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Abstract. In this work we gather and formulize some useful tools for handling the action of
the Steenrod squares on monomials. In particular, we introduce some matrices and call them
S g-matrices, which are sufficient tools in algorithmic calculations with the Steenrod squares on
polynomials.

2000 Mathematics Subject Classification: 55S10

Keywords: Steenrod squares, hit problem

1. INTRODUCTION

In this section we introduce briefly the hit problem for the polynomial algebra
P(n) = Fa[x1,x2,...,Xn] = @ =0 P (1), viewed as a graded module over the Steen-
rod algebra @ at prime 2. The grading is by the homogeneous polynomials P (1) of
degree d in the variables x1,Xx3,...,x, of grading 1. We refer to [1, 6] in cohomol-
ogy operations, to [6,7] in the Steenrod algebra, and to [3] and the comprehensive
reference [8] for the hit problem.

The Steenrod algebra @ is defined to be the graded algebra over the field [, gen-
erated by the Steenrod squares S qk , in grading k > 0, subject to the Adem rela-
tions [3, 8].

From a topological point of view, the Steenrod algebra is the algebra of stable
cohomology operations for ordinary cohomology H* over [F,. The polynomial alge-
bra P(n) realizes the cohomology of products of n copies of infinite real projective
spaces.

For the present purpose we only need to know that the Steenrod algebra acts by
composition of linear operators on P(1) and the action of the Steenrod squares S¢* :
P% (n) — P2t%(n) is determined by the following rules [8].

Proposition 1.1. For homogeneous elements f, g in P(n) we have
() Sq° is the identity homomorphism;

(i) Sq*(f) = f?ifdeg(f) =k and Sq*(f) =0 if deg(f) <k;
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(iii) The Cartan formula Sq*(fg) = Y o0<r<k Sq"(f)SqkT(g).

The Cartan formula can be expressed in a more concise form by defining the fotal
Steenrod square by Sq = Sq° + Sq' +---. This acts on P(n) since by property (ii)
in the above proposition, only a finite number of S¢*’s can be nonzero on a given
polynomial. The Cartan formula then says that Sq(fg) = Sq(f)Sq(g),so Sqgisa
ring homomorphism Sq : P(n) — P(n). Now, we can use S¢ to compute the operator
S qk via the following lemmas [7].

Lemma 1.2. [fdeg(x) = 1, then Sq¥(x*) = ( ) k+e for any non-negative inte-
ger .

Proof. Properties (i), (ii) in Proposition 1.1 give Sg¢(x) = x +x2 = x(1 4+ x), so

Sq(x*)=Sq(x)* =x*(1+x)* = Z (Z)xk“‘
k

and hence S¢* (x%) = ( ) kta O
The following lemma is now immediate.
Lemma 1.3. [fdeg(x) = 1, then
x2 i k=0,
Sq*(x*H)y =10 if 0<k<?2°,
2 k=0

Remark. Tt is clear by Proposition 1.1 that S¢¥(x2") = 0 if k > 27.

2. SOME RESULTS IN THE n VARTABLES

Our main goal in this section is to extend Lemmas 1.2 and 1.3 and get some use-
ful tools for handling the Steenrod operations. In particular, we show that given
T > 1, the Sq{k(xo‘1 P2 ...xp"), where 1 <k <27 and 1 < o; <27, determine all
Sq (x1 2 n") for any 8; > 1 and any £. On the other hand if we change the
places of «; and o in S g{k()c‘l’l1 xgz -xp™), the results will be a permutation of x;
and x;. So, to handle the S¢’s it is sufficient to know only

Sq (xO‘1 22eeexdn)y  withoy <ap- <o, <2%and 1 <k <27,

for some 7 > 0.
Throughout the paper we shall adopt the following notations for any positive inte-
ger T.

o o
x% =x{'x32 - xpn, (1)

xm(2%) _ x;n1(2’)x;nz(2’),,,x;nn(f)’ (2)



ON THE ACTION OF THE STEENROD SQUARES ON POLYNOMIAL ALGEBRA 159

where, «; and m; are non negative integers for 1 <i <n.

