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1. INTRODUCTION

Ibragimov and Linnik [6] proved a central limit theorem (CLT) for stationary se-
quences satisfying certain ˛-mixing conditions. Bolthausen [1] and Guyon [11] ex-
tended it to ˛-mixing random fields. Fazekas [10] and Fazekas and Kukush [8] pre-
sented the so-called infill-increasing versions of Guyon’s result for the bounded and
the uniformly integrable cases, respectively. These papers do not contain the proofs
of the theorems mentioned (a sketch of the proof can be found in [9]). The aim of
our paper is to give proofs for the above mentioned theorems. The importance of
the detailed proof is the following. It turns out that the original proof by Ibragimov
and Linnik [6] and Guyon [11] can be applied if the random field satisfies a certain
uniform integrability condition. Guyon [11] does not assume the uniform integra-
bility but he does not describe the step from the bounded case to the general case.
Therefore we do not know if his result is valid in the general case. We mention that
Ibragimov and Linnik [6] assumed stationarity, so their proof is complete.

Our Theorem 1 contains the bounded case (it is a version of the result of [10])
while Theorem 2 is the general central limit theorem (it is contained in [7]). Theo-
rems 3 and 4 are the p-dimensional extensions of Theorems 1 and 2, respectively.

There is a vast literature of mixing random processes. Bradley [2] gives a recent
survey of mixing conditions. Recent advances in the central limit theorems for ran-
dom sequences are considered by Merlevède, Peligrad and Utev in [13].

In [4] a general CLT is proved for stationary random fields. As is pointed out in
[4], certain mixing conditions imply the assumptions of the general CLT.
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Note that our mixing conditions are not comparable with the ones in [4]. Moreover,
in that paper stationary field and fixed designs are studied, while in our paper we do
not assume stationarity and consider an infill-increasing setup.

2. NOTATION AND PRELIMINARY REMARKS

The following notation is used. Z is the set of all integers, Zd is the set of d -
dimensional lattice points where d is a fixed positive integer. R is the real line, Rd

is the d -dimensional space with the usual Euclidean norm kxk. In Rd we shall also
consider the distance corresponding to the maximum norm

%.x;y/ D max
1�i�d

jxi � yi j

where x D .x1; : : : ;xd /, y D .y1; : : : ;yd /. The distance of two sets in Rd corre-
sponding to the maximum norm is also denoted by % W %.A;B/ D inf f%.x;y/ W x 2
A; y 2 Bg.

For real valued sequences fang and fbng, an D o .bn/ (resp., an D O .bn/) means
that the sequence an=bn converges to 0 (resp., is bounded). We shall denote different
constants with the same letter c. I fAg denotes the indicator function of the set A.
jD j denotes the cardinality of the finite set D .

We shall suppose the existence of an underlying probability space .˝;F ;P/. The
�-algebra generated by a set of events or by a set of random variables will be denoted
by �f�g. The sign E stands for the expectation. The variance and covariance are
denoted by var .�/ and cov .�; �/, respectively. The Lp-norm of a random (vector)
variable � is defined as

k�kp D
˚
Ek�kp	1=p

; 1 � p <1:
The sign “)” denotes the convergence in distribution. N .m; ˙/ stands for the (vec-
tor) normal distribution with the mean (vector) m and covariance (matrix) ˙ .

The scheme of observations is the following. Let T1;T2; : : : , and T1 be domains
in Rd . Suppose that T1 � T2 � T3 � : : : ,

S1
iD1 Ti D T1: Assume that Ti is

compact for each i , T1 is of infinite Lebesgue measure. Let f".x/; x 2 T1g be
a random field. The n-th set of observations consists of values of the random field
".x/ taken at points xk 2 Tn, where k 2 Dn � Zd . The choice of points xk is the
following. Divide Rd into hyperrectangles

�n.k/ D
dY

jD1

�
kj

Njn
;
kj C 1

Njn

�
;

where k D .k1; : : : ; kd / 2 Zd is a d-dimensional integer lattice point and fNjng is
an increasing and unbounded sequence of positive integers for each j D 1; : : : ; d .
Now, select the n -th data sites xk, k 2 Dn, by choosing an arbitrary point xk

from each �n.k/ \ Tn which is non-empty. Actually, each xk D x
.n/
k

depends on
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n but to avoid complicated notation we often omit superscript .n/. We suppose that
limn!1 jDnj D 1.

