (resp.,z1 — 2 is an interior
element ofK). Similarly, the relatioroy is natural to be defined by puttirsg O; 2
if, and only if the elementg; andz, satisfy at least one of the relations>; z, and

21 <z 2. The blade K)° of K is natural to be defined as the set of all thas@m X
for which both relationg 2y 0 andz £; O are true, i. e,

(R)® = R n (=K).

It is obvious that A
(RK)® = K® +iK®. (2.23)
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The complexifigatiorR of a real wedgeK inherits its main characteristic proper-
ties. For exampleK is solid if, and only ifK possesses this property.

2.5.2. Measurability of complex elementsLetg € X anda € C. Similarly to
formula (2.3), one can define the 36t ,(9) ¢ X by putting

Xg 1(g) = {ze X|z2zg —Ag Az /lg} (2.24)
and introduce the following

Definition 2.27. An elementz € X is said to bej-measurable with respect to the
wedgeK if, and only if it belongs to the set

Xe(9) = | Xk 1(9)- (2.25)
AeC

Definition 2.27 may be regarded as a natural extension of Definition 2.8 to the
complex case. For example, analogues of Lemma 2.6 and Proposition 2.11 are true
for sets (2.24) and, just as in the real case, zero belongs to thg sef) for arbitrary

A € C andg € X. Further properties of sets (2.24) are described by Lemma 2.33
below.

Remark2.28 Analogues of sets (2.24) and the related objects can also be intro-
duced in the case whefeis replaced by some other set possessing property (2.22),
not necessarily constructed according to formula (2.21). Such more general complex
wedges are however not needed for our purposes.

A convenient characterisation of the property introduced in Definition 2.27 is pro-
vided by the following

Lemma 2.29. Let{x,y, f} ¢ X. Then the element + iy is f-measurable with
respect tK if, and only if there exist sontee [0, +o0) andw € [-x, 7] such that the
relations

—rf sinw £k X<k rf sinw, (2.26)
—rf cosw =k y <k rf cosw (2.27)
are satisfied.
Here and everywhere in the sequel, we wiite f +if for any f from X.

Proor. By virtue of relations (2.24) and (2.25), the elemgntiy is f-measurable
if, and only if there exist some € [0, +o0) and¥ € [-x, x] for which

—0€”f < x+iy 2 0€”f. (2.28)
According to (2.19), we have
é?f = (cost + isind)(f +if) = (cos? — sin?) f +i (sin? + cos?) f

= \/E[sin(% - ﬁ) + icos(%rr - 19)] f. (2.29)
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Therefore, in view of definition (2.21) of the skt the relation (2.28) is equivalent
to the system of order inequalities

—oV2f sin(% _ ﬁ) < X < 0 V2f sin(% - ﬁ), (2.30)
—o V2f cos(% - 19) <k y <k o V2f cos(% - 0), (2.31)

which, obviously, has form (2.26), (2.27) with= o V2 and

w::{g—ﬁ if -r<9<-%,

7 € 3
-0 if-F <<
It is clear that the above relation between the pairg(and {, ) is one-to-one. O

Remark2.30 Definition 2.27 reduces to Definition 2.8 in the real case. Indeed,
let of € K with someo € {-1,1}. Lemma 2.29 characterises themeasurability
of the elemenix = x + i0 with respect toK in terms of the existence of,w)
[0, +o0) X [-m, 7] such thato-cosw > 0 and relation (2.26) is true. However, the
property mentioned means that (2.4) is satisfied With r sinw.

Itis natural to find out that thé-measurability of an element+ iy with respect
to K is equivalent to thd -measurability of its real and imaginary partsandy.

Lemma 2.31. Let{xy, f} ¢ X. Then the element + iy is f-measurable with
respect tK if, and only if bothx andy are f-measurable with respect .

Proor. The f-measurability ofx andy, on the assumption that+ iy € )A(R(fA),
is a consequence of Lemma 2.29. Converselfx,ifi} ¢ Xk(f), then, according to
Definition 2.8, there exist some raakindg such that

—af <k X=Zk a/f, (232)
-Bf =« y =« pf. (2.33)
Let us put

__)%signa if >0,
w'=q3 .
Z signa if <0

andr := V2 max{|al,|8]}. Then, as is easy to see,

. signa signg
SlNw = N COSw = )
V2 V2
and, therefore, relations (2.32) and (2.33) imply that (2.26) and (2.27) are satisfied
with the above values @b andr. It remains to refer to Lemma 2.29. O

It turns out that all the setég (f), wheref = f +if, are invariant under rotations.
More precisely, the following statement is true.
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Lemma 2.32. Let f € X and{x,y} c Xk(f). Then, for an arbitraryp € [, ],
the elemeng?(x + iy) is f-measurable with respect .

Proor. It will suffice to consider the case whefreak O. ByAassumption{,x,y} c

Xk (f) and, hence, in view of Lemma 2.31, the elementy is f-measurable with re-
spect toK, wheref = f +if. Lemma 2.29 guarantees the existence aban[—r, 7]
such that relations (2.26) and (2.27) are satisfied. Multiplying both parts of (2.26)
by |cosg| and|sing| and taking Lemma 2.6 into account, we obtain, respectively, the
relations

—fr|cosy| sinw =k =xcosp <k fr|cosy|sinw
and

—frising|sinw =k £Xsing <k frising|sinw,
where the symbol£” means that the inequality is satisfied with both signs of the
corresponding term. Similarly, multiplying both parts of (2.27)/¢yse| and|sing|,
we get

—fr|cosy| cosw =k +y Ccosy <k fr|cosy|cosw
and

—fr|sing| cosw =k =y sing <k fr|sing|cosw.
Therefore, by choosing the appropriate signs in the relations above and summing the
corresponding terms, we obtain

XCOSp — y Sing <k rf[jcosy|sinw + |Sing| cosw],

Xc0sp — y sing 2k —rf[|cosg| sinw + Ising| cosw] (2.34)

and
Y COSp + XSing =k rf[|cosy| cosw + [sing| sinw], 235
)y COSp + XSingp 2k —rf[|cosy| cosw + [Sing| sinw]. (2.35)

It is supposed that ok 0, and, thereforegf > O for someo € {-1,1}. Since
neither|cosy| sinw + |Sing| coSw NOr [cOSy| CoSw + |Sing| Sinw takes values outside
the interval |2, 2], relations (2.34) and (2.35) yield