The following lemma is an extension of Lemma 1.3.

Lemma 2.1.
x2 if k=0, Q)
S¢g*(x*H)=1{0 if 0<k <27, (ii)
XY xF i k=2" (iii)

Proof. Ttem (i) is trivial. For (ii) and (iii) use induction on n, noting the fact that
the one variable case is consistent with Lemma 1.3 in each case. O

We prove even more general results.

Lemma 2.2.
xm@) ifk =0, (i)
0 if0<k <2°, (ii)
qu(xm(zf)) _J]0 if k = 2% and all the m; even, (iii)
x”‘(zr)z}-’z x2° ifk =27, mi,ma,...my, are (iv)
J=17]
odd, and the other m;’s are
even.

Proof. Ttem (i) is trivial. To prove (ii), expand notation (2) as

m1 times m> times m,, times
mQ%) __ 27 2T 27 27 27 27
x =(x7 ...x7 X3 ...X5 .xp Xy ).

Now, the result follows from Lemma 2.1(ii) taking n = my +mp +--- + my.
We prove (iii) by induction on #, the number of variables. In the one variable case,
k (Xrlnl (2’)) _

putm; = 2n. Then, using (ii) we get S¢q 0. Assume now the result for

smaller variables than n. Then

qu(xM(2r)) :Sq()(xll’nl(2 )x;n2(2 )x”;’l_nl—](2 ))qur (x:lﬂn(zr))

+ quT (x;n1(2f)x;nz(2t) ' -~x,':lj1_1(2r))sq0(x;rznn(2r)) (by (ii))
—0.

by assumption.
Finally, we prove (iv) by induction, this time, on /4. Let m be odd and the other
m;’s even. Then, from (ii) and (iii) it follows that

SqF(xmCD) = xm@9 2"
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Now assume the result is true for smaller values than /. Then

n
qu(xm(Zr)) :SqO(xZih(zr))qur 1_[ xlmi(zr)
h#i=1

n
+8¢% (PN sq [ TT G oy iy
h#i=1

n h—1
_ _ma(29) m; (27) o7
=X}, [T »" >
j=1

h#i=1

n
_l_x}rlnh(ZT)Jﬂr 1_[ xlf”i(zf) (by assumption)

h#i=1
n @) h—1
m; (27 27 27
= 1_[ X; ij + X3,
i=1 =1
h
ji=1
The proof is complete. O

Corollary 2.3. In our earlier notations (1) and (2), where oj,m; > 0 and © > 0,
assume in addition that 1 < o; < 2% for 1 <i <n. Let also 0 <k < 2%, Then

qu(xm(Zr)x(x) :xm(Zr)qu(xd)' (3)
If, in addition, for 1 <h <n, we assume my,ma, ...,my, are odd and other m;’s even,
then
h
qur (x'"(zr)x“) = x"’(zr)qur (x%) + xm@) e Zx]zr 4
=1
and
h
g (xmP0x®) = x™CD Y 7 Sqk (%), 5)
Jj=1

In particular, if all m;’s are even, then
qur (xm(Zr)xa) — xm(ZT)SQZT (xcl) (6)

and
qu+2T (xm(2r)xoc) =0. (7)
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Proof. For k = 0 the relation (3) is trivial. Let 1 <k < 2%. Then by the Cartan
formula

k
qu(xm(zf)xa) — xm(zf)qu(xa) + Z Sqr(xm(Zf))qu—r (xcl)'

r=1

Butif 1 <r <k, then 0 <r <27, and hence by Lemma 2.2 (ii), we have Sq’(x'"(zt)) =
0. This proves the relation (3).
To prove the relation (4), by Lemma 2.2 (ii) and the Cartan formula we have

Sq* (x™Cx%) = S¢°(x™CNS ¢ (x%) + 54> (x™C) S0 (x%).

