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AN IDENTITY WITH DERIVATIONS IN PRIME RINGS
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Abstract. Let R be a prime ring with center Z.R/, and d a derivation of R. Suppose that
.d Œx;y�k/

n�mŒx;y�k 2Z.R/ for all x;y 2R, wherem¤ n;k � 1 are fixed integers. Then d D
0 or R satisfies s4, the standard identity in four variables. In the case .d Œx;y�k/n�mŒx;y�k D 0
for all x;y 2R, then d D 0 or R is commutative.
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1. INTRODUCTION

In all that follows, unless stated otherwise, R will be an associative ring, Z.R/ the
center of R, Q its Martindale quotient ring and Utumi quotient ring U . The center
of Q, denoted by C , is called the extended centroid of R (we refer the reader to [3]
for related symbols). For any x;y 2 R, the symbol Œx;y� and x ı y stand for the
commutator xy�yx and anti-commutator xyCyx, respectively. Recall that a ring
R is prime if for any a;b 2R, aRb D .0/ implies aD 0 or b D 0 and is semiprime if
for any a 2 R, aRaD f0g implies aD 0. By a derivation on R we mean an additive
mapping d WR�!R such that d.xy/D d.x/yCxd.y/ holds for all x;y 2R. In par-
ticular d is called an inner derivation induced by an element a 2 R, if d.x/D Œa;x�
for all x 2 R: For any x;y 2 R, we set Œx;y�1 D Œx;y� D xy � yx, and Œx;y�k D
ŒŒx;y�k�1;y�, where k > 1 is an integer. Note that Œx;y�k D

Pk
iD0.�x/

iyxk�i and
d.Œx;y�k/D Œd.x/;y�kC

Pk
iD1ŒŒŒx;y�i�1;d.y/�;y�k�i .

Many results in literature indicate that global structure of a ring R is often lightly
connected to the behavior of additive mappings defined on R. The first classic result
on this topic is due to Divinsky [7] who proved that a simple Artinian ring is commut-
ative if it has a commuting non-identity automorphism. Over the last few decades,
a number of authors have investigated the relationship between the commutativity of
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the ring R and certain specific types of derivations of R. In [2], Ashraf and Rehman
proved that if R is a prime ring, I a nonzero ideal of R and d is a derivation of R
such that d.x ıy/D x ıy for all x;y 2 I , then R is commutative. In [1], Argaç and
Inceboz generalized the above result as following: LetR be a prime ring, I a nonzero
ideal of R and n a fixed positive integer, if R admits a derivation d with the property
.d.x ıy//n D x ıy for all x;y 2 I , then R is commutative. On the other hand, Daif
and Bell [6] showed that if in a semiprime ring R there exists a nonzero ideal I of
R and a derivation d such that d.Œx;y�/D Œx;y� for all x;y 2 I , then I �Z.R/. In
particular, if I DR then R is commutative. Motivated by the above-cited results, our
purpose in this article is to obtain some information of the prime ring R involving
a central identity .d Œx;y�k/n�mŒx;y�k 2 Z.R/ for all x;y 2 R, where m;n;k � 1
are fixed integers.

The standard identity s4 in four variables is defined as follows:

s4 D
X

.�1/�X�.1/X�.2/X�.3/X�.4/

where .�1/� is the sign of a permutation � of the symmetric group of degree 4. As is
well known, prime rings satisfying s4 can be characterized by the following:

Fact 1 ([4]). Let R be a prime ring with the extended centroid C . Then the fol-
lowing are equivalent:

(1) dimCRC � 4;

(2) R satisfies s4;

(3) R is commutative or R embeds in M2.F /;

(4) R is algebraic of bounded degree 2 over C ;

(5) R satisfies ŒŒx2;y�; Œx;y��.

2. RESULTS

We begin with the following lemmas which are crucial for proving our main res-
ults.
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Lemma 1. Let R DM2.F / be the ring of all 2� 2 matrices over a field F . If
0¤ a 2R such that

.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
DmŒx;y�k

for all x 2R where m;n;k � 1 are fixed integers, then a 2Z.R/.

Proof. Let a D
P2
i;jD0aij eij with aij 2 F , where eij is the usual matrix unit

with 1 in .i;j /-entry and zero elsewhere. Let x D e12, y D e11. Then mŒx;y�k D
0 and .ŒŒa;x�;y�kC

Pk
iD1ŒŒŒx;y�i�1; Œa;y��;y�k�i /

nD .�1/kn.�e12aCe11ae12/
n:

By assumption we have .�1/kn.�e12aC e11ae12/n D 0: Right multiplying by e12,
it yields that .�1/.kC1/nan21e12 D 0, which implies a21 D 0. Similarly, we have
a12 D 0. Thus a must be a diagonal matrix. Now set a D

P
t at tet t , with at t 2 F .