20rf <k XCOSp — ySing <k 20rf, (2.36)
201t <k ycosy + xsing <k 20rf. (2.37)

x ifo=1
Oy =% . ’
’ {% o= -1

Let us put

Then sind, = cosd, = 0272 and, therefore, relations (2.36) and (2.37) can be
brought to the form

of sind, <k xcosp — ysing <k of sind,,
of cosd, =k ycosy + xsing sk of cosd,,



66 ANDREI RONTO

wherep := 2r V2. Applying now Lemma 2.29 and taking into account the formula
d¢(x + iy) = xcosp — ysing + i(y cosy + xsing), (2.38)
we conclude that the elemerf + iy) is f-measurable. O
The next lemma summarises several properties of sets (2.24) referred to in the
sequel.
Lemma 2.33. The following assertions are true:
(i) Xgo(f) = Xg 1(0) = K® +iK® forall f e Xanda € C;
(i) Xg 1(9) = —Xg 1(9) foranyg e X;
(iii) @ Xg u1(9) = Xz 1(9) for anyg € X anda € R\ {O};
(iv) For 1 # 0andg # 0O, the setXy ,(g) is non-empty if, and only itg € K;
(v) If Ag € K, thenXg ,(g) 2 K® +iK?;
(Vi) Xg1(9) \ (K® +iK®) # @ if, and only ifdg € K \ (K® +iK?).
(Vi) Nyex Xg () 2 K +iK®;
(viii) Xz(g) # K® +iK® if, and only ifg € [K U (=K)] \ (K® +iK®).
Proor. This statement is established similarly to Lemmata 2.6 and 2.7 and Propo-
sitions 2.11 and 2.11 from Section 2.2.
Let us prove, e. g., assertion (iii). Indeed,det 0. By virtue of (ii), an element
belongs to the seX; |, , if, and only if
—laldg s¢ zsigna =g laldg,
or, which is the same, .
—lg ¢ — Sk g (2.39)

However, (2.39) means nothing but the inclusionz e X ,(g). o

2.5.3. The mappingsnk’g : X = [0, +o0]. Similarly to the case of the original

real spaceX, the f-measurability of elements of with respect to the complexifi-
cationK of a wedgeK in X can be characterised by a certain non-linear functional.
More precisely, giverz € X andg € X, we put

g, (@ = V2inf{lal| 1€ C A ze Xg ,(9)) (2.40)

if zis g-measurable with respect 6, andng ,(2) := +eoforz ¢ XR(g). Here, we
retain the same lettem, as in the real case (cf. Section 2.2) in order not to complicate
the notation unnecessarily.

Lemma 2.34. For anyg € X, the functionahg , : Xg(g) — [0, +o0) is homoge-
neous in the sense that
ng ,(v2) = ylng ,@
for all ze Xg(g) andy € R,
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Proor. Let us fix somez € )?R(g) andy € R, v # 0. According to formula (2.40),
we have

g ,(v2) = V2inf{lal| 1€ C nyze X ,(9)}- (2.41)

Applying assertion (iii) of Lemma 2.33 withh = 1/v, we conclude that an element
yzbelongs to><K W(g)if,and only ifz e XK bl -1(g). Therefore, equality (2.41) can be
rewritten as

nk,g(yz) = \/é inf {|/l| |1eCAyze Xk,ﬂ(g)}
= V2inf {I/ll |1eCAze XR,A/m(g)}

. A -
= Iyl\/ilnf{m | AeCAze Xm/lyl(g)}

= I V2inf{lul | € C A ze K (9)} = ing (D),
as required. O
We are interested mainly in elementsiothat aref-measurable with respect ko
for a suitably choser from X (actually, from K u (-K)] \ K® because otherwise,

by Proposition 2.11, there are iemeasurable elements outsiki&). In this case, it
is convenient to use the following formulae for computation of value (2.40).

Lemma 2.35. Let f € X and let{x,y} c X be some elemenfsmeasurable with
respect taK. Then the formulae

ng f(X +iy) = V2inf{o € [0, +o0) | 39 € [-x, 7] : (2.30)and (2.31)hold} (2.42)
and
ng ¢(x+iy) = inf{r € [0, +o0) | Jw € [-x, 7] : (2.26)and (2.27)hold}  (2.43)
are true.

Proor. By Lemma 2.31, the elemeRrt+ iy is f-measurable with respect kband,
therefore, the value af;  (x + iy) is finite. In view of formula (2.29) established in
the proof of Lemma 2.29, the relation

—/lfA§R X+ iy R /lfA

with 1 = o €” is equivalent to the system of order inequalities (2.30), (2.31). There-
fore, definition (2.40) of the mappiny, ¢ yields the required equality (2.42).

Formula (2.43) is a consequence of (2.42). Indeed, as is shown in the proof of
Lemma 2.29, there is a one-to-one correspondence between systems (2.30), (2.31)
and (2.26), (2.27), with

-2
©

and it sufices to use Lemma 2.34. O
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The best constanmtin relations (2.26) and (2.27) satisfied by the respective com-
ponentsx andy of an f-measurable element+ iy is determined by the value of
functional (2.40). More precisely, we have

Lemma 2.36. Let{f, x,y} c Xand
nk’{(X+ iy) =1 < +oo.
Then there exists ai € [-n, 7] such that relationg2.26)and (2.27)are satisfied.

Proor. The definition of the functionaly ¢ and Lemmata 2.29 and 2.35 yield the
existence of sequenceg);>] C [0, +o0) and k)] € [—7r, 7] such that lim, ;0 rk =
r and the relations

—r¢f sinwk £k X £k rif sinwy, (2.44)
—rxf coswy <k y =k rkf coswk (2.45)

are true for alk € N. The compact real sequenaexf;"; contains a subsequence
(wk; }fj‘i convergent to a numbes € [—-x, 7). Puttingk = Kj in (2.44) and (2.45),
passing to the limit a§ — +co, and taking into account the fact thidtis a closed
subset ofX, we arrive at relations (2.26) and (2.27). |

The following statement is an extension of Lemma 2.24 to the complex case.

Lemma 2.37.Letf € Xandze X. Thenng ¢(2) = 0if, and only ifze K® +iK®.

Proor. Let us suppoose that= x + iy, where{x, y} ¢ K®. According to formula
(2.43) of Lemma 2.35, we have

ng ¢(X+iy) = inf{r € [0, +o0) | Jw € [-7, 7] : (2.26) and (2.27) hold
<inf{r € [0, +o0) | Ho, «} € {-1,1} : —orf <k XV2 Lk of f
and — «rf <k y V2 gk «rf)
<inf {r € [0, +00) | —orf =k X V2 <k orf with someo € (-1, l}}
=inf{lel| @ e RA—af <k xV2 <k af}
= nk 1 (X V2). (2.46)
By virtue of Lemma 2.34, we have
Nk.£(XV2) = V2nk 1(X).

However, in view of Lemma 2.24) ¢(X) = 0 and, therefore, by (2.46), the non-
negative numbeny +(x + iy) is equal to 0.

Assume now thay ¢(x +iy) = 0. By virtue of Lemma 2.36, there exists ane
[-m, 7] such that relations (2.26) and (2.27) are satisfied with0, i. e., 0=k X<k 0
and 0=k y <k 0. This means thdi, y} c K°. i
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Formula (2.40) allows one to construct a natural extensjop: X - [0, +o0] Of
the mappingX > x — nk (X) given by relation (2.13). More preC|ser the following
statement is true.

Proposition 2.38. Let f € X. Then the equality
ng £(X) = Nk, 1(X) (2.47)
is true for all x € X.

