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1. I

Many concrete problems of various nature, where the question of uniqueness of
a solution is essential, as is well-known, lead one to the study of regular values of a
certain bounded linear operator. Since it is always natural to try to get some useful
information on the base of as few initial data as possible, is appears that estimates of
the spectral radius of an operator which are derived from certain relations involving
its value on a single element only, should be of the best imaginable efficiency.

There is a vast literature devoted to this kind of estimates of spectra of linear
operators that are positive with respect to a cone in a Banach space (see, e. g., [6,7]).
The main idea of such statements, dating back to O. Perron, P. Jentzsch, P. Urysohn,
L. Collatz, and M. Krein, was developed by many authors (see, e. g., [3, 6, 7, 10, 13,
15]).

The conditions imposed on the operator and the space where it acts vary as well as
the assumed properties of the chosen element do. For example, the spectral radius of
A admits the estimate

r(A) ≥ γ, (1.1)

whereγ is a given positive constant, on the assumption [6] thatA is a bounded linear
operator leaving invariant a coneK and such that the relationAg − γg ∈ K is true for
a certain elementg ∈ (K − K) \ (−K). On the other hand, the numberr(A) satisfies
the inequality

r(A) ≤ γ (1.2)

provided thatA (K) ⊆ K, K is a solid normal cone, and the inclusion

γg − Ag ∈ K (1.3)

is true for some interior elementg of K [7]. It is natural to find out that obtaining
the upper bounds for the spectral radius is more difficult, that a relation of type (1.3)
implies (1.2) only under additional conditions onA andK, and that these additional
conditions are stronger than those guaranteeing a similar estimate (1.1) from below.

In this paper, we establish a new theorem of the kind indicated for linear mappings
majorised by linear operators preserving a preordering which may not be a partial
ordering (Section 4). More precisely, we obtain an efficient upper bound for the
spectral radius of a completely continuous linear mappingA : X → X representable
in the form

A = A1 − A2, (1.4)

whereX is a Banach space with a wedgeK (which, generally speaking, may not
be a cone), and the operatorsA1 andA2 leaveK invariant. The proof of the result
mentioned (namely, Theorem 4.1) uses an inequality satisfied by the so-calledK-
substantial eigenvalues ofA and established in Section 3. Note that, in the theorem
mentioned, the property expressing a certain “strong positivity” of a test elementg
from the corresponding relation (1.3) depends upon the structure of the image space
of the operatorA (see Remark 4.6).
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Theorem 4.1 is estabished under the condition that operator (1.4) is completely
continuous. This assumption is not unnatural because our present study of completely
continuous linear operators in a preordered Banach space is motivated mainly by the
related problems arising in the theory of functional differential equations, and to a
boundary value problem for a linear functional differential equation, a compact linear
operator is usually associated. For example, the set of absolutely continuous solutions
of the homogeneous initial value problem

u′(t) = p(t)u (ω(t)) , t ∈ [a,b],

u(τ) = 0,

obviously, coincides with that of the equation

u(t) =

∫ t

τ
p(s)u (ω(s)) ds, t ∈ [a,b].

The linear operator

C ([a,b],�) 3 u 7−→
∫ ·

τ
p(s)u (ω(s)) ds,

as is easy to show, is a compact self-mapping of the spaceC ([a,b],�) of contin-
uous functions on the interval [a, b], wheneverp : [a,b] → � is integrable and
ω : [a,b] → [a, b] is measurable.

The paper is organised as follows. Section 2 contains some definitions and prelim-
inary results. In Section 3, we establish an estimate for the so-calledK-substantial
eigenvalues (see Definition 2.44) of a bounded linear operator in a Banach space
with a wedgeK. The main Theorem 4.1 of Section 4 provides a convenient upper
bound for the spectral radius of a completely continuous linear operator vanishing on
the blade of the wedgeK containing elements that are strongly positive in the sense
of Definition 2.12. Finally, in the last Section 7, Theorem 4.1 is applied to obtain
conditions sufficient for the solvability of certain integro-functional equations.

2. W  B       

In this section, we recall the basic definitions related to wedges in Banach spaces,
introduce some notation and definitions, and establish a number of statements relied
upon in the subsequent sections. Throughout the rest of this paper,X is a Banach
space over the field�.

2.1. Wedges and related preorderings.A closed subsetK of X is said to be a
wedge(see, e. g., [6]) if

α1K + α2K ⊆ K (2.1)

for all {α1, α2} ⊂ [0,+∞), where, as usual,α1K+α2K :=
{
α1x1+α2x2 | {x1, x2} ⊂ K

}
.
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In what follows, we assume implicitly that the wedgeK is proper, i. e., is different
from both the singleton{0} and the entire spaceX, for there is no meaningful theory
in those two extreme cases.

Remark2.1. In the original terminology introduced by M. Krein [10], a closed set
satisfying condition (2.1) is called alinear semigroup.

The following standard definition introduces a natural preordering in a spaceX
with a wedgeK.

Definition 2.2. The relationx1 5K x2 is said to be satisfied if, and only ifx2− x1 ∈
K.

We also writex1 =K x2 if, and only if x2 5K x1. Note that the relationsx1 5K x2

andx1 =K x2, generally speaking, do not imply the equalityx1 = x2.

Definition 2.3. The setK ∩ (−K) is referred to as theblade[6] of the wedgeK.

For the sake of brevity, we shall denote the blade of the wedgeK by the symbol
K^:

K^ := {x ∈ X | x =K 0 ∧ x 5K 0} . (2.2)

Remark2.4. It is obvious from condition (2.1) and definition (2.2) that the blade
of an arbitrary wedgeK is a closed linear subset ofK. One can readily show thatK^

coincides with the maximal linear subspace contained inK.

Definition 2.5. We writex1 �K x2 if, and only if eitherx1 5K x2 or x1 =K x2.

The relation�K is obviously reflexive and symmetric.

2.2. Measurable elements of a Banach space.Let f be an element fromX, β be
a real constant, andXK,β( f ) be the set defined as follows:

XK,β( f ) := {x ∈ X | −β f 5K x 5K β f } . (2.3)

2.2.1. Basic properties of the setsXK,β( f ). In the sequel, we need some proper-
ties of sets (2.3).

Lemma 2.6. Let β be a fixed real number. Then an elementx from X belongs to
the setXK,β ( f ) if, and only if−x ∈ XK,β ( f ).

P. Due to the symmetry of the left-hand and right-hand terms, the inequality

−β f 5K x 5K β f (2.4)

is equivalent to the relation
−β f 5K −x 5K β f , (2.5)

whereas the latter means that−x ∈ XK,β ( f ). �

Lemma 2.7. The following assertions are true:

(i) XK,0( f ) = K^ for all f ∈ X;
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(ii) XK,β(0) = K^ for anyβ ∈ �;
(iii) The setXK,β( f ), whereβ , 0 and f , 0, is non-empty if, and only ifβ f =K 0;
(iv) If β f =K 0, thenXK,β( f ) ⊇ K^;
(v) If f ∈ K^, thenXK,β( f ) = K^ for all β ∈ �;
(vi) XK,β( f ) \ K^ , ∅ if, and only ifβ f =K 0 andβ f < K^.

P. Assertions (i) and (ii) are obvious from (2.3). Let us verify assertion (iii).
Indeed, letx belong toXK,β( f ). This is true if, and only if (2.4) holds or, which is
the same (see Lemma 2.6), relation (2.5) is satisfied. Combining (2.4) and (2.5) and
using property (2.1) ofK, we obtain

−2β f 5K 0 5K 2β f ,

i. e.,β f =K 0. Conversely, ifβ f =K 0, then, in particular,

−β f 5K β f 5K β f .

This means that (2.4) is satisfied withx = β f , i. e.,β f ∈ XK,β ( f ).
To prove assertion (iv), it is sufficient to note that ifβ f =K 0, then (2.4) is true for

all elementsx satisfying the relation 05K x 5K 0.
Let f ∈ K^ be arbitrary. By (iv), we haveK^ ⊂ XK,β( f ) for all β ∈ �. On the

other hand, ifx ∈ XK,β( f ), then, according to (2.4), we obtainx ∈ K^ becauseβ f is
also an element ofK^. Thus, assertion (v) is true.

Finally, assertion (vi) is obvious from (iii), (iv), and (v). �

Assertions (i) and (ii) of Lemma 2.7 show that there is no much sense to consider
the setsXK,β( f ) with β f = 0 because, in that case, they consist solely of those ele-
ments ofX which are 0-measurable with respect toK in the sense of Definition 2.8
given below.

2.2.2. The definition of f -measurability. For the sake of brevity, we shall use
the following

Definition 2.8. An elementx from X is said to bef -measurable with respect toK
if there exists a real constantβ such thatx ∈ XK,β( f ).

In other words,x is f -measurable with respect to the wedgeK whenever (2.4)
holds for someβ.

Remark2.9. Definition 2.8 differs from a similar notion introduced in [10] be-
cause the negative values ofβ are allowed in (2.4). For the purposes of this paper, the
definition mentioned seems to be advantageous due to the need to consider complex-
ifications (see Section 2.5 below). Note also that, according to Definition 2.8, the set
of f -measurable elements is never empty (see Proposition 2.11).

Definition 2.10. For every fixedf ∈ X, the set of all the elements ofX that are
f -measurable with respect toK will be denoted byXK ( f ).
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Clearly, XK ( f ) :=
⋃
β∈� XK,β ( f ) . Moreover, it follows from Lemma 2.7 that, in

fact,
XK ( f ) =

⋃

β∈�: β f=K0

XK,β ( f ) (2.6)

for any f ∈ X.

Proposition 2.11. For any f ∈ X, the setXK( f ) is a linear manifold containing
K^. Furthermore,XK( f ) , K^ if, and only if the elementf is such thatf �K 0 and
f < K^.

P. The setXK ( f ) obviously satisfies the condition

α1XK ( f ) + α2XK ( f ) ⊂ XK ( f )

for all {α1, α2} ⊂ [0,+∞) and, therefore, Lemma 2.6 guarantees that it is a linear
manifold.

According to Definition 2.10 and assertion (i) of Lemma 2.7, we haveXK( f ) ⊃
XK,0( f ) = K^. Furthermore, equality (2.6) yields

XK ( f ) \ K^ =
⋃

β∈�: 0,β f=K0

XK,β ( f ) \ K^. (2.7)

However, assertion (vi) of Lemma 2.7 guarantees that the conditionf < K^ is neces-
sary and sufficient for the union in the right-hand side of (2.7) to contain non-empty
sets. �

2.3. Strict inequalities with respect to a wedge.Given a wedgeK ⊆ X and a
linear manifoldH in X, we introduce the following binary relation onX.

