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Abstract. Leta,b,c,d € R be given such that a < b,c < d. Starting with the Bernstein bivari-
ate approximation formula on [a,b] X [c,d] a corresponding composite Bernstein type cubature
formula is constructed. Its coefficients and an upper bound estimation for the remainder term are
established. Numerical examples and comparisons with other known cubature formulas are also
provided.
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1. PRELIMINARIES

Let N be the set of positive integers and Ng = N U {0}. It is well known (see for
example [1,2,5,6,8,9]) that the Bernstein bivariate operators By, , : C[0,1] x[0,1] —
C10,1] x[0,1] are defined for any f € C[0,1] x[0,1], any (x,y) € [0,1] x [0, 1] and
any m,n € N by:

Bunf (. 9) =Y Pms () pn () f (n7 : ﬁ) (1.1)

k=0j=0

where

pm,k<x)=(’Z)xk(1—x)m"‘, pn,j(x)=<j)yf<1—y>"‘f (1.2)

are the fundamental univariate Bernstein’s polynomials.

Note that the bivariate polynomials (1.1) are known as the Bernstein bivariate poly-
nomials of degree (m,n).

Forany f € C[0,1]x[0,1], (x,y) €[0,1] x[0,1], m,n € N, the equality

S(x.y) = Bmnf(x,y)+ Rmnf(x,y) (1.3)

is known as the Bernstein bivariate approximation formula, R,, , f being its re-
mainder term.
Regarding the remainder term of (1.3) were established the following results.

(© 2017 Miskolc University Press



644 DAN BARBOSU AND GHEORGHE ARDELEAN

Theorem 1 ([5]). Forany f € C|0,1] x [0, 1] the remainder term of (1.3) can be
represented under the form:

x(1—x) T & x,% %
R f(6.9) ==——3 > pm-14 ()P, () f a4

k=0,=0
Y1) oA k
— -7 m )
-2 Zme,k(x)pn—l,j(y)[ I ,f}
kZOJZO 9k’ n
—1n—1 k k+1
+ mn—ZZl)m—Lk(x)Pn—Lj(y) ’7 jfl £,
k=0,=0 sn n

forany (x,y) €[0,1] x[0, 1], where the brackets denote bivariate divided differences

Theorem 2 ([5]). Let p,g € Ng,a <xo <X1 <+ <Xp <b,c<yp<y; <--<

yg <d and f :[a,b] x [c,d] be given. Suppose f € CP~147D[q,b] x [c,d] and
gpt+a
there exists

axrayd " la,b[x]c,d]|. Then, there exists (€,7n) €la,b[Xx]c,d] such that
X7y

[xo,xl,...,xp 'f]z 1 ortaf

— 7). 1.5
Y0, V1,4, Yq plq! 0xPayd € (15
04 f
Theorem 3 ([5]). Suppose f € C?2[0,1]x[0, 1] and there exists 22902 bounded
xZ0Yy
on 0, 1[x]0, 1[. The following
x(1—x) y(a-y) xy(1=x)(1—y)
(Rmn )XY = —— M1+ = Mo f1+—— "~ —— M3[f]
m 2n dmn
(1.6)
holds, for any (x,y) € [0,1] %[0, 1] and any m,n € N, where
9 f(x,y)
M= s |ZLEN]
ry)eloifxjoaf| 9
92 f(x,
mofy= s [TIEI (1.7)
(x,¥)€]0,1[x]0,1[ ¥
9% f(x,
M= sp  [ELED

(x.elo,ixloap| 0x2dy?

Applying the above results, in [4] was obtained the following Bernstein type cub-
ature formula.
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22 ’f Pf
Theorem 4 ([3]). Let f € C*~[0,1] x [0,1] be given such that — R 3y — and
0*f
———— are bounded on 10,1[x]0, 1[. Then, the following Bernstein type cubature
x50 bounded on 10,1[x]0,1[. Then, the following B ] b
X<0y
formula

Sededs =3 a1 (22 ) 4 Ruals) ()
A (%)

i=0;=0

holds, where the coefficients are expressed by

1 S S

Dty =0m =0 (19)

and the remainder term satisfies

Al‘j =

R 1< o MALf]+ o Ml f 14—

Note that the cubature formula (1.8) has the degree of exactness (1, 1) i.e. itis exact
for the bivariate polynomials €; j (x,y) =x'y/,0<i < j <1,i,j € No,i +j < 1.
Theorem 1.4 was generalized as follows.