As the locations of the observations become more and more dense in an increas-
ing sequence of domains, we call our setup infill-increasing (see [3, 12] for infill
asymptotics).

Define the discrete parameter random field Yn.k/ as follows. For arbitrary n D
1; 2; : : : and k 2 Dn, let Yn.k/ be a Borel measurable function of ".x.n/

k
/:

We need the notion of ˛-mixing (see, e. g., [5, 11]). Let A and B be two �-
algebras in F . The ˛-mixing coefficient of A and B is

˛.A;B/ D supfjP.A/P.B/ � P.AB/j W A 2 A;B 2 Bg:
The ˛-mixing coefficient of f".x/ W x 2 T1g is

˛.r;u; v/ D sup f˛.FI1
;FI2

/ W %.I1; I2/ � r; jI1j � u; jI2j � vg
where I1 and I2 are finite subsets in T1, FIi

D �f".x/ W x 2 Iig, i D 1; 2.
We say that the random field f".x/g is ˛ -mixing if its mixing coefficients satisfy

some conditions. All of these conditions mean a weak defence of the field, that is
˛.r;u; v/ is small if r is large.

We list the conditions that will be used in our theorems.Z 1
0

sd�1˛
�

2C� .s; 1; 1/ds <1 for some 0 < � < 1I (2.1)
Z 1

0

sd�1˛.s; i; j /ds <1 for i C j � 4I (2.2)

˛.s; 1;1/ D o .s�d / as s !1I (2.3)
�n D O .�n/ as n!1; (2.4)

where
�n D max

1�j�d
Njn; �n D min

1�j�d
Njn: (2.5)

Actually (2.3) means that limn!1 ˛.sn; 1; kn/s
d
n D 0 if sn !1 and kn !1:

Let ˛n.r; i; j / denote the ˛-mixing coefficients of Yn.k/. As xk 2 �n.k/ and
xl 2 �n.l/ (where l D .l1; : : : ; ld /), we have

%.xk;xl/ � max
� jk1 � l1j � 1

N1n

; : : : ;
jkd � ld j � 1

Ndn

�
� %.k; l/ � 1

�n
(2.6)

and

%.xk;xl/ �
%.k; l/C 1

�n
(2.7)

where �n; �n are given in (2.5). Therefore the ˛-mixing coefficients ˛n.r; i; j / of
Yn.k/ satisfy

˛

�
r C 1

�n
; i; j

�
� ˛n.r; i; j / � ˛

�
r � 1

�n
; i; j

�
; r D 1; 2; : : : :
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Lemma 1. For  > 0 and positive integers i , j , n, the relation
1X

rD1

rd�1˛n .r; i; j / � c

�
1C�d

n

Z 1
0

rd�1˛ .r; i; j /dr

�
(2.8)

holds, where the constant c depends only on d .

PROOF. We have
1X

rD1

rd�1˛n .r; i; j / � c

 
1C

1X

rD1

rd�1˛
�

r

�n
; i; j

�!

� c

 
1C

1X

rD2

Z r

r�1

sd�1˛
�

s

�n
; i; j

�
ds

!

� c

�
1C

Z 1
0

sd�1˛
�

s

�n
; i; j

�
ds

�

� c

�
1C�d

n

Z 1
0

sd�1˛ .s; i; j /ds

�
;

which leads us to (2.8). ¤

Remark 1 (Davydov’s inequality [5, p. 9]). The following well-known covariance
inequalities are basic tools for mixing fields.

j cov .X;Y /j � 8 Œ˛.�.X /; �.Y //�
1
r kXkpkY kq (2.9)

for r;p; q � 1, r�1C p�1C q�1 D 1. In the special case where X and Y belong to
L1, we have

j cov .X;Y /j � 4 Œ˛.�.X /; �.Y //� kXk1kY k1: (2.10)

The following inequality is a special case of the Rosenthal inequality. For the
proof, see [5].