Definition 2.12. For { f1, f2} ⊂ X, we write f1 kK; H f2 if, and only if the inclusion

XK ( f2 − f1) ⊇ H

is satisfied.

One can readily verify that the equality

XK(− f ) = XK( f )

holds for anyf and, hence, the relation introduced by Definition 2.12 is symmetric,
i. e., f1 kK; H f2 if, and only if f2 kK; H f1.

Lemma 2.13. If f1 kK;H1 f2 andH1 ⊇ H2, then f1 kK;H2 f2.

The assertion of the last lemma is easily established by using Definition 2.12.

Lemma 2.14. For an arbitrary f from X, the relation

f kK;XK ( f ) 0 (2.8)

is true.
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P. By Proposition 2.11, the setXK( f ) is a linear manifold inX. According
to Definition 2.12, relation (2.8) is equivalent to the inclusionXK( f ) ⊇ XK( f ) and,
hence, is always satisfied. �

In the case whereH = X, we drop the corresponding subscript in the above nota-
tion and, instead off1 kK;X f2, we write f1 kK f2:

Definition 2.15. For{ f1, f2} ⊂ X, we write f1kK f2 if, and only ifXK ( f2 − f1) = X.

The above definition allows one to introduce the following

Definition 2.16. Two elementsf1 and f2 are said to be in the relationf1 KK; H f2
(resp., f1 JK; H f2) if they satisfy the conditionsf1 kK; H f2 and f1 =K f2 (resp.,
f1 5K f2).

By analogy with Definition 2.15, we introduce

Definition 2.17. Two elementsf1 and f2 are said to be in the relationf1 KK f2
(resp.,f1 JK f2) if they satisfy the conditionsf1 �K f2 and f1 =K f2 (resp.,f1 5K f2).

The fulfilment of the relations described by Definition 2.17 is verified most easily
in the case of a solid wedge.

Definition 2.18. A wedge is said to besolid [10] if its interior is non-empty.

Following [10], we writex1 �K x2 (resp.,x1 �K x2) if, and only if the difference
x2 − x1 (resp.,x1 − x2) lies in the interior ofK.

Lemma 2.19. If K is a solid wedge inX and an elementf ∈ X is such thatf �K 0,
then f satisfies the relation

f KK 0. (2.9)

P. A statement equivalent to equality (2.14) forf lying in the interior ofK is
well-known, e. g., from [10,14]. �

Remark2.20. When K is a minihedral cone inX [10] (and, hence, the partial
ordering5K makesX into a vector lattice [1]), an elementu possessing the property
u KK 0 is called astrong unit (see Definition XIII.1.5 in [14]). In this case, the
conditionXK(u) = X means that the elementu satisfies Axiom V from [9].

Remark2.21. Relation (2.9), generally speaking, does not imply thatf �K 0. For
example, in the spaceL∞([0, 1]) of essentially bounded functions endowed with the
usual norm and partial ordering [14], relation (2.9) is true, e. g., forf equal almost
everywhere to 1. However, the set of functions non-negative almost everywhere on
[0,1] has empty interior inL∞([0, 1]).

For suitable linear manifoldsH, the condition

f KK; H 0
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may be regarded as a certain “strong positivity” an elementf =K 0. The word
“suitable” here means that, roughly speaking, there should not be too many strongly
positive elements. For instance, there is no much sense to study the case where

H ⊆ K^ (2.10)

because, by virtue of Proposition 2.11, the inclusion
⋂

f∈X
XK( f ) ⊇ K^

is always true and, hence, under condition (2.10), the relationf KK;K^ 0 is satisfied
by an arbitrary elementf from X. On the other hand, certain undesirable classes of
vectorsf (e. g., f = 0 or, more generally,f satisfying the relation 05K f 5K 0), that
are unlikely candidates for strongly positive elements, should also be excluded from
consideration. These considerations lead us to the following

Proposition 2.22. Let H be a linear manifold inX such that

H * K^ (2.11)

and f be an element ofX such that either the relationf �K 0 is not true or0 5K

f 5K 0. Then the relation

f kK; H 0 (2.12)

is not satisfied.

P. Indeed, let, on the contrary, relation (2.12) holds. According to Defini-
tion 2.12, this means thatH ⊆ XK( f ) and, therefore, in view of condition (2.11), the
setXK( f ) contains some elements not belonging toK^. It then follows from Propo-
sition 2.11 thatf should satisfy the relationsf �K 0 and f < K^, contrary to the
assumption. �

In other words, Proposition 2.22 means that a strongly positive element should
always be comparable with zero and cannot be positive and negative simultaneously.
This agrees well with the intuitive idea of the strict inequality.

2.4. The mappingsnK, f : XK( f ) → [0,+∞). Taking a glance at Definition 2.10,
we see that the non-negative number

nK, f (x) := inf
{
|β| | β ∈ (−∞,+∞) andx ∈ XK,β( f )

}
(2.13)

is well-defined for an arbitraryx from XK ( f ). It is also convenient to putnK, f (x) :=
+∞ for all x ∈ X \ XK( f ). Thus,nK, f (x) < +∞ if, and only if x is f -measurable with
respect toK.

Remark2.23. One can show that, for anyf ∈ X, the mappingnK, f : XK( f ) →
[0,+∞) is a seminorm on the linear manifoldXK( f ). This seminorm is a norm if, and
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only if K is a cone [5,10], i. e., if the blade ofK is trivial. The mapping mentioned is
defined on the entire spaceX if, and only if

XK( f ) = X, (2.14)

which property, in contrast to the poorest case where

XK( f ) = K^,

may be regarded as a reflection of a reasonable choice of an elementf =K 0. By
Lemma 2.19, condition (2.14) is satisfied iff �K 0. It may happen, however, that
(2.14) does not hold for anyf from X (e. g., ifX is the Banach space of the Lebesgue
integrable functions on a bounded interval [a,b] andK is the cone of integrable func-
tions [a,b] → � that are non-negative almost everywhere on [a,b]).

In the case whereK is a solid cone andf �K 0, formula (2.13) determines the
so-calledf -norm [7,10]

‖x‖ f = inf {β ∈ [0,+∞) | relation (2.4) is true} (2.15)

of an arbitrary elementx from X. Functional (2.15) is also used in [9] in studies of
vector lattices.

It is clear from (2.13) thatnK, f (0) = 0 independently of the choice off . Moreover,
the following lemma holds.

Lemma 2.24. Let f ∈ X. Then an elementx ∈ Xsatisfies the equality

nK, f (x) = 0 (2.16)

if, and only ifx ∈ K^.

P. Let f ∈ X and letx be an element from the corresponding (non-empty)
setXK ( f ). In view of Proposition 2.11, we can suppose thatf �K 0. Then, clearly,
σ f =K 0 for someσ ∈ {−1, 1}.

Let x ∈ K^. The elementx belongs to the blade ofK if, and only if

0 5K x 5K 0, (2.17)

which means that (2.4) is true with an arbitrary constantβ such that signβ = σ. In
particular,

−σ
k

f 5K x 5K
σ

k
f

for all k ∈ �. Taking (2.13) into account, we conclude that 0≤ nK, f (x) ≤ infk∈� k−1 =

0, i. e., relation (2.16) holds.
Conversely, ifx satisfies equality (2.16), then there exists a sequence (βk)+∞

k=1 ⊂
(−∞,+∞) such that limk→+∞ βk = 0 and, for allk ≥ 1,

−βk f 5K x 5K βk f . (2.18)

Passing to the limit ask → +∞ in relation (2.18) or, which is the same, in the
inclusion

{βk f − x, βk f + x} ⊂ K
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and taking into account the fact thatK is a closed set, we arrive at relation (2.17).�

Remark2.25. The existence of an elementf satisfying equality (2.14) implies, in
particular, that the wedgeK is reproducing [10], i. e.,K − K = X. The converse
implication, generally speaking, is not true (in particular, the cone mentioned in Re-
mark 7.4 is reproducing but relation (2.14) is never satisfied there).

2.5. Complexification of a wedge and the related objects.In the sequel, the
complex counterparts of some of the notions defined above will be needed. Through-
out this section, where the related notions are introduced, we fix a real Banach space
X and wedgeK in X.

2.5.1. Basic issues.The complexification (see, e. g., [4], Chapt. XIII,§2) of a real
Banach space〈X, ‖·‖〉 is convenient to be interpreted as the complex Banach spaceX̂
of formal sumsx + iy, {x, y} ⊂ X, i2 = −1, equipped with the linear operations

(x1 + iy1) + (x2 + iy2) := x1 + x2 + i (y1 + y2) ,

(ν + iµ) (x + iy) := νx− µy + i (µx + νy) ,
(2.19)

where{x1, x2, y1, y2, x, y} ⊂ X, {ν, µ} ⊂ �, and with the norm

‖x + iy‖ := max
ϑ∈[−π,π]

‖xcosϑ + y sinϑ‖, {x, y} ⊂ X. (2.20)

The same technique allows one to define a natural complexification of an arbitrary
wedge in a real Banach space.

Definition 2.26. The set

K̂ := {x + iy | x ∈ K ∧ y ∈ K} (2.21)

will be referred to as thecomplexificationof a wedgeK in a Banach spaceX over�.

It is easy to verify that the set̂K, represented alternatively asK̂ = K + iK, is closed
with respect to norm (2.20) and forms a wedge inX̂ in the sense that

α1K̂ + α2K̂ ⊂ K̂ for all {α1, α2} ⊂ [0,+∞). (2.22)

By analogy with Sections 2.1 and 2.3, one can extend the binary relations5K and
�K to X̂2 in a natural way. More precisely, given two elements{z1, z2} ⊂ X̂, we shall
write z1 =K̂ z2 (resp.,z1 �K̂ z2) if, and only if z1− z2 ∈ K̂ (resp.,z1− z2 is an interior
element ofK̂). Similarly, the relation�K̂ is natural to be defined by puttingz1 �K̂ z2

if, and only if the elementsz1 andz2 satisfy at least one of the relationsz1 =K̂ z2 and

z1 5K̂ z2. The blade (̂K)
^

of K̂ is natural to be defined as the set of all thosez from X̂
for which both relationsz=K̂ 0 andz5K̂ 0 are true, i. e.,

(K̂)
^

= K̂ ∩ (−K̂).