Ms[f]. (1.10)

2fF 92
Theorem 5 ([3]). Let f € C%2[0,1]x [0,1] be given such that o ];, B_f and
*f . : :
W are bounded on 10,1[x]0, 1[. The following composite Bernstein cubature
Sformula

1 el kp— p+h jq—q-+I1
/o/of(x’”d“ly n(p+1)(q+1)ZZZZf( )

k=1/=1h=01=0 "q
+ Rmnlf] (1.11)
holds, were Ry, | f] satisfies (1.10).

Using (1.11) it is possible to approximate fol fol f(x,y)dxdy which the desired
precision &, imposing the condition | Ry, [ f]| < €.

The focus of the present paper is to extend the results from [4] in order to obtain
a composite Bernstein type cubature formula on any bidimensional interval [a,b] x
[c,d]. Finally, numerical examples and comparisons with other known cubature for-
mulas will be provided.
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2. MAIN RESULTS

Let a,b,c,d € R be given such that a < b,c < d and N be the set of positive
integers.

Lemma 1. The Bernstein bivariate polynomial associated to f € Cla,b] x [c,d]
is expressed for any (x,y) € [a,b] x [c,d] and any m,n € N by

m

n
_ _ _ b—a . d—c
Bon 0 = 3 B k0P 0 f (a TSIy T) @
k=0;=0
where
— L (m k —k
Pm g (x) = W(k)(x_a) (b—x)""%, (2.2)
B0 = (") = (d =y
SRRV
are the Bernstein fundamental polynomials.
. . X—a y—c o :
Proof. The vectorial function (¢,s) — 5 S transform the bidimensional
—a d—c
interval [a,b] X [c,d] into [0, 1] x [0, 1]. Taking the above and definitions (1.1),(1.2)
into account one arrives to (2.1), (2.2). O

Forany f € Cla,b] x|[c,d],m,n € N the equality
f(x’)’):Em,nf(x’)’)‘i‘ﬁm,nf(x’)’) (2.3)

is the Bernstein approximation formula on [a,b] x [c,d]. Applying Theorem 1.3, for
the remainder term of (2.3) follows
2f %f 9*f

Lemma 2. If f € C?2[a,b] x [c,d] such that 2 B2 ax20y2 are bounded

onla,b[x]c,d], the following
(x—a)(b—x)

R ()] = S b ] 4
—o\d -
O )

(x—a)(b—x)(y—c)(d—y)
dmn(b—a)?(d —c)?

holds, for any (x,y) € [a,b] x [c,d], where

M3[f]
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82f
Mi[fl= sup |5 (x.))], (2.5)
(x,y)elxJ dx
82f
M[f]=  sup 8—2(XJ)"
(x,y)eIxJ | 0y
84f
Ms[f]=  sup —(x,y)‘
’ (x,y)elxJ dx20y?2

and I x J = [a,b] x [c.d].

Consider now the bidimensional interval [a,b] X [c¢,d] divided in m -n equally
spaced subintervals

b—a

b
Ikaj=|:a+(k—1)- a+k- NE K

_ai|x|:c+(j—1)-d_c d—c]

k=1,m, j=1,n.
In each such type of interval one considers the distinct knots (xp,yr).
h=0,p,l =0,q, where
b—a ) d—c — —
xp=a+kp—p+h)—— yy=c+(q—q+1)-—— h=0,p,1 =0,9. (2.6)
mp ng

Applying Lemma 2.1 on I x J;, follows the following bivariate Bernstein type
polynomial