Now the result follows from Lemma 2.2 (iv).

Finally, to prove the relation (5) expand the left hand side of (5) using the Cartan
formula. Now, by Lemma 2.2 (ii) and Lemma 1.1 (ii), we see that all the terms in the
expansion are zero except Sq2° (x™2))§ ¢k (x®), which is the right hand side of (5)
by Lemma 2.2.

The previous corollary shows clearly the main object stated at the beginning of
this section. In the following example we illustrate all the cases in Corollary 2.3,
1. e., relations (3)—(7). O

Example 2.4.

S (xMyly = Sq3(x3'22y2'22x2y3) _ x3'22y2'225q3(x2y3)
= x12)8(x2y6 4 x4y = x 14y 14 4 (16,12
Sq4(x14y11) _ quz(x3'22y2'22x2y3) _ x3'22y2'22(Sq22(x2y3) +x2y3 _xzz)
= x12p8(x2y7 4 x*yS £ x6)3) = x14y15 4 (16,13 1 (18,11
Sq’ x4y = Sq3+22(x3'22y2'22x2y3) = x3'22y2'22 'X225613(X2y3)
= x16)8(x2y6 4 x4y = x18)14 4 (20,12
Sq4(x18y11) _ quz(x4'22y2'22x2y3) _ x4'22y2'22Sq22(x2y3)
= x16)8(x2)7 4 x4)5) = x18,15 | (20,13
Sq7(x18y1y = Sq3+22(x4'22y2'22x2y3) —0.
Since every n-variable polynomial over [, is the sum of n-variable monomials,
the following result is concluded directly from equation (3) in Corollary 2.3.

Corollary 2.5. Let t > 1 and 0 < k < 2. Then given integers m; > 0 for 1 <i <n,
and any n-variable polynomial f,

SqF(x™CY) £y = xmCI 54k ().
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In particular, if deg (f) < k, then
S¢* (=m0 f)=o.

3. APPLICATION 1

A homogeneous element f of grading d in a graded module M over @ is said to

be hit if it can be written as
=8¢ (fo.
k>0

where the pre-image elements f; have a degree less than d. The hit problem is to
discover criteria for elements of M to be hit and find minimal generating sets for M as
an @-module. However, we shall not go deeply into the hit problem. The following
result is a direct consequence of Corollary 2.5.

Proposition 3.1. Let t > 1, and let f,g be n-variable polynomials. Then f is hit
via

f= > S¢"(f).

0<k<2T
if and only if g = x™2%) £ is hit via
g= > SqFamC)f).

0<k<27

Example 3.2. Consider the hit polynomial

f=xy"=Sq (xy*) + Sqg*(xy?).

Then, by Proposition 3.1, g1 = x22y23f = x> y13 is hit and

x5y13 — Sql(XSyIZ) +Sq2(x5y11).
But g, = lef = x3y> is not hit. Here k = 2 = 2! = 27 and we cannot use the
lemma to conclude that x3y> = Sq¢l(x3y*%) + S¢2(x3y3).
Let the monomial x® be a permutation of the monomial x®. Then by equation
(3) in Corollary 2.3 we have
qu[xm(zt)(x“ + x“/)] = xm(zr)qu(x“ + x“/).

Using this fact we can state the same results as Corollary 2.5 and Proposition 3.1 for
symmetric polynomials. In particular, in Proposition 3.1 both f and g may be chosen
symmetric if we take x™2") symmetric n-variable, i. e.,

xm(2%) _ xllnl (2’)x;ﬂz(2’) . ”xrrlnn(zf)’

where m;(2%) = --- = m,(2%) > 0. If this is the case, f; will be symmetric as well.
For the symmetric hit problem we refer to [4,5].
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4. APPLICATION 2

In this section we get some tools for handling the Steenrod squares in the 2-
variable case and, since higher variables are determined recursively from two vari-
ables, these tools apply for general n.