Let ' be the inner automorphism of R given by '.x/ D .1C eij /a.1� eij /. Thus
.ŒŒa' ;x�;y�k C

Pk
iD1ŒŒŒx;y�i�1; Œa

' ;y��;y�k�i /
n D mŒx;y�k for all x;y 2 R. By

above argument,

a' D .1C eij /a.1� eij /D˙
k
iD1ai iei i C .ajj �ai i /eij

must be diagonal. Therefore ajj D ai i and so a 2Z.R/. �

Lemma 2. LetR be a non-commutative prime ring with centerZ.R/. If 0¤ a 2R
such that

.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
DmŒx;y�k

for all x;y 2R, where n;m;k � 1 are fixed integers, then a 2Z.R/.

Proof. By assumption, R satisfies the generalized polynomial identity

p.x;y/D .ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
�mŒx;y�k :

By Chuang [5], this generalized polynomial identity (GPI) is also satisfied by U .
If a … C then p.x;y/D 0 is a nontrivial (GPI) for U . In case C is infinite, we have
p.x;y/ D 0 for all x;y 2 U

N
C C where C is the algebraic closure of C . Since

both U and U
N
C C are prime and centrally closed [8], we may replace R by U or

U
N
C C according to C finite or infinite. Thus we may assume that R is centrally

closed over C which is either finite or algebraically closed and p.x;y/ D 0 for all
x;y 2 R. By Martindale’s theorem [13], R is then a primitive ring having nonzero
soc.R/ with C as the associated division ring. Hence by Jacobson’s theorem [9],
R is isomorphic to a dense ring of linear transformations of a vector space V over
C . If dimCV D k, then the density of R on V implies that R Š Mk.C /, where
kDdimCV . SinceR is noncommutative, k � 2. If dimCV D 2, then by Lemma 1 we
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have a 2Z.R/. Now suppose that dimCV � 3. We want to show that for any v 2 V ,
v and av are linearly C -dependent. Suppose on contrary that v and av are linearly
C -independent for some v 2 V . Since dimCV � 3, there exists w 2 V such that
fv;av;wg are linearly C -independent set of vectors. By the density of R on V , there
exist x;y 2 R such that xv D v;xw D vCw;xav D wIyv D v;yw D 0;yav D v:
Then 0 D p.x;y/v D .�1/knv; a contradiction. Therefore v, av are linearly C -
dependent for any v 2 V . Hence we can write av D v˛v for all v 2 V and ˛v 2 C .
Then by a standard argument, it is very easy to prove that ˛v is independent of the
choice of v 2 V . In fact, Since dimCV � 3, then there exist u;v;w which are
linearly independent, and so ˛u;˛v;˛w 2 C such that auD u˛u, av D v˛v, aw D
w˛w , that is a.uC vCw/ D u˛uC v˛vCw˛w . Moreover a.uC vCw/ D .uC
vCw/˛uCvCw for some ˛uCvCw 2 C . Then 0D .˛uCvCw �˛u/uC .˛uCvCw �
˛v/vC .˛uCvCw �˛w/w and hence ˛u D ˛v D ˛w D ˛uCvCw , that is ˛ does not
depend on the choice of v. Thus we can write av D v˛ for all v 2 V and ˛ 2 C
fixed. Now, let r 2 R, v 2 V . Since av D v˛, we have Œa;r�v D .ar/v� .ra/v D
a.rv/� r.av/ D .rv/˛ � r.v˛/ D 0; that is Œa;r�V D 0. Hence Œa;r� D 0 for all
r 2R, implying a 2Z.R/. �

Theorem 1. Let R be a prime ring and d a derivation of R. Suppose that
.d Œx;y�k/

n DmŒx;y�k for all x;y 2R, wherem¤ n;k � 1 are fixed integers. Then
d D 0 or R is commutative.

Proof. Using the identity d.Œx;y�k/D Œd.x/;y�kC
Pk
iD1ŒŒŒx;y�i�1;d.y/�;y�k�i

and the hypothesis, we have

.Œd.x/;y�kC

kX
iD1

ŒŒŒx;y�i�1;d.y/�;y�k�i /
n
DmŒx;y�k

for all x;y 2 R. Assume first that d is Q-inner, that is, d.x/D Œa;x� for all x 2Q,
where a is a non-central element in Q. Then

.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
DmŒx;y�k

for all x;y 2 U . Thus by Lemma 2, a 2Z.R/ that gives d D 0.
Assume next that d is Q-outer. Applying Kharchenko’s theorem [10], we get
.Œv;y�kC