Proor. First of all, we note that it dtices to consider the case whdrek 0 be-
cause in the contrary case, by Proposition 2.11, we Xayé) = K and, therefore,
in view of Lemmata 2.24 and 2.37, batR + andng ¢ vanish on the seXk (f).

For the sake of definiteness, we assume fthatx 0. Settingy = 0 in formula
(2.43) of Lemma 2.35, we obtain

ng ¢(X) = inf {r € [0, +o0) | Jw € [-7, 7] : cOSw > 0 and (2.26) holds

= inf {r € [0, +) | Elwe[ ’27 ”] (2.26) holds} (2.48)
Since the mapping sin —f, 5] — [-1,1] is a bijection, we see that (2.48) can be

rewritten in the form
ng ¢(X) =inf{r € [0, +o0) | Fh € [-1,1] : —rhf <k X =k rhf}
=inf{la] € [0, +o0) | —af Sk X =k af},

which, by virtue of (2.13), proves that equality (2.47) is true forxddom Xk (f). In
the case whergis not f-measurable with respect Ko, by Lemma 2.31, both values
are equal tereo. O

Proposition 2.38 is, in fact, a particular case of a more general result. Namely, the
following statement is true.

Proposition 2.39. Let f € X. For arbitrary {x,y} c X which are f-measurable
with respect to the wedd€, the equality

g f(x+iy) = (K 109)2 + (k.1 (1) (2.49)

is true.

Formula (2.49) resembles to some extent the Pythagorean formulangui(),
Nk.f(y), andng ¢(x + iy), respectively, playing the roles of catheti and hypotenuse.
The proof of Proposition 2.39 is omitted.

2.5.4. Measuring rotated elementslin the sequel, we need to compute the val-
ues of the functionah; » on elements of the form'éx + iy), wheret € [-m, 7] is
arbitrary and x, y} XK(f) with somef satisfying the conditiorf ok O.
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Definition 2.40. Given anf € X, we put
R f(x+iy) = [inf & (€' (x +iy)) (2.50)
’ e|l-n,m ’

if {x,y} c X'aref-measurable with respect kg and set formallyR; ¢(x+iy) := +oo
in the contrary case.

It follows from Lemma 2.32 that the right-hand side of (2.50) is finite for arbitrary
{x,y} € Xk(f) andt € [-x, 7] and, thus, Definition 2.40 makes sense.

Lemma 2.41. Let f € X and{x,y} c Xk(f). Then, for an arbitraryp € [-x, 7],
the equality ‘
R f(€¥(x+iy)) = Rg s(x +iy) (2.51)
is true.

Proor. According to formula (2.50), we have
R; f(€¥(x+iy)) = t [inf & (€ (x + iy))
’ e|l-n,m ’
= [inf & AT (x + iy)). (2.52)
€|-n,m ’
Let us take an arbitrary € [-7, 7] and put
t+o+m ift+e<-—-m,
ori=4at+ if —r<t+e¢<m,
t+o-n ift+o>n
for all t from [—x, 71]. Itis clear that{€¥ |t € [-m, 7]} = {1 € C | |1] = 1} for any.
Therefore, equality (2.52) yields
Ry f(€°(x +iy)) = t [inf & (€9 (x + iy))
’ e|l-n,m ’
= [inf & (€' (x +iy)) = Ry s(x + iy).
e|l—-m,m ’ ’
Applying formula (2.51) sequentially, we prove that it is true with arbitrary values of
¢ from [-n, 7). O
Together with Lemma 2.41, the next statement is a basic tool in the proof of The-
orem 3.1 from Section 3.
Lemma 2.42. Let f € X, {X,y} c Xk(f), and
Ri=Rg ¢(X+iy). (2.53)
Then there exist somé.., w.} c [-x, 7] such that the relations
—Rfsinw, sk xcosd, — ysind, ¢ Rfsinw,, (2.54)
—Rfcosw. £k xsind, + ycosd, <k Rfcosw. (2.55)
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hold. Moreover, iR > 0, then there do not exist any numbers (0, R) and{d, &} c
[, 7] for which the inequalities

—(R-&)f sing gk xcosd — ysind <k (R—&)f sind, (2.56)
—(R-&)f cosw <k xsind + ycosd <k (R- &) f cosw (2.57)
would be satisfied.

Proor. Let us fix somegx, y} ¢ Xk(f) and defineR by (2.53). Then
R= inf rg (2.58)

te[-n,x]
wherer; ;= ng ]e(e“(x +iy)) for all t € [—x, n]. By virtue of Lemma 2.32, we have
0<R<+co.
Taking Lemma 2.36 and formula (2.38) into account, we conclude that, with any
t € [-n, nr], one can associate an € [—x, 7] for which

—r¢f sinwy £k xcost — ysint g ry f sinwg (2.59)
and
—r{f cosw; £k ycost + xsint <k ri f coswy. (2.60)
By virtue of (2.58), there exists a sequentg{*; ¢ [-n, 7] such that
lim r, =R (2.61)

m—+oo
Being bounded, this sequence contains a subsequence convergent to ajgegtain
[-7,7]. We can assume, without loss of generality, that such a subsequence has
already been selected and, thus, in addition to (2.61), we have
lim tm= .. (2.62)

m—+oo

On the other hand, the sequenc@mm’:"l C [-n,n] is also bounded and, therefore,
there exists a sequencenf;=; c N such that lim, .« W, = w. With a certain
w. € [-m,n]. Settingt = ty, in (2.59) and (2.60), passing to the limit asends to
+00, and using (2.61), (2.62), and the fact tKais a closed set, we arrive at relations
(2.54) and (2.55) with the above valuesiafandw..

Assume now thaR > 0 and relations (2.56) and (2.57) are satisfied with seme
0 < ¢ < R and{#, @} c [-n,n]. Due to formula (2.43) of Lemma 2.35 and equality
(2.38) from the proof of Lemma 2.32, relations (2.56) and (2.57) implyrthatR—¢
for all t € [-x, 7], whence the estimate

inf rir<R-¢ (2.63)
te[—n,x]
follows. However, by virtue of (2.58), inequality (2.63) yiel&s< R — ¢ and, there-
fore,e = 0. O

The property described by Lemma 2.37 is also true for functional (2.50).
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Lemma 2.43.Letf € Xandze X. ThenRy ¢(2) = 0if, and only ifze K® +iK®,

Proor. The inclusiorz € K¢ +iK® means that the elemenis 0-measurable with
respect tK. In this case, Lemma 2.32 guarantees that so does the elefzamitie
anyt from [-x, 7] and, hence, by Lemma 2.37, it follows thaﬁf(e“z) = 0 for all
t € [-n, n]. Relation (2.50) then yieldR ¢(2) = 0.

Conversely, ifR; ¢(x +iy) = 0, then, by Lemma 2.42, there exists sofhiom
[, 7] such that

0 =k xcos? — ysind £k 0,
0 =k xsind® + ycos? <k O.