Lemma 2. Let �k, k 2 Zd , be centered random variables with Ej�kjlC� < 1,
k 2 Zd . Introduce the notation

L.h; �;D/ D
X

k2D

�
Ej�kjhC�

� h
hC�

if 1 < h � 2, � � 0 and D is a finite set in Zd . Let

c
.�/
1;1
D 1C

1X

sD1

sd�1Œ˛�.s; 1; 1/�
�

2C�
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where ˛�.s; 1; 1/ is the ˛-mixing coefficient of the field f�kg. Now, let 1 < l � 2 and
� > 0. Assume that c

.�/
1;1

<1. Then there is a constant c such that

E

ˇ̌
ˇ̌
ˇ
X

k2D

�k

ˇ̌
ˇ̌
ˇ
l

� c � c.�/
1;1

L.l; �;D/ (2.11)

for any finite subset D of Zd .

We remark that the proof of the Rosenthal inequality (2.11) follows from (2.12)
below, by using the so-called interpolation lemma. Details and the general form of
the Rosenthal inequality can be found, e. g., in [8].

Remark 2. Using the notation of Lemma 2, let � > 0, and assume that c
.�/
1;1

<1.
Then there is a constant c such that

X

k;l2D

j cov .�k; �l/j � c � c.�/
1;1

L.2; �;D/ (2.12)

for any finite subset D of Zd .

PROOF. For the sake of completeness we prove (2.12). By (2.9),
X

k;l2D

j cov .�k; �l/j �

�
X

k2D

k�kk22 C
X

k;l2D
k¤l

8
�
˛�.kk � lk; 1; 1/�

�
2C� k�kk2C�k�lk2C� :

By the inequality between the geometric and arithmetic means, the above expression
is majorized by
X

k2D

k�kk22C� C
X

k;l2D
k¤l

8
�
˛�.kk � lk; 1; 1/�

�
2C� k�kk22C� �

�
X

k2D

k�kk22C� C
X

k2D

c

1X

sD1

sd�1Œ˛�.s; 1; 1/�
�

2C� k�kk22C� :

This gives (2.12). ¤

3. MAIN THEOREMS

Theorem 1. Let ".x/ be a random field and let Yn.k/ be a Borel measurable
function of ".x.n/

k
/;k 2 Dn: Suppose that EYn.k/ D 0 and jYn.k/j are uniformly
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bounded for k 2 Dn, n D 1; 2; : : : . Let Sn D
P

k2Dn
Yn.k/, n D 1; 2; : : : ,

�2
n D var .Sn/. Let conditions (2.2), (2.3), and (2.4) be satisfied. Assume that

lim inf
n!1

�2
n

�d
n jDnj

> 0: (3.1)

Then ��1
n Sn ) N .0; 1/ as n!1.

PROOF. We follow ideas of [11]. Throughout the proof we shall suppose that
the random variables Yn.k/ are uniformly bounded with the bound 1: jYn.k/j � 1,
k 2 Dn, n D 1; 2; : : : .

Choose a sequence fmng of positive integers such that limn!1mn D1,

lim
n!1˛.mn; 1;1/jDnj

1
2�
� d

2
n D 0 (3.2)

and

lim
n!1m�d

n jDnj
1
2�
� d

2
n D1: (3.3)

To this end, let xn D ˛.n; 1;1/;yn D n�d and zn D jDnj 12��
d
2

n in Lemma 3 below.
Then, by (2.3), xn=yn ! 0:Moreover zn !1 because jDnj��d

n � c�.Tn/!1.
Here, �.Tn/ is the Lebesgue measure of Tn.

Let Sn.k/ D
P

l2Dn; %.xk;xl/�mn
Yn.l/ and S�n .k/ D Sn � Sn.k/ for any k 2

Dn. Let an D
P

l2Dn
E .Yn.l/Sn.l//, xSn D a

� 1
2

n Sn, and xSn.k/ D a
� 1

2
n Sn.k/. We

have
�2

n D var .Sn/ D an C
X

l2Dn

E
�
Yn.l/S

�
n .l/

�
:

Using (2.10) and the same argument as in Lemma 1, we obtain

�2
n � an D

ˇ̌
ˇ̌
ˇ̌
X

l2Dn

E
�
Yn.l/S

�
n .l/

�
ˇ̌
ˇ̌
ˇ̌

�
X

k;l2Dn; %.xk;xl/�mn

jcov .Yn.k/;Yn.l//j

� cjDnj
1X

sDmn�n�1

sd�1˛

�
s � 1

�n
; 1; 1

�

� cjDnj
Z 1

mn�n�2

sd�1˛

�
s � 1

�n
; 1; 1

�
ds

� cjDnj�d
n

Z 1
mn�n�3
�n

sd�1˛ .s; 1; 1/ ds � cjDnj�d
n W o .1/ � �2

n W o.1/:
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In the last steps we used (2.2) and (3.1). Hence

lim
n!1

an

�2
n

D 1: (3.4)

Therefore it is sufficient to prove the asymptotic normality of xSn.
Since supn E xS2

n < 1; by Stein’s lemma (see Remark 3) it is sufficient to prove
that

lim
n!1E

�
.i t � xSn/ eit xSn

�
D 0 for every t 2 R: (3.5)

Consider the decomposition

.i t � xSn/ eit xSn D A1 �A2 �A3;

where

A1 D i teit xSn

�
1 � 1

an

X

l2Dn

Yn.l/Sn.l/

�
;

A2 D a
� 1

2
n eit xSn

X

l2Dn

Yn.l/
�
1 � i t xSn.l/ � e�it xSn.l/

�
;

A3 D a
� 1

2
n

X

l2Dn

Yn.l/ eit. xSn�xSn.l//:

First we prove that limn!1 EjA1j2 D 0. We have

EjA1j2 D t2a�2
n var

0
@ X

l2Dn

Yn.l/Sn.l/

1
A D

D t2a�2
n

i

j; j 0; l; l02Dn;
%.xj ;xl/�mn;

%.xj0 ;xl0 /�mn

cov
�
Yn.j/Yn.l/;Yn.j

0/Yn.l
0/
�
: (3.6)

Now we distinguish two cases. First suppose that %.xj ;xj 0/ D k � 3mn�n

�n
. Then

%.fxj ;xlg; fxj 0 ;xl0g/ � k � 2mn. Then, by the covariance inequality (2.10),
ˇ̌
cov

�
Yn.j/Yn.l/;Yn.j

0/Yn.l
0/
�ˇ̌ � 4˛.k � 2mn; 2; 2/;

because jYn.l/j � 1 for each l and n. Now, we can choose j in jDnj ways, then
l at most in md

n�
d
n ways, and when j 0 is chosen, then we can choose l0 at most in
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md
n�

d
n ways. So the expression in (3.6) is less than or equal to

ct2a�2
n jDnjm2d

n �2d
n sup

j2Dn

X

fj0 W %.xj ;xj0 /Dk� 3mn�n
�n

g
˛.%.xj ;xj 0/ � 2mn; 2; 2/

� ct2a�2
n jDnjm2d

n �2d
n

1X

sD3mn�n�1

sd�1˛

�
s � 1

�n
� 2mn; 2; 2

�
:

In the last step we used (2.6) and (2.7). We can majorize the above sum by the
following integral:

ct2a�2
n jDnjm2d

n �2d
n

Z 1
3mn�n�2

sd�1˛

�
s � 1

�n
� 2mn; 2; 2

�
ds

� ct2a�2
n jDnjm2d

n �2dC1
n

Z 1
mnCo .1/

.�n.s C 2mn/C 1/d�1˛.s; 2; 2/ds

� ct2a�2
n jDnjm2d

n �3d
n

Z 1
0

sd�1˛.s; 2; 2/ds:

Now, we can use (3.1) and (3.4) to show that a�1
n � cjDnj�1��d

n . Therefore the
above expression is majorized by cjDnj�1m2d

n �d
n , which converges to 0, as n!1,

by the choice of mn (see (3.2), (3.3)).
In the second case we suppose that %.xj ;xj0/ D k < 3mn�n

�n
. Let

h D inf f%.xj ;xj 0/; %.xj ;xl/; %.xj ;xl0/g:

Then, by the covariance inequality (2.10),

ˇ̌
cov

�
Yn.j/Yn.l/;Yn.j

0/Yn.l
0/
�ˇ̌

�
ˇ̌
E
�
Yn.j/Yn.l/Yn.j

0/Yn.l
0/
�ˇ̌C jE .Yn.j/Yn.l//j

ˇ̌
E
�
Yn.j

0/Yn.l
0/
�ˇ̌

� 4˛.h; 1; 3/C 4˛.h; 1; 1/ � 8˛.h; 1; 3/;

because jYn.l/j � 1 for each l and n. Suppose that h D %.xj ;xl/ (the other two
cases can be studied similarly). Then we can choose j in jDnj ways, j 0 at most in
�d

n

�
3mn�n.�n/

�1
�d

ways, and l0 at most in �d
n md

n ways. So the expression in
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(3.6) is less than or equal to

ct2a�2
n jDnj�d

n

�
3mn�n

�n

�d

�d
n md

n

X

fl W %.xj ;xl/Dh�mng
˛.h; 1; 3/

� ct2a�2
n jDnj�3d

n m2d
n ��d

n

X

fl W %.j;l/Dk��nmnC1g
˛

�
k � 1

�n
; 1; 3

�

� ct2a�2
n jDnj�2d

n m2d
n

0
@1C

�nmnC1X

kD1

kd�1˛

�
k � 1

�n
; 1; 3

�1
A

� ct2a�2
n jDnj�2d

n m2d
n

 
1C

Z �nmnC1

0

sd�1˛

�
s � 1

�n
; 1; 3

�
ds

!

� ct2a�2
n jDnj�3d

n m2d
n ! 0; n!1;

as it was shown above. Therefore both parts of the sum in (3.6) converge to 0, so
limn!1 EjA1j2 D 0.

Now, we turn to A2. By Taylor’s expansion, we have

j1 � i t xSn.l/ � e�it xSn.l/j � ct2 xS2
n .l/

and, therefore,

EjA2j � a
� 1

2
n

X

l2Dn

E
ˇ̌
ˇ1 � i t xSn.l/ � e�it xSn.l/

ˇ̌
ˇ

� a
� 1

2
n jDnj sup

l2Dn

E
�
ct2S

2

n.l/
�

� ca
� 3

2
n jDnj sup

l

X

%.l;Wj/��nmn; %.l;Wj 0/��nmn

ˇ̌
cov

�
Yn.j/;Yn.j

0/
�ˇ̌

� ca
� 3

2
n jDnjmd

n�
2d
n ! 0

as n ! 1, because of the choice of mn, the relation between an and �2
n ; (3.1) and

(3.2). In the above calculation, we have applied the covariance inequality and the
majorization of the sum by an integral as we did before. Hence, limn!1 EjA2j D 0.

Now, we shall prove that limn!1 EA3 D 0.

jEA3j � a
� 1

2
n

X

l2Dn

ˇ̌
ˇcov

�
Yn.l/; e

it. xSn�xSn.l//
�ˇ̌
ˇ �

� a
� 1

2
n jDnj˛.mn; 1;1/ � cj�nj�

d
2 jDnj

1
2˛.mn; 1;1/! 0;

by the choice of mn.
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So (3.5) is proved and, therefore, the theorem is proved. ¤
Theorem 2. Let ".x/ be a random field and let Yn.k/ be a Borel measurable

function of ".x.n/
k
/;k 2 Dn: Suppose that EYn.k/ D 0 for k 2 Dn, n D 1; 2; : : : .

Let Sn D
P

k2Dn
Yn.k/, n D 1; 2; : : : , �2

n D var .Sn/. Suppose that there exists a
� > 0 such that (2.1)is satisfied and

fjYn.k/j2C� W k 2 Dn; n D 1; 2; : : : g are uniformly integrable: (3.7)

Then

lim sup
n!1

1

�d
n jDnj

X

k;l2Dn

j cov .Yn.k/;Yn.l//j <1: (3.8)

If, additionally, conditions (2.2), (2.3), (2.4), and (3.1) are satisfied, then ��1
n Sn )

N .0; 1/ as n!1.