Proposition 4.1. Given t > 1, let
1) 0<a <27,
(i) 2F < B <2ttl 1,
(i) 2F <a+pB <271,
Then
qur (xayﬂ) — x(lyﬁ+2t )

Proof. Put B = B’ + 2%, where 0 < 8’ < 2% —1. By the Cartan formula and
Lemma 1.2 we have
2'[
Sq7 (yP) =S¢ («)Sg* (YP)+ 54" (xS T (vF)
r=1
21'
=xyP T2 42N " 5" (x)Sq> T (vP).

r=1

On the other hand,
21’
Y Sa" &S TGP = Y Sa"«x)S¢F T ()
r=1 1<r<a
+ Y ST (x)SgF (P,
a<r<2t

If r <@, then 2" —r > B’ and hence S¢2* " (y#') = 0, and if r > «, then S¢” (x¥) =
0. Therefore,
2T
3 Sq"(x)Sg> T (vF) =0,
r=1
and the proof is completed. O
Proposition 4.2. Letm >n+2,n> 1. Let
(i) 2m—2 <a< 2m—2 +2n—1 -1,
(i) 2" 24201 <B<2m2402n ),
(i) a + g =2""142" -2
Then m—1 m—2 m—2
qu (xotyﬂ) — (xa+2 yﬂ+2 )
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Proof. By the Cartan formula we have

m—1 m—1__
S (xyPy= Y Sqg"(x)S¢*" (P

o<r<2m—l_g

If0 <r <271 — B, then2"~' —r > B and S¢*" '~ (yF) = 0.
If2"~1 — B <r <2™m2 thenr > a — 2™ 2. Hence, by Corollary 2.5,

Sq"(x%) = Sqr(xzm_zx“_zm_2) =0.
If 272 < r <q, then 2"~ —r > B—2™72 Once again,
m—1__ m—1__ m—2 _~am—2
Sq*" T TP =547 (P P =0

Finally, if @ < r <271, then Sq”" (x*) = 0. So, by splitting the summation, one
sees that only the middle term is non-zero. Thus,

m—1 m—2 m—2 m—2 m—2
S () = 547" (x*)Sg?" T (P = (2T ETET).

The proof is complete. 0

5. APPLICATION 3

The subject of this section is to introduce some particular matrices, which we call
Sq-matrices, and apply them to simplify the action of the Steenrod squares. To do
this, we need some preliminaries.

Definition 5.1. Let M be an m x n matrix. By a reverse transpose of M, denoted
M7, we mean an n X m matrix obtained by reversing the order of rows of M?, the
transpose of M. Therefore,

t t

Mjri = M(n+1—j)i = Min+1-));
forl<i<m,1<j<n.

The following result follows directly from the definition.

Proposition 5.2. Given any m x n matrix M, the product MM is a symmetric
m X m matrix.

The next lemma in [2] describes how binomial coefficients can be computed mod-
ulo a prime.

Lemma 5.3. If p is a prime, then (') = []; (Zl,l) mod p, where m =Y, m; p'

andn=7y; ni pt, with0 <m; < p and 0 < n; < p, are the p-adic expansions of m
and n.
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When n = 2, for example, the extreme cases of a dyadic expansion consisting of

asingle 1 or all 1’s give .
2

Sq(xzk) =x2 4x
and
Sq(x¥ 1) = TP P 22
for all x with degree 1. More generally, the coefficient of S¢(x") can be read from the
(n + 1) row of the mod 2 Pascal triangle, a portion of which is shown in Figure 1,
where dots denote zeros [2].

Definition 5.4. Let m be a positive integer. For 1 <k < 2™ —1 the Sq-matrix 8
is a 2™ x (k + 1) matrix defined by

(SK)ij = Sq’ ' (x").
In other words, the terms of S¢(x™) can be read from the nth row of .

Without any confusion, if convenient, in expression of Sg-matrices each non zero
entry may be denoted only by the power of x in it. Figure 2 shows the S¢-matrix
831 where, as in Figure 1, dots denote zeros. Note that it contains the S¢g-matrices
815, 87, 83, and 81 as sub-blocks.