According to formula (2.38), this means that the elemétixer iy) is 0-measurable
with respect tK and, thus, by Lemma 2.32, so does the elementy. m]

2.6. Linear operators vanishing on the blade of a wedgefor the sake of brevity,
we introduce the following definition [11].

Definition 2.44. We say that an eigenvalutof a bounded linear operatd :
X — X is substantialwith respect to the wedge (or, shortly,K-substantial if 1 is
non-zero and at least one eigenvector not belongingfte- iK® corresponds to it.

As usual (see, e. g., [5]), by a complex eigenvalueC of a bounded linear opera-
tor A: X — X acting in a real Banach spa¥gthe eigenvalue of its complexification
A=A+iA: X - Xis meant, where

A(x +iy) := Ax+iAy (2.64)

for all {x,y} c X.
Example2.45 All the eigenvalues of a bounded linear operator X — X are
substantial with respect to an arbitrary coné&in

We devote our present study mostly to the linear operatarX — X vanishing
on the blade of a proper wedde i. e., such that

K® c kerA. (2.65)

Example2.46 If K is a cone, then condition (2.65) is satisfied in an obvious way
for every linear operatoh : X — X.

In the general case, the restrictiveness of condition (2.65) imposed on the operator
A grows with the “width” of K© .

Example2.47. Let us consider the set
Cacs([a b, R) = {xe C([ab],R) | ox([a.b] \ Q) C [0, +e0)},

whereQ is a certain subset of]b] such that § b] \ Q is closed, andr € {-1,1}.
The selCq - ([a, b], R) is obviously a closed wedge in the Banach spgaéfa, b], R)
of all the continuous scalar functions on the bounded inteevdd][ This wedge is
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solid because, as one can show, its interior is constituted by the continuous functions
x: [a,b] — R such thatrx([a, b] \ Q) € (0, +).
Consider the operatdk : C ([a, b], R) — C([a, b], R) given by the formula

{
(AX) (t) = f Kt 9x(w®)ds  telah], (2.66)

in which w : [a,b] — [a b] is a measurable function, whereas the function
[a,b] x [a,b] — R is continuous in the first variable and Lebesgue integrable in the
second one. The operatAvanishes on the blade of the wedge, ([a, b], R) when

w satisfies the condition

w([a,b]) c[a b\ Q. (2.67)

Indeed, the blade ofq . ([a b],R) consists of those continuous functiors:
[a,b] — R such that

X(t)=0 forallte[ab]\ Q. (2.68)

If w is such that condition (2.67) holds, théx is equal identically to zero for
every functionx satisfying condition (2.68), i. e., the relatiore (Cqo. ([a, b], R))®
implies thatAx = 0. This means that (2.65) is true f&r = Cq, ([a, b], R) and A
given by (2.66).

Our interest to the property described by condition (2.65) is motivated by the fol-
lowing statement.

Lemma 2.48. Assume thaf : X — X s a linear operator vanishing on the blade
of a wedgeK C X. Then every non-zero eigenvaluefof K-substantial.

Proor. Let 4 be an arbitrary non-zero eigenvalue &f Then there exists some
non-zero element from X such that

Aw = Aw. (2.69)

Assume that, on the contrary,is not K-substantial and, therefore, according to
Definition 2.44, every eigenvectar in (2.69) belongs tk® + iK®. By virtue of
inclusion (2.65), this yielddw = 0, and, hence, by (2.69), = 0, which is impossible
becausev is an eigenvector oh. The contradiction obtained proves our lemman

Assumption (2.65) may seem to be unnecessarily strong because, in fact, it guar-
antees that not onlgomeeigenvectors corresponding to non-zero eigenvalues of
do not belong to the blade &f butall such eigenvectors possess this property. Note
however that, in the theorems of Sections 3 and 4, condition (2.65) cannot be dropped
even in the two-dimensional case (see Example 5.1).

3. UPPER BOUNDS FOR K-SUBSTANTIAL EIGENVALUES

The following theorem provides an upper bound Kesubstantial eigenvalues of
a suficiently wide class of linear operators in a real Banach space
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Theorem 3.1. Let K be a proper wedge iX andA; : X —» X, A : X —» X be
bounded linear operators such that
A1 (K)U A (K) C K. (3.2)
Assume also that the relation

Arf + Axf ¢ af (3.2)
is true with somer € [0, +o0) and f € X for which
feknO, (3.3)
whereH is a certain linear manifold irX satisfying the inclusion
H2im (A - Ay). (3.4)
Then everK-substantial eigenvalug of the operatoA; — A, admits the estimate
11 < a. (3.5)

In (3.1), (3.4), and similar relations, we use the standard notation
A(M) := {Ax]| x e M},

whereM cC X. Recall that the binary relatiorzk. 4" appearing in (3.3) is introduced
on X by Definition 2.16.

Proor oF Theorem 3.1. Let A = o €?, o € (0, +), be aK-substantial eigenvalue
of the complexificatiorA = A; — A, of the operator
A=A - A (3.6)
In view of Definition 2.44 and equality (2.23), there exists an elementx+iy such

that{x, y} c X, {X,y} ¢ K®, and equality (2.69) holds.
We divide the present proof into several parts.

Cramv 1. The element is f-measurable with respect .
Indeed, equality (2.69) means that
ow = 7 Ay, (3.7)
According to formulae (2.38) and (2.64), we have
e Aw = Axcost + Ay sin® + i(Ay cos — Axsind)
and, therefore, (3.7) can be rewritten as the system
oX = Axcosi + Ay sind, (3.8)
oy = Ay cost — Axsind. (3.9)

By virtue of assumption (3.4), it follows from (3.8) and (3.9) tixandy both lie in
H (to prove this, it sffices to use the linearity of the dd). However, according to
Definition 2.12, condition (3.3) means that all the elements frbare f-measurable
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with respect t& and, hence, by Lemma 2.31, the elementy is (f +i f)-measurable
with respect tK.

CrLamm 2. The number
Ri=Rg ¢(X+iy) (3.10)
is strictly positive.

Indeed, by Claim 1 and Lemma 2.41, the right-hand side of (3.10) is a finite num-
ber. Sincgx, y} ¢ K, Lemma 2.37 yield® > 0.

CrLam 3. The elements andy satisfy the equalities
AX = o (xcosd? — y sini), (3.11)
Ay = o (Xsin® + y cosd?). (3.12)
According to formula (2.38), system (3.11), (3.12) is an equivalent form of relation
(2.69) satisfied bw.

Cramv 4. There exist some. andt. from [-r, 7] such that(2.54)and (2.55)are
true for x andy, and there do not exist arfy, ¥} c [, 7] for which the relations

—rf sind <k xcosd — ysind <k rf sing, (3.13)
—rf cosa <k xsind + ycosd <k rf cosa (3.14)
would be satisfied with somes (O, R).
This statement is an immediate consequence of formula (3.10) and Lemma 2.42.
CrLam 5. There is a2 from [—r, ] such that the relations
—aRfsinQ < Axcosd, — Ay sind, <k aRfsinQ, (3.15)
—aRfcosQ <k Axsind, + Ay cosd, <k aRfcosQ, (3.16)
are true, wheréA is given by(3.6).