PROOF. First we prove (3.8). By the Rosenthal inequality (2.11),
X

k;l2Dn

j cov .Yn.k/;Yn.l//j �

� c

 
1C

1X

sD1

Œ˛n.s; 1; 1/�
�

2C� sd�1

! X

k2D

�
EjYkj2C�

� 2
2C�

:

Due to Lemma 1, this expression is majorized by

c �
�

1C�d
n

Z 1
0

sd�1˛
�

2C� .s; 1; 1/ds

�
�

� jDnj sup
n
kYn.k/k22C� W k 2 Dn; n D 1; 2; : : :

o
:

Therefore, (3.7) and (2.1) imply (3.8).
Now, we show that it is sufficient to prove the theorem for uniformly bounded

random variables fYn.k/ W k 2 Dn; n D 1; 2; : : : g. So Theorem 1 will imply the
result. We follow the ideas of Ibragimov and Linnik [6]. Let L > 0 and define the
truncated variables by the superscript .L/ and the remainder by breve and superscript
.L/: X .L/ D X � I fX 2 Œ�L;L�g, MX .L/ D X � X .L/. Let Zn D Sn=�n be the
standardized sum,

Z.L/
n D 1

�n

X

k2Dn

�
Y .L/n .k/ � EY .L/n .k/

�

be the normalized sum of the truncated variables, and

MZ.L/
n D 1

�n

X

k2Dn

�
MY .L/n .k/ � E MY .L/n .k/

�

be the normalized sum of the remainders. Then Zn D Z
.L/
n C MZ.L/

n and EZ2
n D 1:
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By the Rosenthal inequality, (2.8), and (2.1),

E. MZ.L/
n /2 D E

ˇ̌
ˇ̌
ˇ

1

�n

X

k2Dn

�
MY .L/n .k/ � E MY .L/n .k/

�ˇ̌ˇ̌
ˇ
2

�

� c
�d

n jDnj
�2

n

sup
k2Dn

k MY .L/n .k/k22C� ! 0 (3.9)

as L!1. We remark that this convergence is uniform in n. In the last step we used
(3.1) and (3.7).

Let �2
n .L/ D var

�P
k2Dn

Y
.L/
n .k/

�
be the variance of the sum of the truncated

variables. Now

�2
n .L/

�2
n

� 1 D E.Z.L/
n /2 � E.Zn/

2 D

D E.Zn � MZ.L/
n /2 � E.Zn/

2 D E. MZ.L/
n /2 � 2E.Zn

MZ.L/
n /:

By (3.9), and using the Cauchy inequality for the second term, the above expression
converges to 0, as L!1, uniformly in n. Therefore,

lim
L!1

sup
n�1

ˇ̌
ˇ̌
ˇ
�2

n .L/

�2
n

� 1

ˇ̌
ˇ̌
ˇ D 0: (3.10)

Now,
ˇ̌
ˇEeitZn � e�t2=2

ˇ̌
ˇ �

� E
ˇ̌
ˇeit MZ .L/

n � 1
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇEeitZ

.L/
n � e

��
2
n.L/

�2
n

t2

2

ˇ̌
ˇ̌
ˇC

ˇ̌
ˇ̌
ˇe
��

2
n.L/

�2
n

t2

2 � e�
t2

2

ˇ̌
ˇ̌
ˇ �

� jt jEj MZ.L/
n j C sup

v2Œ1�ıL;1CıL�

ˇ̌
ˇ̌EeitvUn � e�

.tv/2

2

ˇ̌
ˇ̌C t2

2
ıL (3.11)

where ıL D supn�1

ˇ̌
ˇ�2

n.L/

�2
n

� 1
ˇ̌
ˇ and Un D 1

�n.L/

P
k2Dn

�
Y
.L/
n .k/ � EY

.L/
n .k/

�
:

By (3.10), limL!1 ıL D 0. If the theorem is valid for bounded random variables,
then Un is asymptotically standard normal, therefore (3.11) implies that

lim sup
n!1

ˇ̌
ˇEeitZn � e�t2=2

ˇ̌
ˇ � jt j

s
sup
n�1

E
� MZ.L/

n

�2 C t2

2
ıL:

However, using (3.9), the last expression converges to 0, as L!1. Therefore, the
theorem is valid. ¤

In the proof of Theorem 1 we used the existence of the following subsequence mn.
For the sake of completeness we give a proof of the existence.
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Lemma 3. Let xn # 0, yn # 0, zn ! 1 be real sequences such that yn D n�d

with d > 0 and xn=yn ! 0. Then there exists a sequence mn of positive integers
such that mn !1, xmn

zn ! 0, and ymn
zn !1.