It is obvious that
(K̂)

^
= K^ + iK^. (2.23)
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The complexificationK̂ of a real wedgeK inherits its main characteristic proper-
ties. For example,̂K is solid if, and only ifK possesses this property.

2.5.2. Measurability of complex elements.Let g ∈ X̂ andλ ∈ �. Similarly to
formula (2.3), one can define the setX̂K̂,λ(g) ⊂ X̂ by putting

X̂K̂,λ(g) :=
{
z ∈ X̂ | z=K̂ −λg ∧ z5K̂ λg

}
(2.24)

and introduce the following

Definition 2.27. An elementz ∈ X̂ is said to beg-measurable with respect to the
wedgeK̂ if, and only if it belongs to the set

X̂K̂(g) :=
⋃

λ∈�
X̂K̂,λ(g). (2.25)

Definition 2.27 may be regarded as a natural extension of Definition 2.8 to the
complex case. For example, analogues of Lemma 2.6 and Proposition 2.11 are true
for sets (2.24) and, just as in the real case, zero belongs to the setX̂K̂,λ(g) for arbitrary
λ ∈ � andg ∈ X̂. Further properties of sets (2.24) are described by Lemma 2.33
below.

Remark2.28. Analogues of sets (2.24) and the related objects can also be intro-
duced in the case wherêK is replaced by some other set possessing property (2.22),
not necessarily constructed according to formula (2.21). Such more general complex
wedges are however not needed for our purposes.

A convenient characterisation of the property introduced in Definition 2.27 is pro-
vided by the following

Lemma 2.29. Let {x, y, f } ⊂ X. Then the elementx + iy is f̂ -measurable with
respect toK̂ if, and only if there exist somer ∈ [0,+∞) andω ∈ [−π, π] such that the
relations

−r f sinω 5K x 5K r f sinω, (2.26)

−r f cosω 5K y 5K r f cosω (2.27)

are satisfied.

Here and everywhere in the sequel, we writef̂ = f + i f for any f from X.

P. By virtue of relations (2.24) and (2.25), the elementx+ iy is f̂ -measurable
if, and only if there exist some% ∈ [0,+∞) andϑ ∈ [−π, π] for which

−%eiϑ f̂ 5K̂ x + iy 5K̂ %eiϑ f̂ . (2.28)

According to (2.19), we have

eiϑ f̂ = (cosϑ + i sinϑ)( f + i f ) = (cosϑ − sinϑ) f + i (sinϑ + cosϑ) f

=
√

2
[
sin

(
π

4
− ϑ

)
+ i cos

(
π

4
− ϑ

)]
f . (2.29)
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Therefore, in view of definition (2.21) of the setK̂, the relation (2.28) is equivalent
to the system of order inequalities

−%
√

2 f sin
(
π

4
− ϑ

)
5K x 5K %

√
2 f sin

(
π

4
− ϑ

)
, (2.30)

−%
√

2 f cos
(
π

4
− ϑ

)
5K y 5K %

√
2 f cos

(
π

4
− ϑ

)
, (2.31)

which, obviously, has form (2.26), (2.27) withr := %
√

2 and

ω :=


π
4 − ϑ if −π ≤ ϑ ≤ −3π

4 ,

−7π
4 − ϑ if −3π

4 < ϑ ≤ π.

It is clear that the above relation between the pairs (%, ϑ) and (r, ω) is one-to-one. �

Remark2.30. Definition 2.27 reduces to Definition 2.8 in the real case. Indeed,
let σ f ∈ K̂ with someσ ∈ {−1, 1}. Lemma 2.29 characterises thef̂ -measurability
of the elementx = x + i0 with respect toK̂ in terms of the existence of (r, ω) ∈
[0,+∞) × [−π, π] such thatσ cosω ≥ 0 and relation (2.26) is true. However, the
property mentioned means that (2.4) is satisfied withβ := r sinω.

It is natural to find out that thêf -measurability of an elementx + iy with respect
to K̂ is equivalent to thef -measurability of its real and imaginary parts,x andy.

Lemma 2.31. Let {x, y, f } ⊂ X. Then the elementx + iy is f̂ -measurable with
respect toK̂ if, and only if bothx andy are f -measurable with respect toK.

P. The f -measurability ofx andy, on the assumption thatx + iy ∈ X̂K̂( f̂ ),
is a consequence of Lemma 2.29. Conversely, if{x, y} ⊂ XK( f ), then, according to
Definition 2.8, there exist some realα andβ such that

−α f 5K x 5K α f , (2.32)

−β f 5K y 5K β f . (2.33)

Let us put

ω :=


π
4 signα if β ≥ 0,
3π
4 signα if β < 0

andr :=
√

2 max{|α|, |β|}. Then, as is easy to see,

sinω =
signα√

2
, cosω =

signβ√
2
,

and, therefore, relations (2.32) and (2.33) imply that (2.26) and (2.27) are satisfied
with the above values ofω andr. It remains to refer to Lemma 2.29. �

It turns out that all the setŝXK̂( f̂ ), where f̂ = f + i f , are invariant under rotations.
More precisely, the following statement is true.
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Lemma 2.32. Let f ∈ X and {x, y} ⊂ XK( f ). Then, for an arbitraryϕ ∈ [−π, π],
the elementeiϕ(x + iy) is f̂ -measurable with respect tôK.

P. It will suffice to consider the case wheref �K 0. By assumption,{x, y} ⊂
XK( f ) and, hence, in view of Lemma 2.31, the elementx+ iy is f̂ -measurable with re-
spect toK̂, where f̂ = f + i f . Lemma 2.29 guarantees the existence of anω ∈ [−π, π]
such that relations (2.26) and (2.27) are satisfied. Multiplying both parts of (2.26)
by |cosϕ| and|sinϕ| and taking Lemma 2.6 into account, we obtain, respectively, the
relations

− f r |cosϕ| sinω 5K ±xcosϕ 5K f r |cosϕ| sinω

and
− f r |sinϕ| sinω 5K ±xsinϕ 5K f r |sinϕ| sinω,

where the symbol “±” means that the inequality is satisfied with both signs of the
corresponding term. Similarly, multiplying both parts of (2.27) by|cosϕ| and|sinϕ|,
we get

− f r |cosϕ| cosω 5K ±y cosϕ 5K f r |cosϕ| cosω

and
− f r |sinϕ| cosω 5K ±y sinϕ 5K f r |sinϕ| cosω.

Therefore, by choosing the appropriate signs in the relations above and summing the
corresponding terms, we obtain

xcosϕ − y sinϕ 5K r f [|cosϕ| sinω + |sinϕ| cosω],

xcosϕ − y sinϕ =K −r f [|cosϕ| sinω + |sinϕ| cosω]
(2.34)

and
y cosϕ + xsinϕ 5K r f [|cosϕ| cosω + |sinϕ| sinω],

y cosϕ + xsinϕ =K −r f [|cosϕ| cosω + |sinϕ| sinω].
(2.35)

It is supposed thatf �K 0, and, therefore,σ f =K 0 for someσ ∈ {−1,1}. Since
neither|cosϕ| sinω + |sinϕ| cosω nor |cosϕ| cosω + |sinϕ| sinω takes values outside
the interval [−2,2], relations (2.34) and (2.35) yield

2σr f 5K xcosϕ − y sinϕ 5K 2σr f , (2.36)

2σr f 5K y cosϕ + xsinϕ 5K 2σr f . (2.37)

Let us put

ϑσ :=


π
4 if σ = 1,
−3π

4 if σ = −1.

Then sinϑσ = cosϑσ = σ2−
1
2 and, therefore, relations (2.36) and (2.37) can be

brought to the form

% f sinϑσ 5K xcosϕ − y sinϕ 5K % f sinϑσ,

% f cosϑσ 5K y cosϕ + xsinϕ 5K % f cosϑσ,
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where% := 2r
√

2. Applying now Lemma 2.29 and taking into account the formula

eiϕ(x + iy) = xcosϕ − y sinϕ + i(y cosϕ + xsinϕ), (2.38)

we conclude that the element eiϕ(x + iy) is f̂ -measurable. �

The next lemma summarises several properties of sets (2.24) referred to in the
sequel.

Lemma 2.33. The following assertions are true:

(i) X̂K̂,0( f̂ ) = X̂K̂,λ(0) = K^ + iK^ for all f ∈ X andλ ∈ �;
(ii) X̂K̂,λ(g) = −X̂K̂,λ(g) for anyg ∈ X̂;
(iii) α−1X̂K̂,|α|λ(g) = X̂K̂,λ(g) for anyg ∈ X̂ andα ∈ � \ {0};
(iv) For λ , 0 andg , 0, the setX̂K̂,λ(g) is non-empty if, and only ifλg ∈ K̂;
(v) If λg ∈ K̂, thenX̂K̂,λ(g) ⊇ K^ + iK^;
(vi) X̂K̂,λ(g) \ (K^ + iK^) , ∅ if, and only ifλg ∈ K̂ \ (K^ + iK^).
(vii)

⋂
g∈X̂ X̂K̂(g) ⊇ K^ + iK^;

(viii) X̂K̂(g) , K^ + iK^ if, and only ifg ∈ [K̂ ∪ (−K̂)] \ (K^ + iK^).

P. This statement is established similarly to Lemmata 2.6 and 2.7 and Propo-
sitions 2.11 and 2.11 from Section 2.2.

Let us prove, e. g., assertion (iii). Indeed, letα , 0. By virtue of (ii), an elementz
belongs to the set̂XK̂,|α|λ if, and only if

−|α|λg 5K̂ zsignα 5K̂ |α|λg,
or, which is the same,

−λg 5K̂
z
α
5K̂ λg. (2.39)

However, (2.39) means nothing but the inclusionα−1z ∈ X̂K̂,λ(g). �

2.5.3. The mappingsnK̂,g : X̂ → [0,+∞]. Similarly to the case of the original

real spaceX, the f̂ -measurability of elements of̂X with respect to the complexifi-
cationK̂ of a wedgeK in X can be characterised by a certain non-linear functional.
More precisely, givenz ∈ X̂ andg ∈ X̂, we put

nK̂,g(z) :=
√

2 inf
{
|λ| | λ ∈ � ∧ z ∈ X̂K̂,λ(g)

}
(2.40)

if z is g-measurable with respect tôK, andnK̂,g(z) := +∞ for z < X̂K̂(g). Here, we
retain the same letter,n, as in the real case (cf. Section 2.2) in order not to complicate
the notation unnecessarily.