In view of assumption (3.1), both operatgksand A, preserve order inequalities.
Therefore, relations (2.54) and (2.55), together with Lemma 2.6, yield

-RA f sinw. <k o[Ajxcosd, — Ajysind.] <k RA f sinw,, (8.17)
—RA; f cosw, =k x[Ajxsind, + Ajycosd.] <k RA;f cosw, (3.18)
forall j = 1,2 and{o, »x} c {-1,1}. Summing the two relations obtained from (3.17)

with j = 1,0 = 1andj = 2,0 = -1, respectively, we obtain
—R(A1 + Ap) f sinw,. =k (A1 — Ag)xcosd, — (A1 — Ag)y sind, <k R(A1+ A2)f sinw.,
i. e.,

—R(A1 + A2) f sinw, £k Axcosd, — Ay sind, <k R(A1 + A2)f sinw..  (3.19)

In a similar manner, putting in (3.18)= 1,x = 1 andj = 2, = —1 and summing
the resulting two relations, we get

—R(A1 + A) f cosw,. £k Axsind, + Ay cosit, sk R(A1 + A)f cosw...  (3.20)
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Let us consider the following four cases.
Casel. sinw. > 0 andcosw, = 0.

Using assumption (3.2) in relations (3.19), (3.20) and puttng w., we arrive
immediately at (3.15), (3.16).

Case2. sinw, > 0andcosw, < 0.

Recall that, by assumptiori, >k 0 and, due to condition (3.1 f + Axf 2k O.
In view of assertion (iii) of Lemma 2.7, relation (3.20) and Claim 2 imply that, in this
case,

0 <k Axsind, + Ay cosd, <k 0. (3.22)
whereas the term?q + Ay) f sinw., by virtue of (3.2), admits the estimate

(A1 + Az)f Sinw, <k af.

Therefore, (3.15) and (3.16) are satisfied vidh= 7.
Case3. sinw, < 0andcosw, > 0.
Relation (3.19) now yields

0 <k Axcosd, — Aysind, < 0 (3.22)
and, similarly to Case 2, we conclude that (3.15) and (3.16) holdith O.

Cased. sinw, < 0andcosw, < 0.

A reasoning analogous to those presented above show that, in this case, system
(3.19), (3.20) has form (3.21), (3.22) and, therefore, relations (3.15) and (3.16) are
satisfied both witi2 = 7 andQ = 0. This proves our Claim 5.

Having established the facts above, we now turn to the proof of estimate (3.5).

According to Claim 3, the componentsandy of the eigenvectow of A satisfy
equalities (3.11) and (3.12). Therefore,

Axcos, — Ay sind, = o(Xcosd — y sind) cosd,. — o(xsind + y cosy) sind,

= p[cosd sind, — sind sind,]X
— o[sin® cosd. + cosd sind.]y
= poXCos + ¥.) — oy Sin(® + 9.
and, similarly,
AXxsind, + Ay cost,. = o(xcos? — y sind) sind, + po(xsind + y cos?) cosd.
= p[cos? sind, + sind cosd. ] X

+ o[cos® cosd, — sind sind.]y
= oxsin(@ + ¥..) + oy cos + 9..).
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Applying these formulae to the corresponding expressions in (3.15) and (3.16) and
taking the inequality > 0 into account, we obtain

R, . _ R, .

~ ¢ sin0 <k Xcos + ) —ysin@ + 9.) <k mAAY: sinQ, (3.23)
© ©
R . R

—%f cosQ =k xsin@ + 9.) + y cos@ + ¥.) =k %f cosQ. (3.24)

System (3.23), (3.24), obviously, has form (3.13), (3.14) Witk ¥ + 9., & = Q,
andr := aR/p. In view of Claim 4, it now follows that

oR >R

Q
whence, by Claim 2, we arrive at the inequality< «. Recalling thato = |4, we
conclude that the required estimate (3.5) holds. O

The assumption thdt should lie inK and be diferent from zero in Theorem 3.1
is motivated by Proposition 2.22.

Remark3.2 A linear operatorA : X — X admits representation in form (1.4),
whereA; andA; are linear mappings preserviig if and only if there exists a linear
operatorB : X — X such that

B(K) c K (3.25)
and
Ax =k Bx forall x € K. (3.26)

Indeed, (1.4) implies that
AX Sk ArX Sk ArX + Aox

for all x such thatx 2k 0 and, therefore, one can ®t= A; + A,. Conversely, it
follows from (3.25) and (3.26) that the operatyr .= B — A preserves the wedgé
and, thus, it remains to pét := Bin (1.4).

It should be noted that, in the case where the spaiseinfinite-dimensional, one
cannot claim that every bounded linear opergior X — X admits representation
(1.4) with bounded linear mappings : X —» X andA; : X — X preservingK.

In particular, in the case whek€ is a cone which does not possess the property of
normality, the classical Theorem 2 of [8] ensures the existence of a continuous (even
finite-dimensional) linear operatdx : X — X that cannot be represented in form
(1.4) with bounded : X — X, k = 1, 2, satisfying condition (3.1).

4. A THEOREM ON THE SPECTRAL RADIUS OF A COMPACT OPERATOR

Theorem 3.1 of Section 3 can be applied to prove the following statement which
seems to be useful in studies of the solvability of various linear equations with com-
pact operators.
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Theorem 4.1. Let X be a Banach space over the fidd K be a proper wedge in
X,andA; : X — X, Ay : X - X be completely continuous linear operators leaving
the wedgeK invariant and satisfying the condition

K¢ ¢ ker(A1 — Ap) . 4.1)

In addition, assume that relatiof8.2) is satisfied with some constamte [0, +oo)
and element € X possessing the property

f EK;im (Ar-Ap) 0. (4.2)
Then the spectral radius of the operatdy — A, admits the estimate
r(Ar—Ax) <a (4.3)

Proor. It follows from the Riesz—Schauder theory (see, e. g., [2]) that, due to the
complete continuity of the operatég — Ay, its spectrum consists of countably many
eigenvalues.

It is easy to see that condition (4.2) implies the existence of a linear manifold
H ¢ X satisfying inclusion (3.4) and such that relation (3.3) holds for the element
f (one can puH = im (A1 — Az)). Assumption (4.1), by virtue of Lemma 2.48,
implies that every non-zero eigenvalue of the operator A; is K-substantial in the
sense of Definition 2.44. Therefore, under the conditions assumed, Theorem 3.1 can
be used.

Application of Theorem 3.1 guarantees that an arbitrary non-zero eigenvalue
the operatoA; — A, admits estimate (3.5). Considering the least upper boui] of
in the left-hand side of relation (3.5) with respect to all the non-zero eigenvaloies
A1 — Ay, we arrive immediately at inequality (4.3). O

Recall that the binary relatiors*k. " appearing in condition (4.2) has been intro-
duced by Definition 2.16.