Pk
iD1ŒŒŒx;y�i�1;u�;y�k�i /

nDmŒx;y�k for all x;y;u;v 2U . In partic-
ular, for uD 0 and v D x we have .Œx;y�k/n DmŒx;y�k; for all x;y 2 U . Note that,
this is a polynomial identity and hence there exists a field F such that R �Mt .F /,
the ring of t � t matrices over a field F , where t � 1. By Chuang [5], this generalized
polynomial identity (GPI) is also satisfied byR as well. Moreover,R andMt .F / sat-
isfy the same polynomial identity [11, Lemma 1], that is, .Œx;y�k/nDmŒx;y�k for all
x;y 2Mt .F /. But by choosing xD e12, yD e11, we get 0D .Œx;y�k/n�mŒx;y�k D
.�1/k.en12�me12/: This is a contradiction, ending the proof.
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�

Lemma 3. Let R DMt .F / be the ring of all t � t matrices over a field F with
t � 3. If 0 ¤ a 2 R and m;n;k � 1 are fixed integers, such that .ŒŒa;x�;y�k CPk
iD1ŒŒŒx;y�i�1; Œa;y��;y�k�i /

n�mŒx;y�k 2 F �It ; for all x;y 2R, then a 2 F �It .

Proof. We are given that

Œ.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
�mŒx;y�k;´�D 0

for all x;y;´ 2 R. Let a D .aij /t�t . By choosing x D eij ;y D ei i and ´D eik for
any i ¤ j ¤ k, we have

Œ.�1/knŒa;eij �
n
� .�1/kmeij ; eik�D .�1/

kn..eija/
neik � eik.aeij /

n/D 0:

Thus aij D 0, and so a is a diagonal matrix. Using the same technique in Lemma 1,
we get a 2 F �It , proving the lemma. �

Theorem 2. Let R be a prime ring with center Z.R/, and d a derivation of R.
Suppose that .d Œx;y�k/n�mŒx;y�k 2Z.R/ for all x;y 2R, wherem¤ n;k � 1 are
fixed integers. Then d D 0 or R satisfies s4, the standard identity in four variables.

Proof. By assumption R satisfies the generalized differential identity

0D Œ.d Œx;y�k/
n
�mŒx;y�k;w�D ŒŒd.x/;y�kC

kX
iD1

ŒŒŒx;y�i�1;d.y/�;y�k�i�mŒx;y�k;w�

for x;y;w 2R. By Lee [12], R and U satisfy the same differential identities we may
assume that above identity is also satisfied by U . Now we consider the following two
cases:

Case 1. Suppose that d is aQ-outer derivation. Then Kharchenko’s theorem [10],
we have

Œ.Œv;y�kC

kX
iD1

ŒŒŒx;y�i�1;u�;y�k�i /
n
�mŒx;y�k;w�D 0;

for all x;y;u;v;w 2 U . This is a polynomial identity and hence there exists a field
F such that U � Mt .F / with t > 1 and U , Mt .F / satisfy the same polynomial
identity [11]. If t � 3 then by choosing w D e13, v D x D e12, y D e11, uD 0, we
get 0D Œ.Œv;y�kC

Pk
iD1ŒŒŒx;y�i�1;u�;y�k�i /

n�mŒx;y�k;w� D .�1/
ke13: This is

a contradiction. Thus t D 2 and so R satisfies s4 by Fact 1.
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Case 2. Suppose that d is a Q-inner derivation. In this case there exists a 2Q
such that d.x/D Œa;x� for all x 2R. Then we have

Œ.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
�mŒx;y�k;w�D 0;

for all x;y;w 2R. By localizing R at Z.R/ it follows that

.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
�mŒx;y�k 2Z.RZ/;

for all x;y 2 RZ . Since R and RZ satisfy the same polynomial identities, in or-
der to prove that R satisfies s4, we may assume that R is simple with 1. Hence,
.ŒŒa;x�;y�k C

Pk
iD1ŒŒŒx;y�i�1; Œa;y��;y�k�i /

n�mŒx;y�k 2 Z.R/ for all x;y 2 R.
Therefore R satisfies a generalized polynomial identity and it is simple with 1, which
implies that Q D RC D R and R has a minimal right ideal, whose commuting ring
D is a division ring which is finite dimensional over Z.R/. However, since R is a
simple ring with 1, R must be Artinian, that is, R DDs , the s� s matrices over D,
for some s � 1. By [11] there exists a field F such that R �Mt .F /, the ring of t � t
matrices over field F , with t > 1, and

.ŒŒa;x�;y�kC

kX
iD1

ŒŒŒx;y�i�1; Œa;y��;y�k�i /
n
�mŒx;y�k 2Z.Mt .F //D F �It ;

for all x;y 2Mt .F /. If t � 3, then by Lemma 3, a 2 F � It and so d D 0. If t D 2,
then R satisfies s4. �
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