Lemma 2.34. For anyg ∈ X̂, the functionalnK̂,g : X̂K̂(g) → [0,+∞) is homoge-
neous in the sense that

nK̂,g(γz) = |γ|nK̂,g(z)

for all z ∈ X̂K̂(g) andγ ∈ �.
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P. Let us fix somez ∈ X̂K̂(g) andγ ∈ �, γ , 0. According to formula (2.40),
we have

nK̂,g(γz) =
√

2 inf
{
|λ| | λ ∈ � ∧ γz ∈ X̂K̂,λ(g)

}
. (2.41)

Applying assertion (iii) of Lemma 2.33 withα = 1/γ, we conclude that an element
γzbelongs toX̂K̂,λ(g) if, and only if z ∈ X̂K̂,λ|γ|−1(g). Therefore, equality (2.41) can be
rewritten as

nK̂,g(γz) =
√

2 inf
{
|λ| | λ ∈ � ∧ γz ∈ X̂K̂,λ(g)

}

=
√

2 inf
{
|λ| | λ ∈ � ∧ z ∈ X̂K̂,λ/|γ|(g)

}

= |γ|
√

2 inf

{
λ

|γ|
∣∣∣ λ ∈ � ∧ z ∈ X̂K̂,λ/|γ|(g)

}

= |γ|
√

2 inf
{
|µ| | µ ∈ � ∧ z ∈ X̂K̂,µ(g)

}
= |γ|nK̂,g(z),

as required. �

We are interested mainly in elements ofX̂ that aref̂ -measurable with respect tôK
for a suitably chosenf from X (actually, from [K ∪ (−K)] \ K^ because otherwise,
by Proposition 2.11, there are nof -measurable elements outsideK^). In this case, it
is convenient to use the following formulae for computation of value (2.40).

Lemma 2.35. Let f ∈ X and let{x, y} ⊂ X be some elementsf -measurable with
respect toK. Then the formulae

nK̂, f̂ (x + iy) =
√

2 inf {% ∈ [0,+∞) | ∃ϑ ∈ [−π, π] : (2.30)and (2.31)hold} (2.42)

and

nK̂, f̂ (x + iy) = inf {r ∈ [0,+∞) | ∃ω ∈ [−π, π] : (2.26)and (2.27)hold} (2.43)

are true.

P. By Lemma 2.31, the elementx+ iy is f̂ -measurable with respect tôK and,
therefore, the value ofnK̂,g(x + iy) is finite. In view of formula (2.29) established in
the proof of Lemma 2.29, the relation

−λ f̂ 5K̂ x + iy 5K̂ λ f̂

with λ = %eiϑ is equivalent to the system of order inequalities (2.30), (2.31). There-
fore, definition (2.40) of the mappingnK̂, f̂ yields the required equality (2.42).

Formula (2.43) is a consequence of (2.42). Indeed, as is shown in the proof of
Lemma 2.29, there is a one-to-one correspondence between systems (2.30), (2.31)
and (2.26), (2.27), with

r
%

=
√

2,

and it suffices to use Lemma 2.34. �
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The best constantr in relations (2.26) and (2.27) satisfied by the respective com-
ponentsx andy of an f̂ -measurable elementx + iy is determined by the value of
functional (2.40). More precisely, we have

Lemma 2.36. Let { f , x, y} ⊂ X and

nK̂, f̂ (x + iy) =: r < +∞.
Then there exists anω ∈ [−π, π] such that relations(2.26)and (2.27)are satisfied.

P. The definition of the functionalnK̂, f̂ and Lemmata 2.29 and 2.35 yield the
existence of sequences (rk)+∞

k=1 ⊂ [0,+∞) and (ωk)+∞
k=1 ⊂ [−π, π] such that limk→+∞ rk =

r and the relations

−rk f sinωk 5K x 5K rk f sinωk, (2.44)

−rk f cosωk 5K y 5K rk f cosωk (2.45)

are true for allk ∈ �. The compact real sequence (ωk)+∞
k=1 contains a subsequence

(ωk j )
+∞
j=1 convergent to a numberω ∈ [−π, π]. Puttingk = k j in (2.44) and (2.45),

passing to the limit asj → +∞, and taking into account the fact thatK is a closed
subset ofX, we arrive at relations (2.26) and (2.27). �

The following statement is an extension of Lemma 2.24 to the complex case.

Lemma 2.37. Let f ∈ X andz ∈ X̂. ThennK̂, f̂ (z) = 0 if, and only ifz ∈ K^ + iK^.

P. Let us suppoose thatz = x + iy, where{x, y} ⊂ K^. According to formula
(2.43) of Lemma 2.35, we have

nK̂, f̂ (x + iy) = inf {r ∈ [0,+∞) | ∃ω ∈ [−π, π] : (2.26) and (2.27) hold}
≤ inf

{
r ∈ [0,+∞) | ∃{σ, κ} ⊂ {−1,1} : −σr f 5K x

√
2 5K σr f

and − κr f 5K y
√

2 5K κr f
}

≤ inf
{
r ∈ [0,+∞) | −σr f 5K x

√
2 5K σr f with someσ ∈ {−1, 1}

}

= inf
{
|α| | α ∈ � ∧ −α f 5K x

√
2 5K α f

}

= nK, f (x
√

2). (2.46)

By virtue of Lemma 2.34, we have

nK, f (x
√

2) =
√

2nK, f (x).

However, in view of Lemma 2.24,nK, f (x) = 0 and, therefore, by (2.46), the non-
negative numbernK̂, f̂ (x + iy) is equal to 0.

Assume now thatnK̂, f̂ (x + iy) = 0. By virtue of Lemma 2.36, there exists anω ∈
[−π, π] such that relations (2.26) and (2.27) are satisfied withr = 0, i. e., 05K x 5K 0
and 05K y 5K 0. This means that{x, y} ⊂ K^. �
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Formula (2.40) allows one to construct a natural extensionnK̂, f̂ : X̂ → [0,+∞] of
the mappingX 3 x 7→ nK, f (x) given by relation (2.13). More precisely, the following
statement is true.

Proposition 2.38. Let f ∈ X. Then the equality

nK̂, f̂ (x) = nK, f (x) (2.47)

is true for all x ∈ X.

P. First of all, we note that it suffices to consider the case wheref �K 0 be-
cause in the contrary case, by Proposition 2.11, we haveXK( f ) = K^ and, therefore,
in view of Lemmata 2.24 and 2.37, bothnK, f andnK̂, f̂ vanish on the setXK( f ).

For the sake of definiteness, we assume thatf =K 0. Settingy = 0 in formula
(2.43) of Lemma 2.35, we obtain

nK̂, f̂ (x) = inf {r ∈ [0,+∞) | ∃ω ∈ [−π, π] : cosω ≥ 0 and (2.26) holds}
= inf

{
r ∈ [0,+∞)

∣∣∣ ∃ω ∈
[
−π

2
,
π

2

]
: (2.26) holds

}
. (2.48)

Since the mapping sin : [−π2 , π2] → [−1, 1] is a bijection, we see that (2.48) can be
rewritten in the form

nK̂, f̂ (x) = inf {r ∈ [0,+∞) | ∃h ∈ [−1,1] : −rh f 5K x 5K rh f }
= inf {|α| ∈ [0,+∞) | −α f 5K x 5K α f } ,

which, by virtue of (2.13), proves that equality (2.47) is true for allx from XK( f ). In
the case wherex is not f -measurable with respect toK, by Lemma 2.31, both values
are equal to+∞. �

Proposition 2.38 is, in fact, a particular case of a more general result. Namely, the
following statement is true.

Proposition 2.39. Let f ∈ X. For arbitrary {x, y} ⊂ X which are f -measurable
with respect to the wedgeK, the equality

nK̂, f̂ (x + iy) =

√
(nK, f (x))2 + (nK, f (y))2 (2.49)

is true.

Formula (2.49) resembles to some extent the Pythagorean formula, withnK, f (x),
nK, f (y), andnK̂, f̂ (x + iy), respectively, playing the roles of catheti and hypotenuse.
The proof of Proposition 2.39 is omitted.

2.5.4. Measuring rotated elements.In the sequel, we need to compute the val-
ues of the functionalnK̂, f̂ on elements of the form eit(x + iy), wheret ∈ [−π, π] is
arbitrary and{x, y} ⊂ XK( f ) with somef satisfying the conditionf �K 0.
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Definition 2.40. Given anf ∈ X, we put

RK̂, f̂ (x + iy) := inf
t∈[−π,π]

nK̂, f̂ (e
it(x + iy)) (2.50)

if {x, y} ⊂ X are f -measurable with respect toK, and set formallyRK̂, f̂ (x+ iy) := +∞
in the contrary case.

It follows from Lemma 2.32 that the right-hand side of (2.50) is finite for arbitrary
{x, y} ⊂ XK( f ) andt ∈ [−π, π] and, thus, Definition 2.40 makes sense.

Lemma 2.41. Let f ∈ X and {x, y} ⊂ XK( f ). Then, for an arbitraryϕ ∈ [−π, π],
the equality

RK̂, f̂ (e
iϕ(x + iy)) = RK̂, f̂ (x + iy) (2.51)

is true.

P. According to formula (2.50), we have

RK̂, f̂ (e
iϕ(x + iy)) = inf

t∈[−π,π]
nK̂, f̂ (e

iϕeit(x + iy))

= inf
t∈[−π,π]

nK̂, f̂ (e
i(t+ϕ)(x + iy)). (2.52)

Let us take an arbitraryϕ ∈ [−π2 , π2] and put

ϕt :=



t + ϕ + π if t + ϕ < −π,
t + ϕ if − π ≤ t + ϕ ≤ π,
t + ϕ − π if t + ϕ > π

for all t from [−π, π]. It is clear that{eiϕt | t ∈ [−π, π]} = {λ ∈ � | |λ| = 1} for anyϕ.
Therefore, equality (2.52) yields

RK̂, f̂ (e
iϕ(x + iy)) = inf

t∈[−π,π]
nK̂, f̂ (e

iϕt (x + iy))

= inf
t∈[−π,π]

nK̂, f̂ (e
it(x + iy)) = RK̂, f̂ (x + iy).

Applying formula (2.51) sequentially, we prove that it is true with arbitrary values of
ϕ from [−π, π]. �

Together with Lemma 2.41, the next statement is a basic tool in the proof of The-
orem 3.1 from Section 3.