Remark4.2 The complete continuity ofy — Az in the proof of Theorem 4.1
is used only to guarantee that this operator has discrete spectrum (in fact, an upper
bound for the discrete spectrum is established under the conditions specified). Note
also that, in the case whekeis a solid and normal cone, the assertion of Theorem 4.3
can also be proved by using Theorems 5.3 and 5.5 of [7].

Corollary 4.3. LetK c X be a wedge andy : X —» X, A, : X —» X be
completely continuous linear operators leaving the welg@variant, satisfying
condition(4.1)and such that relatio3.2)is true with somer € [0, +o0) and element
f € X possessing the property

fexO. (4.4)
Then the spectral radius of the operatyy — A, admits estimaté4.3).
Proor. Inview of Lemma 2.13, assumption (4.4) ensures fhadssesses property

(4.2). Therefore, in order to obtain the required statement, itfiscgnt to apply
Theorem 4.1. O
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For the sake of completeness we note that, by Lemma 2.19, assumption (4.4) is
satisfied, in particular, in the classical case wheis solid and the elemeritbelongs
its interior.

Remark4.4. Condition (4.1) for the operatok : X — X in Theorem 4.1 and
Corollary 4.3 is satisfied automaticallyHf is a cone.

Corollary 4.5. If A: X — Xis a completely continuous linear operator leaving
invariant a wedgeK and, moreover, satisfying conditig@.65)and the relation

Af < of (4.5)

with some constant € [0, +o0) and element € X possessing properii.4), then
the estimate

r(A) <a (4.6)
is true.

Proor. Corollary 4.5 is an immediate consequence of Corollary 4.3 in the case
whereA; = AandA; = 0. O

Remark4.6. A number of theorems that, for a positive operafopreserving a
coneK c X, allow one to deduce estimate (4.6) from relation (4.5) are well-known,
e. g., from [6, 7, 15]. Apart from those relying on thepositivity of the operator, in
the results mentioned, the elemenappearing in (4.5) is supposed either to lie in
the interior ofK (Theorem 16.2 (b) of [6]) or to be its quasi-interior element (The-
orem 16.2 (a) from [6]). It is important to note that condition (4.2), which also ex-
presses a certain kind of the strong positivibf the elementf and, under these
circumstances, replaces the two conditions mentioned, depends on the image space
of the operatoA; — A;.

Corollary 4.3 also implies an analogue of Corollary 4.5 for the “negative” opera-
tors.

Corollary 4.7. Let A : X —» X be a completely continuous linear operator such
that A(—K) € K and, moreover, the relation

Af 2 —af

be satisfied with some € [0, +o0) and f € X possessing properti¢.4). Then the
spectral radius oA admits estimaté4.6).

Proor. It suffices to putA; = 0 andA; = —Ain Corollary 4.3. O

Corollary 4.10 established below is an example of application of Theorem 4.1 with
H different fromX. Prior to its formulation, we introduce a definition.

*See Section 2.3.
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Definition 4.8. Let K be a wedge irX and f be an element frorX. An operator
A: X — Xis said to bef-boundedwith respect tK if, for every x € X, there exists
a constang € (—oo, +00) such that

-pf <k Ax=k Bf.

In other words A is f-bounded if the elemenix is f-measurable for alk. It
follows from Proposition 2.11 that, in the pathological cases whetg G <k 0 or
f is incomparable with zero, every operafowhich is f-bounded with respect td
has the property il ¢ K°.

Remark4.9. An operatorf-bounded with respect t is, in particular,f-bounded
from above in the sense of the definition from [5], Chap§2, The converse state-
ment is not true.

Corollary 4.10. Let f 2k 0 be a given element and : X — X, k = 1,2, be
completely continuous linear operators leavfing the welgevariant, satisfying
condition(4.1), and f-bounded with respect td.

Then the existence of a non-negative constdot which relation(3.2)is satisfied
implies estimat¢4.3) for the spectral radius of the operatég — Ax.

Proor. Setting
H = Xk (f), 4.7)
we see that condition (3.4) is satisfied due to tHieoundedness o&; and A, with
respect tK. By Lemma 2.14, the elemefftsatisfies relation (2.8) and, hence,

f E—K;XK(f) 0.

Therefore, condition (3.3) holds witH given by (4.7), and it remains to apply The-
orem 4.1. O

5. IMPORTANCE OF coNDITION (4.1)

As is seen from the proof of Theorem 4.1, the applicability of statements-on
substantial eigenvalues is guaranteed by condition (4.1). It is natural to expect that
estimating the spectrum of an operator on the base of assumptions of type (3.2) is not
possible any more if one admits the existence of a non-zero eigenvalue which is not
K-substantial, and imposes no additional conditiong\on

The following example [11] shows that the assumption on the fulfilment of condi-
tion (4.1)in Theorem 4.1 is essential and, generally speaking, cannot be omitted.

Examples.1 Let us consider the set

K = {(Xl) X1 >0, Xp € ]R}. (5.1)
X2

Obviously,K is a solid wedge iX := R?, and the blade ok has the form

< ={(0):cer}.
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It is not difficult to verify that the linear operatok given by the matrixA =
(81 312) leaves invariant the sét given by (5.1) if, and only if
a1 >0, a;p=0. (52)

Furthermore, one can show that, under condition (BA2ganishes oK if, and only
if

axp =0. (5.3)
Avector f = ( g) belongs to the interior o if, and only if
f, > 0. (5.4)

whereas the corresponding condition (4.5) is equivalent to the ineqadlity a1 f1,
which, in view of (5.4), means that

a > ail. (5-5)

If condition (2.65) or, which is the same in our case, equality (5.3) is violated, then
assumption (4.5), generally speaking, cannot guarantee the validity of the estimate
r(A) < a for the spectral radius oA. Indeed, it is clear from (5.2) tha(A) =
max{az1, [a2|} and, hence,

I‘(A) > |aog). (5.6)
However, if the inequalities
|azol > >a31 >0 (5.7)
hold, then the assertion of Corollary 4.5 in the case considered would have the form
r(A) < a, which is impossible in view of (5.6) and (5.7).

Thus, condition (2.65) Corollary 4.5 (and, therefore, condition (4.1) in Theo-

rem 4.1), generally speaking, cannot be dropped.

6. UNIQUE SOLVABILITY OF LINEAR EQUATIONS

Theorem 4.1 allows one to obtaiffieient conditions under which the linear equa-
tion
X =A1X— AoX+Q, (6.1)
whereA; and A, are linear operators, possesses a unique solution for an arbitrary
elementy from X.

Corollary 6.1. Let X be areal Banach spac& c X be awedge, and; : X — X,
i = 1,2, be completely continuous linear operators leaviblgvariant and satisfying
condition(4.1). In addition, assume that relatidi3.2)is satisfied with some constant
a € [0, 1) and elemenf € X possessing properiy.2).