— P.pd LA
Bp,k,qu;f(xJ’): (b_Zl)p(Z_c)qZZ(i)<7) (27)

k=01=0

k —k ; .
QOIS S RO = AR
f (a+(kp—p+h).b;a’c+ (/q—q—l—l)-ﬂ)_
mp nq

On any bidimensional interval

b— b— d— d—
Ikaj=|:a+(k—1)~ a,a+k~ a]x[c—i—(j—l)- C,c—i—j~ C:|
m
holds the bivariate Bernstein approximation formula
f(x’y) = Ep,k,q,jf(x’y) +Fp,k,q,jf(x’y)- (28)

Applying Lemma 2.2 we get the following upper bound estimation for the re-
mainder term of (2.8)

|Rp kg, (.0 (2.9)
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m(x—a—(k—l)-l%) (a+k-l%—x)
< MYTf1+
2(b—a)?
n(y—eG=0- ) (475 y)
mn (x—a—(k—l)-l%)(a—l-k ——x) (y—c—(j—l)-dT_c) (C—i—j-dT_c—y)
+
4(b—a)?(d—c)?
My[f]
where
82
M{[fl=  sup —f(x,y)‘, (2.10)
(x,y)elixJ; dx
32
Mﬁl[f] = sup a—];(x,y)‘,
(x,y)elxJ;
MIf1=  sup (.
> (x,y)elxxJ; axzay
Theorem 6. Letlkaj:[cH—(k—l)-b— a+k- b_"]x[c +(J—l) < c+j- d_c]

and xy, y; given at (2.6). The coefficients of the Bernstein type cubature formula

// Ferondxdy =33 Tnpas S + Rl @D

L, h=01=0

are expressed by

— (b-a)d-c)
Apk,j = mnr D@ 1) (2.12)

Proof. Integrating (2.8) on I x J; and taking (2.7) into account, yields

_ mP -n4 p—k
Apgl,j = (b—a)?(d— C)q( )()// (x a—(k—1)- —) (a—l—k ——x)

d_ I d_ q— -l
-(y—c—(j—l)-Tc) (c—i—j-i—Tc—y) dxdy.

Denoting

o omP (p b—a\* b—a pk
Ap— (b—a)P (h)/(x—a—(k—l)T) (a+k7—)€) dx

Iy
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respectively
n4 q d—c\ d—c -1
A, = —c—(i—1) —— j — d
q (d_c)q(l)/(y c=(-D-— )(c+1+ " y) y
Jj
we have

Ah’kslsj = Ap 'Aq.

To computing A, one makes the change of variable x = a + (k — l)bm;“ + tb%a,
which leads to

1
Ap _ mP (p) (b—a)P -b_a/Zh(l—Z)p_hdl

b—a)P\h mP m
0

(p)lﬂB(hH,p—hH)
h] m

were B(h+ 1, p —h + 1) is the Euler function of first kind. Taking its well known
properties into account, one arrives to

4 (P b—a.h!(p—h)!= b—a
p hl m (p+1)!  mp+1)’

In a similar way one obtains A4, = % and then, taking the equality Aj 4 ; =
Ap - A4 into account follows (2.12). ]
84
Theorem 7. Let f € C?2[a,b] x [c,d] such that exist
Pf 02f 9*f
0x2" 0y2’ 0x20y2
upper bound estimation for the remainder term of (2.11)

WO” IkXJJ and
X=oy

are bounded on Iy x J; ,k =1,m,j = 1,n. Then, the following

— b—a)(d— b—a)(d—

Re (0= 22Dy OO0
(b—a)d-c) .,
“iaanzz U]

holds, where M{'[f], M}[ f], M} f] are defined at (2.10).

Proof. The inequality (2.13) follows integrating the approximation formula (2.8)
and taking the inequalities (2.9) into account. n

The main result of the paper is the following
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34
Theorem 8. Let f € C?2[a,b] x [c,d| be given such that exist —=—— on
dx20y2
2f %f *f
la.b[x]c,d[ and are bounded on |a,b[x]|c,d[. Then, the fol-

dx2’ 9y2’ 9x20y2
lowing composite Bernstein type cubature formula

brd _ (b—a)(d—c)
fafcf(x’y)d"dy—mn(p+1)(q+1) ZZZZﬂxh Y0+ Ronal ]

=i j=i h=01=0
(2.14)
holds, where xy,, y; are defined at (2.6) while the remainder term verifies the inequal-

ity (1.10).