As seen comparing Figures 1 and 2, if we remove the top row of Figure 1 then, up
to arrangement, the position of zeros in both figures are the same.

In the following algorithm, given a positive integer m, we construct the S ¢g-matrix
8om_7 using Corollary 2.3. For 1 <k < 2™ —1 the Sg-matrix 8; can be obtained
from 8,m_1 by choosing the first k columns.

Algorithm 5.5.

1 2
81 = (2 0),
2) Fort =1tom—1do
2.1) Fori,j =1to2! do

1) Define
2.1.1) Define T;; = (82:—1)ij +2%;
2.1.2) Define W;; = (85:—1)ij 420+
2.1.3) Define 0 to be the 2! x 2! zero matrix;
2.2) Define the 2! 71 x 2!+1 matrix

821_1

S =

T LV

2.3) Define 8,:+1_; to be the matrix obtained from 8 by substituting 0,:; by
2!, and U, by 0.
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o8

6 . . 910 . .
.8 .10 .12 .
8 91011121314
8 . . ...

910 . .

10 .12 . .
11121314 .

12 . 16 ..
1314 . .1718 .
14 .16 .18 .20
151617181920
16 . . . ..
1718 . .

18 .20 . .
19202122 .
20 . 24 ..
2122 . .2526 . .
22 .24 .26 .28 .

1
2
3
4 .
5
6
7

2122

2324252627282930 .

24 . .

2526 . .

26 .28 . .
27282930 .

28 . . .32 . .
2930 . .3334 .
30 .32 .34 .36 .
3132333435363738
32 . 0 .o

A.S. JANFADA
1
11
1.1
1111
1. 1
11. .11
1.1.1.1
11111111
1. 1
11. .11
1.1. 101
1111. .1111
1. 1. 1. .1
11..11..11. .11
1.1.1.1.1.1.1.1
1111111111111111
1. 1
FIGURE 1. Mod 2 Pascal triangle
16 ..
L1718 ..
.18 .20 . .
.19202122 .
20 . . .24 L
L2122 . .2526 . .
.22 .24 .26 .28 .
2324252627282930
e e e o320
.3334 . .
.34 .36 . .
.35363738 .
.36 .. .40 .
L3738 . 4142 .
.38 .4, .42 .44 ..
.3940414243444546 .
32 .. .40 .. .48 .
.3334 .. L4142 . .495,
.34 .36 . . .42 .44 .50
.35363738 . .43444546 .
.36 .. .40 . .44 .0 .48 . . .52 ..
L3738 . .4142 . .4546 . .4950 . .5354 .
38 .40 .42 .44 .46 .48 .50 .52 .54

FIGURE 2. The Sg-matrix S3;

52 .
151525354

.56 .
394041424344454647484950515253545556575859606162
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The following observation follows directly from Definition 5.4 and the Cartan for-
mula, where in S,’(t the symbol y is used instead of x.
Proposition 5.6. Let m be a positive integer and 1 <k <2™ —1. Then

Sk8iij = Sq*(x'y)), 1<ij<2m

x! x? y2 0
Sl:(x2 o)’ Silz(yl yz)

gogrt — (SaiGelyh Sql(xly)) _ (xly? 42yl x?y?
LTS YY) Sqty?)) T a%y? 0 )

We extend the argument above. To do this, suppose that X,Y are monomials in
positive grading with distinct variables. Let x, y be distinct variables different from
those in X, Y. Givenm > 0 and 1 <k <2" —1, define the 2™ x (k + 1) Sg-matrices

(Xp)ij =S¢/ M XX (Y =S¢/,

The following observation is analogous to Proposition 5.6.

For example

Proposition 5.7. Let m be a positive integer and 1 <k <2™ — 1. Then
(XY = Sq*(Xx'Yy)), 1<ij <2
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