Lemma 2.42. Let f ∈ X, {x, y} ⊂ XK( f ), and

R := RK̂, f̂ (x + iy). (2.53)

Then there exist some{ϑ∗, ω∗} ⊂ [−π, π] such that the relations

−R f sinω∗ 5K xcosϑ∗ − y sinϑ∗ 5K R f sinω∗, (2.54)

−R f cosω∗ 5K xsinϑ∗ + y cosϑ∗ 5K R f cosω∗ (2.55)
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hold. Moreover, ifR> 0, then there do not exist any numbersε ∈ (0,R) and{ϑ̃, ω̃} ⊂
[−π, π] for which the inequalities

−(R− ε) f sinω̃ 5K xcosϑ̃ − y sinϑ̃ 5K (R− ε) f sinω̃, (2.56)

−(R− ε) f cosω̃ 5K xsinϑ̃ + y cosϑ̃ 5K (R− ε) f cosω̃ (2.57)

would be satisfied.

P. Let us fix some{x, y} ⊂ XK( f ) and defineRby (2.53). Then

R = inf
t∈[−π,π]

rt, (2.58)

wherert := nK̂, f̂ (e
it(x + iy)) for all t ∈ [−π, π]. By virtue of Lemma 2.32, we have

0 ≤ R< +∞.
Taking Lemma 2.36 and formula (2.38) into account, we conclude that, with any

t ∈ [−π, π], one can associate anωt ∈ [−π, π] for which

−rt f sinωt 5K xcost − y sint 5K rt f sinωt (2.59)

and

−rt f cosωt 5K y cost + xsint 5K rt f cosωt. (2.60)

By virtue of (2.58), there exists a sequence (tm)+∞
m=1 ⊂ [−π, π] such that

lim
m→+∞ rtm = R. (2.61)

Being bounded, this sequence contains a subsequence convergent to a certainϑ∗ ∈
[−π, π]. We can assume, without loss of generality, that such a subsequence has
already been selected and, thus, in addition to (2.61), we have

lim
m→+∞ tm = ϑ∗. (2.62)

On the other hand, the sequence (ωtm)+∞
m=1 ⊂ [−π, π] is also bounded and, therefore,

there exists a sequence (mj)+∞
j=1 ⊂ � such that limj→+∞ ωtmj

= ω∗ with a certain
ω∗ ∈ [−π, π]. Settingt = tmj in (2.59) and (2.60), passing to the limit asj tends to
+∞, and using (2.61), (2.62), and the fact thatK is a closed set, we arrive at relations
(2.54) and (2.55) with the above values ofϑ∗ andω∗.

Assume now thatR > 0 and relations (2.56) and (2.57) are satisfied with someε,
0 ≤ ε < R, and{ϑ̃, ω̃} ⊂ [−π, π]. Due to formula (2.43) of Lemma 2.35 and equality
(2.38) from the proof of Lemma 2.32, relations (2.56) and (2.57) imply thatrt ≤ R−ε
for all t ∈ [−π, π], whence the estimate

inf
t∈[−π,π]

rt ≤ R− ε (2.63)

follows. However, by virtue of (2.58), inequality (2.63) yieldsR ≤ R− ε and, there-
fore,ε = 0. �

The property described by Lemma 2.37 is also true for functional (2.50).
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Lemma 2.43. Let f ∈ X andz ∈ X̂. ThenRK̂, f̂ (z) = 0 if, and only ifz ∈ K^ + iK^.

P. The inclusionz ∈ K^ + iK^ means that the elementz is 0-measurable with
respect toK̂. In this case, Lemma 2.32 guarantees that so does the element eitz with
any t from [−π, π] and, hence, by Lemma 2.37, it follows thatnK̂, f̂ (e

itz) = 0 for all
t ∈ [−π, π]. Relation (2.50) then yieldsRK̂, f̂ (z) = 0.

Conversely, ifRK̂, f̂ (x + iy) = 0, then, by Lemma 2.42, there exists someϑ from
[−π, π] such that

0 5K xcosϑ − y sinϑ 5K 0,

0 5K xsinϑ + y cosϑ 5K 0.

According to formula (2.38), this means that the element eiϑ(x + iy) is 0-measurable
with respect toK̂ and, thus, by Lemma 2.32, so does the elementx + iy. �

2.6. Linear operators vanishing on the blade of a wedge.For the sake of brevity,
we introduce the following definition [11].

Definition 2.44. We say that an eigenvalueλ of a bounded linear operatorA :
X → X is substantialwith respect to the wedgeK (or, shortly,K-substantial) if λ is
non-zero and at least one eigenvector not belonging toK^ + iK^ corresponds to it.

As usual (see, e. g., [5]), by a complex eigenvalueλ ∈ � of a bounded linear opera-
tor A : X→ X acting in a real Banach spaceX, the eigenvalue of its complexification
Â = A + iA : X̂→ X̂ is meant, where

Â(x + iy) := Ax+ iAy (2.64)

for all {x, y} ⊂ X.
Example2.45. All the eigenvalues of a bounded linear operatorA : X → X are

substantial with respect to an arbitrary cone inX.
We devote our present study mostly to the linear operatorsA : X → X vanishing

on the blade of a proper wedgeK, i. e., such that

K^ ⊆ kerA. (2.65)

Example2.46. If K is a cone, then condition (2.65) is satisfied in an obvious way
for every linear operatorA : X→ X.

In the general case, the restrictiveness of condition (2.65) imposed on the operator
A grows with the “width” ofK^ .

Example2.47. Let us consider the set

CΩ,σ ([a,b],�) =
{
x ∈ C ([a, b],�) | σx ([a, b] \Ω) ⊆ [0,+∞)

}
,

whereΩ is a certain subset of [a,b] such that [a,b] \ Ω is closed, andσ ∈ {−1,1}.
The setCΩ,σ ([a,b],�) is obviously a closed wedge in the Banach spaceC ([a,b],�)
of all the continuous scalar functions on the bounded interval [a,b]. This wedge is
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solid because, as one can show, its interior is constituted by the continuous functions
x : [a,b] → � such thatσx ([a, b] \Ω) ⊆ (0,+∞).

Consider the operatorA : C ([a,b],�)→ C ([a,b],�) given by the formula

(Ax) (t) =

∫ t

τ
k (t, s) x (ω(s)) ds, t ∈ [a, b], (2.66)

in which ω : [a, b] → [a,b] is a measurable function, whereas the functionk :
[a,b] × [a, b] → � is continuous in the first variable and Lebesgue integrable in the
second one. The operatorA vanishes on the blade of the wedgeCΩ,σ ([a,b],�) when
ω satisfies the condition

ω ([a, b]) ⊆ [a, b] \Ω. (2.67)

Indeed, the blade ofCΩ,σ ([a,b],�) consists of those continuous functionsx :
[a,b] → � such that

x(t) = 0 for all t ∈ [a, b] \ Ω. (2.68)

If ω is such that condition (2.67) holds, thenAx is equal identically to zero for
every functionx satisfying condition (2.68), i. e., the relationx ∈ (

CΩ,σ ([a,b],�)
)^

implies thatAx = 0. This means that (2.65) is true forK = CΩ,σ ([a,b],�) andA
given by (2.66).

Our interest to the property described by condition (2.65) is motivated by the fol-
lowing statement.

Lemma 2.48. Assume thatA : X→ X is a linear operator vanishing on the blade
of a wedgeK ⊆ X. Then every non-zero eigenvalue ofA is K-substantial.

P. Let λ be an arbitrary non-zero eigenvalue ofA. Then there exists some
non-zero elementw from X̂ such that

λw = Âw. (2.69)

Assume that, on the contrary,λ is not K-substantial and, therefore, according to
Definition 2.44, every eigenvectorw in (2.69) belongs toK^ + iK^. By virtue of
inclusion (2.65), this yieldŝAw = 0, and, hence, by (2.69),w = 0,which is impossible
becausew is an eigenvector of̂A. The contradiction obtained proves our lemma.�

Assumption (2.65) may seem to be unnecessarily strong because, in fact, it guar-
antees that not onlysomeeigenvectors corresponding to non-zero eigenvalues ofA
do not belong to the blade of̂K but all such eigenvectors possess this property. Note
however that, in the theorems of Sections 3 and 4, condition (2.65) cannot be dropped
even in the two-dimensional case (see Example 5.1).

3. U   K- 

The following theorem provides an upper bound forK-substantial eigenvalues of
a sufficiently wide class of linear operators in a real Banach spaceX.
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Theorem 3.1. Let K be a proper wedge inX and A1 : X → X, A2 : X → X be
bounded linear operators such that

A1 (K) ∪ A2 (K) ⊆ K. (3.1)

Assume also that the relation

A1 f + A2 f 5K α f (3.2)

is true with someα ∈ [0,+∞) and f ∈ X for which

f KK; H 0, (3.3)

whereH is a certain linear manifold inX satisfying the inclusion

H ⊇ im (A1 − A2) . (3.4)

Then everyK-substantial eigenvalueλ of the operatorA1−A2 admits the estimate

|λ| ≤ α. (3.5)

In (3.1), (3.4), and similar relations, we use the standard notation

A (M) := {Ax | x ∈ M} ,
whereM ⊆ X. Recall that the binary relation “KK; H” appearing in (3.3) is introduced
on X by Definition 2.16.

P  T 3.1. Let λ = %eiϑ, % ∈ (0,+∞), be aK-substantial eigenvalue
of the complexificationÂ = Â1 − Â2 of the operator

A := A1 − A2. (3.6)

In view of Definition 2.44 and equality (2.23), there exists an elementw = x+ iy such
that{x, y} ⊂ X, {x, y} 1 K^, and equality (2.69) holds.

We divide the present proof into several parts.

C 1. The elementw is f̂ -measurable with respect tôK.

Indeed, equality (2.69) means that

%w = e−iϑÂw. (3.7)

According to formulae (2.38) and (2.64), we have

e−iϑÂw = Axcosϑ + Ay sinϑ + i(Ay cosϑ − Axsinϑ)

and, therefore, (3.7) can be rewritten as the system

%x = Axcosϑ + Ay sinϑ, (3.8)

%y = Ay cosϑ − Axsinϑ. (3.9)

By virtue of assumption (3.4), it follows from (3.8) and (3.9) thatx andy both lie in
H (to prove this, it suffices to use the linearity of the setH). However, according to
Definition 2.12, condition (3.3) means that all the elements fromH are f -measurable
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with respect toK and, hence, by Lemma 2.31, the elementx+iy is ( f +i f )-measurable
with respect toK̂.

C 2. The number
R := RK̂, f̂ (x + iy) (3.10)

is strictly positive.

Indeed, by Claim 1 and Lemma 2.41, the right-hand side of (3.10) is a finite num-
ber. Since{x, y} 1 K^, Lemma 2.37 yieldsR> 0.