Proof. Adding the Bernstein type cubature formulas (2.11) for k = 1,m,
j = 1,1 one arrives to (2.14). ]

Remark 1.

(i) For a = 0,b = 1 one refinds the results from [7].
(i1) Itis immediate that 1i2 |Rm n[ /1] = 0, which proves that
m,n—00

. (b—a)(d—c)
m=>% mn(p+1)(g+1)

n

ﬁiié(

J=i h=0

- / ’ / * ferdxdy.

3. NUMERICAL EXAMPLES

n [9] the authors introduce cubature formulas for two-variables function with
boundary-layer components to evaluate the integral

b prd
If=f/ f(x,y)dxdy (3.

For a uniform grid on the domain [a, b] x [c, d] with nodes (x;,y;),i =0,1,...,m
Jj =0,1,...,n, with steps i1 and h; in x and y, respectively, let u; ; = f(x;,y;).

Let us denote:

Trapezoidal Rule (TR)

hih
TRy = gz:(uerl,JJrl +uijr1+Huij+uivr)), 0<i<m, 0<j<n

aJ
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Simpson’s Rule (SR)

hiho
SRy = —2(16%,/ +Aujpr, +Hdui—1 +Aug e HAu o1 A4

i,j
+uj—1,j—1+uiv1,j-1+ui—1,j+1), i =13, m—1, j=13,---.n—1

Bernstein Rule (BR)

(b—a)(d—c)

BRy = mn(p+1)(q+1)

>y y

k=i j=i h=01=0

)

To demonstrate the accuracy of our new numerical cubature formula, we compare
the Bernstein Rule (BR) with Trapezoidal Rule (TR) and Simpson’s Rule (SR) by
using the following test functions:

f1:10,2] x[0,2] = R, fi(x,y) = o~ ()
f2:10,5] x[0,3] = R, fa(x,y) = e—z(x+y)sm(4x +4y)

fel0.11%[0,1] = R, fo(x,y) =(1—e )(1—e = )(I—X)(l—y)+
+faq%§y—% ee( 1]

The last function f; is studied in [9] for the values of e =1, ¢ = 1071, e =102,
e=10"3, e=10"* and &= 107>, by using Trapezoidal Rule (TR), Simpson’s
Rule (SR) and the new methods introduced by the author.

Let us denote the values of the integrals by

2 a2 5 pr3
szfﬁ@wmw,%=f[ﬁwwww
0 Jo 0JO
1,1
.= [ [ ftwaxay
o Jo
and the errors by

eTRy =|If—TRy¢|, eSRf =|If—SRy¢|, eBRr =|Ir — BR¢|.
S S S S S S S S S

The numerical results obtained for m = 64, n = 64, p = 5 and ¢ = 5 are presented
in Table 1 and Table 2. In these tables, e —m means 107".
The Mathcad 14.0 package was used to generate these numerical results.
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Table 1. Errors for fi and f>

eTR f eSR f eBR £
f1 1.05e-5 6.84¢-9 2.10e-6
fo 1.40e-5 1.89¢-6 1.47¢-6

Table 2. Errors for f;

& eTRfS eSng eBng
1 2.68e-5 6.65e-11 5.37e-6
107! 2.87e-4 1.42e-6 5.76e-5
1072 2.71e-3 6.95e-4 5.54e-4
1073 7.0le-3 4.43e-3 19le-3
107% 7.76e-3  5.11e-3  2.59¢-3
107° 7.76e-3 5.18e-3  2.59¢-3

4. CONCLUSIONS

In Table 1 and Table 2 one can see that Bernstein cubature formula revised is better
than trapezoidal cubature formula for all functions studied. Even if the Simpson’s
cubature formula is of order (2,2) and Bernstein cubature formula is of order (1,1),
the results obtained by using our revised formula are better for the cases of functions
f>and f,, withe = 1072,1073,1074,107>.
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