Then equatiorf6.1) is uniquely solvable for arbitrarg € X, and its solutionx is
represented by the convergent Neumann series

x=) (A~ P)q. (6.2)
k=0
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Proor. It suffices to notice that, by virtue of Theorem 4.1, the conditions assumed
guarantee that the spectrum of the operator A, is contained in the closure of the
unit disk inC. O

In the cases where the fact of convergence of series (6.2) is less important, one
may prefer to use the following

Corollary 6.2. LetK be a proper wedge in a real Banach spatandA; : X — X,
i = 1,2, be bounded linear operators leaving invariant and satisfying condition
(4.1). Assume that relatio(B.2) is true, wherex € [0,1) and f € X is an element
relation (4.2)is satisfied.

Then the homogeneous equation

X = A1X — AoX (6.3)

has no non-trivial solutions. If, moreover, the operatétsand A, are such that
A1 — A is a Fredholm operator of inde@, then equatior{6.1) is uniquely solvable
for an arbitraryq € X.

Proor. In view of assumption (4.1) and Lemma 2.48, it follows from Theorem 3.1
that operator (3.6) has no eigenvalues outside the open intefd)and, in partic-
ular, the number 1 is not an eigenvalue for the operator mentioned. Therefore, zero
is the unique solution of the homogeneous equation (6.3). The unique solvability of
equation (6.1) for ang is guaranteed by the assumption tAat— A, is a Fredholm
operator of index O. O

Corollary 6.2 allows one to obtain the following statement.

Corollary 6.3. LetK be a proper wedge in a real Banach spatandA; : X — X,
i = 1,2, be bounded linear operators leavikginvariant, satisfying the condition

K® C kerA; nkerA,. (6.4)

Assume also that relatio8.2)is true, wherex € [0, 1) is a constant and € X is an
element possessing prope(t2). Then the homogeneous equation

X = 01A1X + 02AX (65)
has no non-trivial solutions for any valués,, o>} C {-1, 1}.
If, in addition, for soméo-1, o2} C {—1, 1}, the mappingr1A;+o2A; is a Fredholm
operator of inde)0, then the equation
X = 01A1X + 02A2X + Q, (6.6)
is uniquely solvable for an arbitrarg € X.

Proor. Let us define the operatof : X — X, i = 1,2, by putting

~ 1+ 1+
1 .= 20-1 A+ 20-2 Ao (67)
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and

~ 1-01 1-o0>
A = A
2 2 1+ >

One can verify that the relations

Ao. (6.8)

O'1A1+0'2A2 = Al—/&z
and
A1 + A2 = Al + Az (6.9)

are true. Itis also easy to see from (6.7) and (6.8) that both opefstarsd A, leave
invariant the wedg&.
Assumption (6.4) guarantees the fulfilment of the inclusion

K® C ker (A — Ay).
Moreover, by virtue of (6.9), condition (3.2) can be rewritten as

At + Aot <k af.
We have thus shown that Corollary 6.2 can be applied #itandA; replaced byAs
andAy, respectively. O

7. AN EXAMPLE OF A LINEAR INTEGRAL EQUATION

We illustrate the idea of the results above on an example. Let us consider the
problem on the continuous solutions of the equation

X(t) = fo 1h(t,s)x(w(s))ds+ q), te[o,1], (7.1)

whereq : [0,1] — R is continuous, the functiow : [0,1] — [0, 1] is measurable,
h(t,-) : [0,1] — R is Lebesgue integrable for dlk [0, 1], andh(-, s) : [0,1] —» R is
continuous for almost everyfrom [0, 1].

7.1. The general argument deviation.The techniques of Section 4 allow one
toobtain the following theorem.

Theorem 7.1. Let there exist a non-negative continuous function[0, 1] - R
such that

: 1 1
t\e/[r(ﬂ]@ff o) fo [h(w(t), s)|ds< +oo (7.2)
and
h(w(t),s)=0 fora.e.tely ,anda.esel0,1], (7.3)
where

I'yw:={tel0,1] | y(w(t)) =0}. (7.4)
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Moreover, assume that the inequality

1 1
vrai max ——— h(w(t), 9)| Y (w(s)) ds< 1 7.5
vraimax s [ (w0, 91w((9) (7.5)
is satisfied.
Then equatior(7.1) possesses a unique solution for any continuous function
[0,1] > R.

Proor. Equation (7.1) can obviously be rewritten in form (6.1), where the opera-
tors A, i = 1,2, in the Banach spac¥ := C([0, 1], R) of all the continuous scalar
functions on [Q1] are introduced by the formulae

(AX(D) = fo 1max{(—1)i+1h(t,s),O}x(w(s))ds te[0,1, i=12 (7.6

for any continuoux : [0,1] — R. Clearly, each of these operators leaves invariant
the wedge

J, ={ueC(0,1],R) | u(w(t)) = O fora. et € [0, 1]}.
It is easy to show that mappings (7.6) are completely continuous linear operators
possessing property (4.1) with respect to the wekige 7,,.

Let 4, », be the set of all the continuous functioxs [0, 1] — R for which there
exists a hon-negative constgitsuch that the estimate

IX(@®)l < Bxip(w(b))
is true for a. et € [0, 1].

It is easy to see thaf), , is a linear manifold irC([0, 1], R). Assumptions (7.2)
and (7.3) and formula (7.6) imply that, for amyfrom C([0, 1], R), the estimate

| (ArX) (w(1)) = (A2X) (WD) < Y(w(1) A [max IX(@)I (7.7)
is true at a. et from [0, 1] \ [y ,, where
_ . 1 L
A= t‘é{&‘h@fﬁf Y(w(t)) fo Ih(e(t). 9 ds (7.8)

Indeed, letx € C([0, 1], R) be arbitrary. According to (7.6), we obtain
1
(A1) (w(t)) — (A2X) (w(t)] = ‘ fo h(w(t), 5) X(w(9)) dS(

1
< maxix@ [ (.9 xw(@)ids (79)
£€[0.1] 0
fora. e.t € [0, 1]. For almost alt ¢ Ty ,,, we havey(w(t)) # 0 and, thus, by (7.8),

1
fo Ih(@(®). 9 X(@(9) ds < Ap(w(t),
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which, together with (7.9), yields (7.7). Moreover, assumption (7.3) guarantees that

(A1X) (w(1)) = (A2X) (w(1)) (7.10)
fora.e.t € Iy ,. Therefore, estimate (7.7) is true almost fortaitom the entire
interval [Q 1], not only those lying outside the dgf .