C 3. The elementsx andy satisfy the equalities

Ax = % (xcosϑ − y sinϑ), (3.11)

Ay = % (xsinϑ + y cosϑ). (3.12)

According to formula (2.38), system (3.11), (3.12) is an equivalent form of relation
(2.69) satisfied byw.

C 4. There exist someω∗ andt∗ from [−π, π] such that(2.54)and (2.55)are
true for x andy, and there do not exist any{ω̃, ϑ̃} ⊂ [−π, π] for which the relations

−r f sinω̃ 5K xcosϑ̃ − y sinϑ̃ 5K r f sinω̃, (3.13)

−r f cosω̃ 5K xsinϑ̃ + y cosϑ̃ 5K r f cosω̃ (3.14)

would be satisfied with somer ∈ (0,R).

This statement is an immediate consequence of formula (3.10) and Lemma 2.42.

C 5. There is anΩ from [−π, π] such that the relations

−αR f sinΩ 5K Axcosϑ∗ − Ay sinϑ∗ 5K αR f sinΩ, (3.15)

−αR f cosΩ 5K Axsinϑ∗ + Ay cosϑ∗ 5K αR f cosΩ, (3.16)

are true, whereA is given by(3.6).

In view of assumption (3.1), both operatorsA1 andA2 preserve order inequalities.
Therefore, relations (2.54) and (2.55), together with Lemma 2.6, yield

−RAj f sinω∗ 5K σ[A j xcosϑ∗ − A jy sinϑ∗] 5K RAj f sinω∗, (3.17)

−RAj f cosω∗ 5K κ[A j xsinϑ∗ + A jy cosϑ∗] 5K RAj f cosω∗ (3.18)

for all j = 1,2 and{σ, κ} ⊂ {−1,1}. Summing the two relations obtained from (3.17)
with j = 1,σ = 1 and j = 2,σ = −1, respectively, we obtain

−R(A1 + A2) f sinω∗ 5K (A1−A2)xcosϑ∗ − (A1−A2)y sinϑ∗ 5K R(A1 + A2) f sinω∗,

i. e.,

−R(A1 + A2) f sinω∗ 5K Axcosϑ∗ − Ay sinϑ∗ 5K R(A1 + A2) f sinω∗. (3.19)

In a similar manner, putting in (3.18)j = 1, κ = 1 and j = 2, κ = −1 and summing
the resulting two relations, we get

−R(A1 + A2) f cosω∗ 5K Axsinϑ∗ + Ay cosϑ∗ 5K R(A1 + A2) f cosω∗. (3.20)
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Let us consider the following four cases.

Case1. sinω∗ ≥ 0 andcosω∗ ≥ 0.

Using assumption (3.2) in relations (3.19), (3.20) and puttingΩ := ω∗, we arrive
immediately at (3.15), (3.16).

Case2. sinω∗ ≥ 0 andcosω∗ < 0.

Recall that, by assumption,f =K 0 and, due to condition (3.1),A1 f + A2 f =K 0.
In view of assertion (iii) of Lemma 2.7, relation (3.20) and Claim 2 imply that, in this
case,

0 5K Axsinϑ∗ + Ay cosϑ∗ 5K 0. (3.21)

whereas the term (A1 + A2) f sinω∗, by virtue of (3.2), admits the estimate

(A1 + A2) f sinω∗ 5K α f .

Therefore, (3.15) and (3.16) are satisfied withΩ := π
2.

Case3. sinω∗ < 0 andcosω∗ ≥ 0.

Relation (3.19) now yields

0 5K Axcosϑ∗ − Ay sinϑ∗ 5K 0 (3.22)

and, similarly to Case 2, we conclude that (3.15) and (3.16) hold withΩ := 0.

Case4. sinω∗ < 0 andcosω∗ < 0.

A reasoning analogous to those presented above show that, in this case, system
(3.19), (3.20) has form (3.21), (3.22) and, therefore, relations (3.15) and (3.16) are
satisfied both withΩ = π

2 andΩ = 0. This proves our Claim 5.
Having established the facts above, we now turn to the proof of estimate (3.5).
According to Claim 3, the componentsx andy of the eigenvectorw of Â satisfy

equalities (3.11) and (3.12). Therefore,

Axcosϑ∗ − Ay sinϑ∗ = %(xcosϑ − y sinϑ) cosϑ∗ − %(xsinϑ + y cosϑ) sinϑ∗
= %[cosϑ sinϑ∗ − sinϑ sinϑ∗]x
− %[sinϑ cosϑ∗ + cosϑ sinϑ∗]y

= %xcos(ϑ + ϑ∗) − %y sin(ϑ + ϑ∗)

and, similarly,

Axsinϑ∗ + Ay cosϑ∗ = %(xcosϑ − y sinϑ) sinϑ∗ + %(xsinϑ + y cosϑ) cosϑ∗
= %[cosϑ sinϑ∗ + sinϑ cosϑ∗]x

+ %[cosϑ cosϑ∗ − sinϑ sinϑ∗]y
= %xsin(ϑ + ϑ∗) + %y cos(ϑ + ϑ∗).
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Applying these formulae to the corresponding expressions in (3.15) and (3.16) and
taking the inequality% > 0 into account, we obtain

−αR
%

f sinΩ 5K xcos(ϑ + ϑ∗) − y sin(ϑ + ϑ∗) 5K
αR
%

f sinΩ, (3.23)

−αR
%

f cosΩ 5K xsin(ϑ + ϑ∗) + y cos(ϑ + ϑ∗) 5K
αR
%

f cosΩ. (3.24)

System (3.23), (3.24), obviously, has form (3.13), (3.14) withϑ̃ := ϑ + ϑ∗, ω̃ := Ω,
andr := αR/%. In view of Claim 4, it now follows that

αR
%
≥ R,

whence, by Claim 2, we arrive at the inequality% ≤ α. Recalling that% = |λ|, we
conclude that the required estimate (3.5) holds. �

The assumption thatf should lie inK and be different from zero in Theorem 3.1
is motivated by Proposition 2.22.

Remark3.2. A linear operatorA : X → X admits representation in form (1.4),
whereA1 andA2 are linear mappings preservingK, if and only if there exists a linear
operatorB : X→ X such that

B (K) ⊆ K (3.25)

and
Ax5K Bx for all x ∈ K. (3.26)

Indeed, (1.4) implies that

Ax5K A1x 5K A1x + A2x

for all x such thatx =K 0 and, therefore, one can setB := A1 + A2. Conversely, it
follows from (3.25) and (3.26) that the operatorA2 := B− A preserves the wedgeK
and, thus, it remains to putA1 := B in (1.4).

It should be noted that, in the case where the spaceX is infinite-dimensional, one
cannot claim that every bounded linear operatorA : X → X admits representation
(1.4) with bounded linear mappingsA1 : X → X andA2 : X → X preservingK.
In particular, in the case whereK is a cone which does not possess the property of
normality, the classical Theorem 2 of [8] ensures the existence of a continuous (even
finite-dimensional) linear operatorA : X → X that cannot be represented in form
(1.4) with boundedAk : X→ X, k = 1, 2, satisfying condition (3.1).

4. A         

Theorem 3.1 of Section 3 can be applied to prove the following statement which
seems to be useful in studies of the solvability of various linear equations with com-
pact operators.
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Theorem 4.1. Let X be a Banach space over the field�, K be a proper wedge in
X, andA1 : X → X, A2 : X → X be completely continuous linear operators leaving
the wedgeK invariant and satisfying the condition

K^ ⊆ ker(A1 − A2) . (4.1)

In addition, assume that relation(3.2) is satisfied with some constantα ∈ [0,+∞)
and elementf ∈ X possessing the property

f KK; im (A1−A2) 0. (4.2)

Then the spectral radius of the operatorA1 − A2 admits the estimate

r (A1 − A2) ≤ α (4.3)

P. It follows from the Riesz–Schauder theory (see, e. g., [2]) that, due to the
complete continuity of the operatorA1−A2, its spectrum consists of countably many
eigenvalues.

It is easy to see that condition (4.2) implies the existence of a linear manifold
H ⊆ X satisfying inclusion (3.4) and such that relation (3.3) holds for the element
f (one can putH := im (A1 − A2)). Assumption (4.1), by virtue of Lemma 2.48,
implies that every non-zero eigenvalue of the operatorA1−A2 is K-substantial in the
sense of Definition 2.44. Therefore, under the conditions assumed, Theorem 3.1 can
be used.

Application of Theorem 3.1 guarantees that an arbitrary non-zero eigenvalueλ of
the operatorA1 − A2 admits estimate (3.5). Considering the least upper bound of|λ|
in the left-hand side of relation (3.5) with respect to all the non-zero eigenvaluesλ of
A1 − A2, we arrive immediately at inequality (4.3). �

Recall that the binary relation “KK; H” appearing in condition (4.2) has been intro-
duced by Definition 2.16.

Remark4.2. The complete continuity ofA1 − A2 in the proof of Theorem 4.1
is used only to guarantee that this operator has discrete spectrum (in fact, an upper
bound for the discrete spectrum is established under the conditions specified). Note
also that, in the case whereK is a solid and normal cone, the assertion of Theorem 4.3
can also be proved by using Theorems 5.3 and 5.5 of [7].

Corollary 4.3. Let K ⊂ X be a wedge andA1 : X → X, A2 : X → X be
completely continuous linear operators leaving the wedgeK invariant, satisfying
condition(4.1)and such that relation(3.2) is true with someα ∈ [0,+∞) and element
f ∈ X possessing the property

f KK 0. (4.4)
Then the spectral radius of the operatorA1 − A2 admits estimate(4.3).

P. In view of Lemma 2.13, assumption (4.4) ensures thatf possesses property
(4.2). Therefore, in order to obtain the required statement, it is sufficient to apply
Theorem 4.1. �
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For the sake of completeness we note that, by Lemma 2.19, assumption (4.4) is
satisfied, in particular, in the classical case whereK is solid and the elementf belongs
its interior.

Remark4.4. Condition (4.1) for the operatorA : X → X in Theorem 4.1 and
Corollary 4.3 is satisfied automatically ifK is a cone.

Corollary 4.5. If A : X → X is a completely continuous linear operator leaving
invariant a wedgeK and, moreover, satisfying condition(2.65)and the relation

A f 5K α f (4.5)

with some constantα ∈ [0,+∞) and elementf ∈ X possessing property(4.4), then
the estimate

r(A) ≤ α (4.6)

is true.

P. Corollary 4.5 is an immediate consequence of Corollary 4.3 in the case
whereA1 = A andA2 = 0. �

Remark4.6. A number of theorems that, for a positive operatorA preserving a
coneK ⊂ X, allow one to deduce estimate (4.6) from relation (4.5) are well-known,
e. g., from [6, 7, 15]. Apart from those relying on thef -positivity of the operator, in
the results mentioned, the elementf appearing in (4.5) is supposed either to lie in
the interior ofK (Theorem 16.2 (b) of [6]) or to be its quasi-interior element (The-
orem 16.2 (a) from [6]). It is important to note that condition (4.2), which also ex-
presses a certain kind of the strong positivity∗ of the elementf and, under these
circumstances, replaces the two conditions mentioned, depends on the image space
of the operatorA1 − A2.

Corollary 4.3 also implies an analogue of Corollary 4.5 for the “negative” opera-
tors.

Corollary 4.7. Let A : X → X be a completely continuous linear operator such
that A (−K) ⊆ K and, moreover, the relation

A f =K −α f

be satisfied with someα ∈ [0,+∞) and f ∈ X possessing property(4.4). Then the
spectral radius ofA admits estimate(4.6).

P. It suffices to putA1 = 0 andA2 = −A in Corollary 4.3. �

Corollary 4.10 established below is an example of application of Theorem 4.1 with
H different fromX. Prior to its formulation, we introduce a definition.

∗See Section 2.3.
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Definition 4.8. Let K be a wedge inX and f be an element fromX. An operator
A : X→ X is said to bef -boundedwith respect toK if, for every x ∈ X, there exists
a constantβ ∈ (−∞,+∞) such that

−β f 5K Ax5K β f .

In other words,A is f -bounded if the elementAx is f -measurable for allx. It
follows from Proposition 2.11 that, in the pathological cases where 05K f 5K 0 or
f is incomparable with zero, every operatorA which is f -bounded with respect toK
has the property imA ⊆ K^.

Remark4.9. An operatorf -bounded with respect toK is, in particular,f -bounded
from above in the sense of the definition from [5], Chapt. 2,§1. The converse state-
ment is not true.

Corollary 4.10. Let f =K 0 be a given element andAk : X → X, k = 1, 2, be
completely continuous linear operators leavfing the wedgeK invariant, satisfying
condition(4.1), and f -bounded with respect toK.

Then the existence of a non-negative constantα for which relation(3.2) is satisfied
implies estimate(4.3) for the spectral radius of the operatorA1 − A2.

P. Setting
H := XK( f ), (4.7)

we see that condition (3.4) is satisfied due to thef -boundedness ofA1 andA2 with
respect toK. By Lemma 2.14, the elementf satisfies relation (2.8) and, hence,

f KK; XK ( f ) 0.

Therefore, condition (3.3) holds withH given by (4.7), and it remains to apply The-
orem 4.1. �

5. I   (4.1)

As is seen from the proof of Theorem 4.1, the applicability of statements onK-
substantial eigenvalues is guaranteed by condition (4.1). It is natural to expect that
estimating the spectrum of an operator on the base of assumptions of type (3.2) is not
possible any more if one admits the existence of a non-zero eigenvalue which is not
K-substantial, and imposes no additional conditions onA.

The following example [11] shows that the assumption on the fulfilment of condi-
tion (4.1)in Theorem 4.1 is essential and, generally speaking, cannot be omitted.

Example5.1. Let us consider the set

K =

{(
x1

x2

)
: x1 ≥ 0, x2 ∈ �

}
. (5.1)

Obviously,K is a solid wedge inX := �2, and the blade ofK has the form

K^ =

{(
0
c

)
: c ∈ �

}
.
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It is not difficult to verify that the linear operatorA given by the matrixA =( a11 a12
a21 a22

)
leaves invariant the setK given by (5.1) if, and only if

a11 ≥ 0, a12 = 0. (5.2)

Furthermore, one can show that, under condition (5.2),A vanishes onK^ if, and only
if

a22 = 0. (5.3)

A vector f =
(

f1
f2

)
belongs to the interior ofK if, and only if

f1 > 0. (5.4)

whereas the corresponding condition (4.5) is equivalent to the inequalityα f1 ≥ a11 f1,
which, in view of (5.4), means that

α ≥ a11. (5.5)

If condition (2.65) or, which is the same in our case, equality (5.3) is violated, then
assumption (4.5), generally speaking, cannot guarantee the validity of the estimate
r(A) ≤ α for the spectral radius ofA. Indeed, it is clear from (5.2) thatr(A) =

max{a11, |a22|} and, hence,
r(A) ≥ |a22|. (5.6)

However, if the inequalities
|a22| > α ≥ a11 ≥ 0 (5.7)

hold, then the assertion of Corollary 4.5 in the case considered would have the form
r(A) ≤ α, which is impossible in view of (5.6) and (5.7).

Thus, condition (2.65) Corollary 4.5 (and, therefore, condition (4.1) in Theo-
rem 4.1), generally speaking, cannot be dropped.

6. U    

Theorem 4.1 allows one to obtain efficient conditions under which the linear equa-
tion

x = A1x− A2x + q, (6.1)

whereA1 and A2 are linear operators, possesses a unique solution for an arbitrary
elementq from X.

Corollary 6.1. LetX be a real Banach space,K ⊂ X be a wedge, andAi : X→ X,
i = 1, 2, be completely continuous linear operators leavingK invariant and satisfying
condition(4.1). In addition, assume that relation(3.2) is satisfied with some constant
α ∈ [0,1) and elementf ∈ X possessing property(4.2).

Then equation(6.1) is uniquely solvable for arbitraryq ∈ X, and its solutionx is
represented by the convergent Neumann series

x =

+∞∑

k=0

(A1 − A2)kq. (6.2)
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P. It suffices to notice that, by virtue of Theorem 4.1, the conditions assumed
guarantee that the spectrum of the operatorA1 − A2 is contained in the closure of the
unit disk in�. �

In the cases where the fact of convergence of series (6.2) is less important, one
may prefer to use the following

Corollary 6.2. LetK be a proper wedge in a real Banach spaceX andAi : X→ X,
i = 1,2, be bounded linear operators leavingK invariant and satisfying condition
(4.1). Assume that relation(3.2) is true, whereα ∈ [0,1) and f ∈ X is an element
relation (4.2) is satisfied.

Then the homogeneous equation

x = A1x− A2x (6.3)

has no non-trivial solutions. If, moreover, the operatorsA1 and A2 are such that
A1 − A2 is a Fredholm operator of index0, then equation(6.1) is uniquely solvable
for an arbitraryq ∈ X.

P. In view of assumption (4.1) and Lemma 2.48, it follows from Theorem 3.1
that operator (3.6) has no eigenvalues outside the open interval (−1, 1) and, in partic-
ular, the number 1 is not an eigenvalue for the operator mentioned. Therefore, zero
is the unique solution of the homogeneous equation (6.3). The unique solvability of
equation (6.1) for anyq is guaranteed by the assumption thatA1 − A2 is a Fredholm
operator of index 0. �

Corollary 6.2 allows one to obtain the following statement.

Corollary 6.3. LetK be a proper wedge in a real Banach spaceX andAi : X→ X,
i = 1,2, be bounded linear operators leavingK invariant, satisfying the condition

K^ ⊆ kerA1 ∩ kerA2. (6.4)

Assume also that relation(3.2) is true, whereα ∈ [0,1) is a constant andf ∈ X is an
element possessing property(4.2). Then the homogeneous equation

x = σ1A1x + σ2A2x (6.5)

has no non-trivial solutions for any values{σ1, σ2} ⊂ {−1,1}.
If, in addition, for some{σ1, σ2} ⊂ {−1, 1}, the mappingσ1A1+σ2A2 is a Fredholm

operator of index0, then the equation

x = σ1A1x + σ2A2x + q, (6.6)

is uniquely solvable for an arbitraryq ∈ X.

P. Let us define the operators̃Ai : X→ X, i = 1, 2, by putting

Ã1 :=
1 + σ1

2
A1 +

1 + σ2

2
A2 (6.7)
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and

Ã2 :=
1− σ1

2
A1 +

1− σ2

2
A2. (6.8)

One can verify that the relations

σ1A1 + σ2A2 = Ã1 − Ã2

and

A1 + A2 = Ã1 + Ã2 (6.9)

are true. It is also easy to see from (6.7) and (6.8) that both operatorsÃ1 andÃ2 leave
invariant the wedgeK.

Assumption (6.4) guarantees the fulfilment of the inclusion

K^ ⊆ ker (Ã1 − Ã2).

Moreover, by virtue of (6.9), condition (3.2) can be rewritten as

Ã1 f + Ã2 f 5K α f .

We have thus shown that Corollary 6.2 can be applied withA1 andA2 replaced byÃ1

andÃ2, respectively. �

7. A      

We illustrate the idea of the results above on an example. Let us consider the
problem on the continuous solutions of the equation

x(t) =

∫ 1

0
h(t, s) x(ω(s)) ds+ q(t), t ∈ [0, 1], (7.1)

whereq : [0, 1] → � is continuous, the functionω : [0, 1] → [0, 1] is measurable,
h(t, ·) : [0,1] → � is Lebesgue integrable for allt ∈ [0, 1], andh(·, s) : [0,1] → � is
continuous for almost everys from [0, 1].

7.1. The general argument deviation.The techniques of Section 4 allow one
toobtain the following theorem.

Theorem 7.1. Let there exist a non-negative continuous functionψ : [0,1] → �

such that

vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)|ds< +∞ (7.2)

and

h(ω(t), s) = 0 for a. e.t ∈ Γψ,ω and a. e.s ∈ [0, 1], (7.3)

where
Γψ,ω := {t ∈ [0,1] | ψ(ω(t)) = 0} . (7.4)
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Moreover, assume that the inequality

vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)|ψ(ω(s)) ds< 1 (7.5)

is satisfied.
Then equation(7.1) possesses a unique solution for any continuous functionq :

[0,1]→ �.

P. Equation (7.1) can obviously be rewritten in form (6.1), where the opera-
tors Ai , i = 1, 2, in the Banach spaceX := C([0, 1],�) of all the continuous scalar
functions on [0, 1] are introduced by the formulae

(Ai x)(t) :=
∫ 1

0
max{(−1)i+1h(t, s), 0} x(ω(s)) ds, t ∈ [0, 1], i = 1,2, (7.6)

for any continuousx : [0, 1] → �. Clearly, each of these operators leaves invariant
the wedge

Kω := {u ∈ C([0, 1],�) | u(ω(t)) ≥ 0 for a. e.t ∈ [0,1]} .
It is easy to show that mappings (7.6) are completely continuous linear operators
possessing property (4.1) with respect to the wedgeK = Kω.