This means that condition (3.4) is satisfied with the above definitioAs ahdA;
andH := 6y, .
Furthermore, the functiop satisfies the condition

V&%, 0, (7.11)

which means that (3.3) holds with:= ¢ andK := .%#,,. Indeed, according to Def-
inition 2.16, relation (7.11) means that, for anyrom %, ., there exists a constant
B > 0 such that
X))l < B (w(t)
at almost every point from the interval [01]. However, the above property is an
immediate consequence of the definition of theggt,.
Finally, condition (7.3) and inequality (7.5) guarantee that

f1|h(w(t), 9l (w(s)ds< ay(w(t)) fora.e.te]0,1], (7.12)
0
where

= yaimax 2 I, v s

and, by (7.5)@ < 1. In view of (7.6), relation (7.12) can be rewritten in form (3.2)
for K := J7,. Applying Theorem 4.1, we conclude that 1 is a regular value for the
operator (3.6) corresponding to the given problem. O

The above theorem implies, for example, the following statement.

Corollary 7.2. Assume that, for certaim € [0,1] andy > 0, the functionsh :
[0,1]? - Randw : [0,1] — [0 1] satisfy the conditions

vraimax ——— f lw(s) — 717 |h(w(t), 9)lds < 1, (7.13)
te[0,1]\w1(7) Iw(t) -1l
and
vrai max ——— h(w(t), s)|ds < + 7.14
te[0,1\w 1(r) Iw(t) | f Ih(w(®). s) " (7.14)
In the case where
mesw 1(7) > 0, (7.15)
assume, in addition, that
h(r,s) =0 fora.e.se|0,1]. (7.16)
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Then equatioli7.1)has a unique solution for any continuous functipn[0, 1] — R.
Proor. It suffices to apply Theorem 7.1 with
Y(t) = t—1, t€[0,1],
in which case set (7.4) is given by the formula
Iyow=1{tel[0,1]]w()="1}.

Assumption (7.3) of the theorem mentioned is satisfied in this case. Indeed, if the set
w™1(7) has zero measure, then property (7.3) is obvious, whereas in the case where
(7.15) is true, condition (7.3) is satisfied due to assumption (7.16). O

Remark7.3. If the functionw : [0, 1] — [0, 1] possesses the property
i mi - 7.17
vrtil[lO T}lmw(t) 7| >0, ( )

then condition (7.14) of Corollary 7.2 is a consequence of its assumption (7.13).
Indeed, it follows from (7.13) and (7.17) that

1 1
vrai max —f Ih(w(t), s)|ds
te[0.1)\w () [w(t) 0

< 1 vraimax ———— f lw(s) — 7" |h(w(t), s)|ds< —

& te[0,1\wL(r) Iw(t) -1l

wheree := vrai mineo 1) lw(t) — 7|. Therefore, relation (7.14) is true.

Remark7.4. Condition (7.13) of Corollary 7.2 is unimprovable in the sense that
the corresponding non-strict inequality

vraimax ——— f lw(s) — 77 |h(w(t), 9)lds < 1. (7.18)
te[0,1]\w1(7) Iw(t) 7|

does not guarantee the unique solvability of equation (7.20) for all contirmolns

order to show this, it is gficient to consider the simplest functional equation

X1 = x(®) + q(t),  te[0,1], (7.19)

whered is a given point from [01] andq : [0,1] — R is a continuous function.
Obviously, equation (7.19) can be rewritten as (7.1) wifl) := ¢ andh(t,s) ;= 1

for all t and almost everg from [0, 1]. Equation (7.19) has no continuous solutions
for any continuous functioq : [0, 1] — R satisfying the inequalitg() # 0. Nev-
ertheless, the corresponding condition (7.18) is true in the form of an equality with
arbitrary? # v and non-negative. Note that, fory = 1, one can also refer to the
example of equation (7.28) from Remark 7.7.
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7.2. The case of a power transformation of argumentFor instance, in the case
of the equation

X(t) = fo 1h(t,s)x(s“)ds+ q), telo,1], (7.20)

wherea € (0, +) is a constant and : [0,1] — R is a continuous function, the
following statement is true.

Corollary 7.5. Assume that there exists some [0, 1] for which the conditions

S f |s* — 7" |h(t, s)lds< 1 (7.21)
te[0,1]\(7) |t—1-|7

and

f Ih(t, | ds < +oo (7.22)

S
te[o, 1]\{7 ylt— TIV

are satisfied with a certaiy € [0, +o0). Then equatior{7.20)is uniquely solvable
for any continuous functioq : [0, 1] — R.

Proor. Obviously, assumption (7.21) implies that

sup fls“ 7| |h(t%, g)lds< 1,

tefo.a)\ (g7 It TV

which means that condition (7.13) is satisfied with

w(t) =17, te[0,1]. (7.23)
In view of (7.22), condition (7.14) holds witt given by (7.23). Thus, Corollary 7.2
can be applied. O

The following statement gives somewhat simpler but more restrictive conditions
suficient for the solvability of equation (7.20).

Corollary 7.6. Equation(7.20)has a unique continuous solution for any continu-
ousgq, provided that the inequality

. 1
vraimax sup _ - (7.24)
<01 e =71 20710 — (@ + D)7+ 1
is satisfied with some < [0, 1].
Proor. In view of (7.24), there exists&e [0, 1) such that
’ 6(a+1) (7.25)
t-7 _207'1+%—(a+1)7+1
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for almost everys € [0, 1] and allt € [0,1] \ {r}. Using estimate (7.25) and taking
into account the identity

f €% — 7]dé = 20" +1 — L (7.26)

we conclude that

= f €% — 7] h(t, &) d¢ < f l€* — Tldfvral max

for everyt different fromr, i. e., condition (7.21) is satlsfled with .= 1. More-
over, by virtue of (7.25), condition (7.22) is satisfied with this value.oApplying
Corollary 7.5, we obtain the required assertion. O

( )<6<1

Corollary 7.6 implies, in particular, that equation (7.20) is uniquely solvable if
vrai max sup t™|h(t, s)| < @ + 1. (7.27)
s[0.1]  te(0,1]
It should be noted that (7.27) is weaker than the condition
vrai max sup t™ 1 |h(t, 9)| < 1,
s[0.1]  te(0,1]

which is obtained by using the standard techniques (e. g., Theorem 5.5 of [7] with
E = C([0,1],R), K defined as the cone of non-negative functigps= 1, and the
operatorA given by the expression in the right-hand side of (7.20)).

Remark7.7. None of conditions (7.24) and (7.27) can be weakened. Indeed, con-
sider the equation

_ 1

x(t) = —e+ it f xsds  teo,1], (7.28)
2at™e —t(@+ 1) +1

wherea € (0, +o0) andr € [0, 1] are arbitrary constants. Obviously, equation (7.28)

has form (7.20) with

(a + D)t

2atta —T(a+1)+1

for all t and almost everg from [0, 1]. Moreover, due to formulae (7.26) and (7.29),
we have

h(t, s) := (7.29)

a/+1

vrai max sup
s<0.1]  tefo, 1]\ 7) t— " QartE_ (@+1)7+1

However, the homogeneous equation (7.28) has the non-trivial solution

Dit -
xt) = —e¥Dt=d
a7t —T(a/+1)+l
Thus, we see that condition (7.24) is unimprovable. In order to show the optimality
of condition (7.27), it is sfiicient to putr := 0 in (7.28).
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