Let Cψ,ω be the set of all the continuous functionsx : [0,1] → � for which there
exists a non-negative constantβx such that the estimate

|x(ω(t))| ≤ βxψ(ω(t))

is true for a. e.t ∈ [0,1].
It is easy to see thatCψ,ω is a linear manifold inC([0,1],�). Assumptions (7.2)

and (7.3) and formula (7.6) imply that, for anyx from C([0,1],�), the estimate

| (A1x) (ω(t)) − (A2x) (ω(t))| ≤ ψ(ω(t)) ∆ max
ξ∈[0,1]

|x(ξ)| (7.7)

is true at a. e.t from [0, 1] \ Γψ,ω, where

∆ := vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)|ds. (7.8)

Indeed, letx ∈ C([0, 1],�) be arbitrary. According to (7.6), we obtain

|(A1x) (ω(t)) − (A2x) (ω(t))| =
∣∣∣∣∣∣
∫ 1

0
h(ω(t), s) x(ω(s)) ds

∣∣∣∣∣∣

≤ max
ξ∈[0,1]

|x(ξ)|
∫ 1

0
|h(ω(t), s) x(ω(s))|ds (7.9)

for a. e.t ∈ [0,1]. For almost allt < Γψ,ω, we haveψ(ω(t)) , 0 and, thus, by (7.8),
∫ 1

0
|h(ω(t), s) x(ω(s))|ds≤ ∆ψ(ω(t)),
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which, together with (7.9), yields (7.7). Moreover, assumption (7.3) guarantees that

(A1x) (ω(t)) = (A2x) (ω(t)) (7.10)

for a. e. t ∈ Γψ,ω. Therefore, estimate (7.7) is true almost for allt from the entire
interval [0,1], not only those lying outside the setΓψ,ω.

This means that condition (3.4) is satisfied with the above definitions ofA1 andA2

andH := Cψ,ω.
Furthermore, the functionψ satisfies the condition

ψ KKω; Cψ,ω
0, (7.11)

which means that (3.3) holds withf := ψ andK := Kω. Indeed, according to Def-
inition 2.16, relation (7.11) means that, for anyx from Cψ,ω, there exists a constant
β ≥ 0 such that

|x(ω(t))| ≤ βψ(ω(t))

at almost every pointt from the interval [0, 1]. However, the above property is an
immediate consequence of the definition of the setCψ,ω.

Finally, condition (7.3) and inequality (7.5) guarantee that
∫ 1

0
|h(ω(t), s)|ψ(ω(s)) ds≤ αψ(ω(t)) for a. e.t ∈ [0,1], (7.12)

where

α := vrai max
t∈[0,1]\Γψ,ω

1
ψ(ω(t))

∫ 1

0
|h(ω(t), s)|ψ(ω(s)) ds

and, by (7.5),α < 1. In view of (7.6), relation (7.12) can be rewritten in form (3.2)
for K := Kω. Applying Theorem 4.1, we conclude that 1 is a regular value for the
operator (3.6) corresponding to the given problem. �

The above theorem implies, for example, the following statement.

Corollary 7.2. Assume that, for certainτ ∈ [0, 1] and γ ≥ 0, the functionsh :
[0,1]2→ � andω : [0,1]→ [0,1] satisfy the conditions

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|ω(s) − τ|γ |h(ω(t), s)|ds< 1, (7.13)

and

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|h(ω(t), s)|ds< +∞. (7.14)

In the case where
mesω−1(τ) > 0, (7.15)

assume, in addition, that

h(τ, s) = 0 for a. e. s ∈ [0, 1]. (7.16)
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Then equation(7.1)has a unique solution for any continuous functionq : [0,1]→ �.

P. It suffices to apply Theorem 7.1 with

ψ(t) := |t − τ|γ, t ∈ [0,1],

in which case set (7.4) is given by the formula

Γψ,ω = {t ∈ [0, 1] | ω(t) = τ} .
Assumption (7.3) of the theorem mentioned is satisfied in this case. Indeed, if the set
ω−1(τ) has zero measure, then property (7.3) is obvious, whereas in the case where
(7.15) is true, condition (7.3) is satisfied due to assumption (7.16). �

Remark7.3. If the functionω : [0,1]→ [0, 1] possesses the property

vrai min
t∈[0,1]

|ω(t) − τ| > 0, (7.17)

then condition (7.14) of Corollary 7.2 is a consequence of its assumption (7.13).
Indeed, it follows from (7.13) and (7.17) that

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|h(ω(t), s)|ds

≤ 1
εγ

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|ω(s) − τ|γ |h(ω(t), s)|ds<

1
εγ
,

whereε := vrai mint∈[0,1] |ω(t) − τ|. Therefore, relation (7.14) is true.
Remark7.4. Condition (7.13) of Corollary 7.2 is unimprovable in the sense that

the corresponding non-strict inequality

vrai max
t∈[0,1]\ω−1(τ)

1
|ω(t) − τ|γ

∫ 1

0
|ω(s) − τ|γ |h(ω(t), s)|ds≤ 1. (7.18)

does not guarantee the unique solvability of equation (7.20) for all continuousq. In
order to show this, it is sufficient to consider the simplest functional equation

x(t) = x(ϑ) + q(t), t ∈ [0,1], (7.19)

whereϑ is a given point from [0, 1] andq : [0,1] → � is a continuous function.
Obviously, equation (7.19) can be rewritten as (7.1) withω(s) := ϑ andh(t, s) := 1
for all t and almost everys from [0, 1]. Equation (7.19) has no continuous solutions
for any continuous functionq : [0,1] → � satisfying the inequalityq(ϑ) , 0. Nev-
ertheless, the corresponding condition (7.18) is true in the form of an equality with
arbitraryϑ , τ and non-negativeγ. Note that, forγ = 1, one can also refer to the
example of equation (7.28) from Remark 7.7.
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7.2. The case of a power transformation of argument.For instance, in the case
of the equation

x(t) =

∫ 1

0
h(t, s) x(sα) ds+ q(t), t ∈ [0,1], (7.20)

whereα ∈ (0,+∞) is a constant andq : [0, 1] → � is a continuous function, the
following statement is true.

Corollary 7.5. Assume that there exists someτ ∈ [0, 1] for which the conditions

sup
t∈[0,1]\{τ}

1
|t − τ|γ

∫ 1

0
|sα − τ|γ |h(t, s)|ds< 1 (7.21)

and

sup
t∈[0,1]\{τ}

1
|t − τ|γ

∫ 1

0
|h(t, s)|ds< +∞ (7.22)

are satisfied with a certainγ ∈ [0,+∞). Then equation(7.20) is uniquely solvable
for any continuous functionq : [0,1]→ �.

P. Obviously, assumption (7.21) implies that

sup
t∈[0,1]\{ α√τ}

1
|tα − τ|γ

∫ 1

0
|sα − τ|γ |h(tα, s)|ds< 1,

which means that condition (7.13) is satisfied with

ω(t) := tα, t ∈ [0,1]. (7.23)

In view of (7.22), condition (7.14) holds withω given by (7.23). Thus, Corollary 7.2
can be applied. �

The following statement gives somewhat simpler but more restrictive conditions
sufficient for the solvability of equation (7.20).

Corollary 7.6. Equation(7.20)has a unique continuous solution for any continu-
ousq, provided that the inequality

vrai max
s∈[0,1]

sup
t∈[0,1]\{τ}

∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ <
α + 1

2ατ1+ 1
α − (α + 1) τ + 1

(7.24)

is satisfied with someτ ∈ [0,1].

P. In view of (7.24), there exists aδ ∈ [0,1) such that
∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ ≤
δ (α + 1)

2ατ1+ 1
α − (α + 1) τ + 1

(7.25)
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for almost everys ∈ [0,1] and allt ∈ [0,1] \ {τ}. Using estimate (7.25) and taking
into account the identity

∫ 1

0
|ξα − τ|dξ =

2ατ1+ 1
α + 1

α + 1
− τ, (7.26)

we conclude that

1
|t − τ|

∫ 1

0
|ξα − τ| |h(t, ξ)|dξ ≤

∫ 1

0
|ξα − τ|dξ vrai max

s∈[0,1]

∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ ≤ δ < 1

for every t different fromτ, i. e., condition (7.21) is satisfied withγ := 1. More-
over, by virtue of (7.25), condition (7.22) is satisfied with this value ofγ. Applying
Corollary 7.5, we obtain the required assertion. �

Corollary 7.6 implies, in particular, that equation (7.20) is uniquely solvable if

vrai max
s∈[0,1]

sup
t∈(0,1]

t−1 |h(t, s)| < α + 1. (7.27)

It should be noted that (7.27) is weaker than the condition

vrai max
s∈[0,1]

sup
t∈(0,1]

t−1 |h(t, s)| < 1,

which is obtained by using the standard techniques (e. g., Theorem 5.5 of [7] with
E = C([0, 1],�), K defined as the cone of non-negative functions,y0 ≡ 1, and the
operatorA given by the expression in the right-hand side of (7.20)).

Remark7.7. None of conditions (7.24) and (7.27) can be weakened. Indeed, con-
sider the equation

x(t) =
(α + 1) |t − τ|

2ατ1+ 1
α − τ (α + 1) + 1

∫ 1

0
x(sα) ds, t ∈ [0,1], (7.28)

whereα ∈ (0,+∞) andτ ∈ [0,1] are arbitrary constants. Obviously, equation (7.28)
has form (7.20) with

h(t, s) :=
(α + 1) |t − τ|

2ατ1+ 1
α − τ (α + 1) + 1

(7.29)

for all t and almost everys from [0,1]. Moreover, due to formulae (7.26) and (7.29),
we have

vrai max
s∈[0,1]

sup
t∈[0,1]\{τ}

∣∣∣∣∣
h(t, s)
t − τ

∣∣∣∣∣ =
α + 1

2ατ1+ 1
α − (α + 1) τ + 1

.

However, the homogeneous equation (7.28) has the non-trivial solution

x(t) =
(α + 1) |t − τ|

2ατ1+ 1
α − τ (α + 1) + 1

, t ∈ [0,1].

Thus, we see that condition (7.24) is unimprovable. In order to show the optimality
of condition (7.27), it is sufficient to putτ := 0 in (7.28).
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