PROOF. As �n D xn=yn ! 0 we can find an increasing unbounded sequence uk

of positive numbers such that �n � k�2 if n � u
1=d

k
. As zn ! 1, we can find

an increasing unbounded sequence fn.k/g of positive integers such that zn � kuk if
n � n.k/: Now let ˛m D 1=k if n.k/ � m < n.k C 1/ for each positive integer k.
Therefore, ˛m ! 0 and for each positive integer k we have zm˛m � kuk=k D uk

if n.k/ � m < n.k C 1/:

Now let mn D Œ.zn˛n/
1=d � C 1 for each n, where Œ�� denotes the integer part of

a number. It is easy to see that mn " 1. Using the above considerations, for each
positive integer k we have

�mn

˛n
� k�2

k�1
D k�1 if n.k/ � n < n.k C 1/: (3.12)

Therefore, by the definition of �n, the definition of mn and (3.12), we get

xmn
zn D �mn

ymn
zn � �mn

.zn˛n/
�1zn D �mn

˛�1
n ! 0

if n!1. Moreover, by the definition of ˛n; we obtain

ymn
zn D

zn

md
n

D zn

zn˛n

(
.zn˛n/

1=d

�
.zn˛n/1=d

�C 1

)d

!1

as n!1. ¤
Remark 3 (Stein’s lemma [11, 14]). Let f�ng be a sequence of probabilities on R

such that supn

R
R x2�n.dx/ <1 and

lim
n!1

Z

R

.i t � x/eitx�n.dx/ D 0

for every t 2 R. Then �n ) N .0; 1/ as n!1.

4. EXTENSIONS OF MAIN THEOREMS

Corollary 1. In Theorems 1 and 2, instead of (3.1), assume that

lim
n!1�

�d
n jDnj�1�2

n D �2:

Then .�d
n jDnj/� 1

2 Sn ) N .0; �2/ as n!1:
PROOF. First assume that �2 > 0: Then (3.1) is satisfied and therefore ��1

n Sn )
N .0; 1/: So

.�d
n jDnj/�

1
2 Sn D

 
�2

n

�d
n jDnj

! 1
2

��1
n Sn ) �N .0; 1/ D N .0; �2/:
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If �2 D 0; then var Œ.�d
n jDnj/� 1

2 Sn� D .�d
n jDnj/�1�2

n ! 0 as n ! 1: There-
fore, .�d

n jDnj/� 1
2 Sn converges to 0 in L2; so it converges to the degenerate normal

law N .0; 0/ in distribution. ¤

Now we turn to p-dimensional extensions of Theorems 1 and 2. Our Theorem 3
is the same as Theorem 3.1 of [10].

Theorem 3. Let ".x/ be a random field and let the p-dimensional random vector
Yn.k/ be a Borel measurable function of ".x.n/

k
/;k 2 Dn: Suppose that EYn.k/ D

0 and kYn.k/k are uniformly bounded for k 2 Dn, n D 1; 2; : : : . Let Sn DP
k2Dn

Yn.k/, n D 1; 2; : : : , ˙n D var .Sn/. Suppose that conditions (2.2), (2.3),
and (2.4) are satisfied. Assume that the limit

lim
n!1.�

�d
n jDnj�1˙n/ D ˙

exists. Then .�d
n jDnj/� 1

2 Sn ) N .0; ˙/ as n!1.

PROOF. Consider the one dimensional random field fa>Yn.k/g; where a 2 Rp is
arbitrary (a> is the transpose of a). Apply Theorem 1 and Corollary 1 to the field
fa>Yn.k/g: ¤

Our Theorem 4 is the same as Remark 4.3 in [7].

Theorem 4. Let ".x/ be a random field. For each n D 1; 2; : : : , and for each
k 2 Dn, let Yn.k/ be a centered p-dimensional random vector that is ".x.n/

k
/-

measurable. Let Sn D
P

k2Dn
Yn.k/, n D 1; 2; : : : , ˙n D var .Sn/. Assume that

conditions (2.2), (2.3), and (2.4) are satisfied. Moreover, assume that there exists a
� > 0 such that (2.1) is satisfied, and

fkYn.k/k2C� W k 2 Dn; n D 1; 2; : : : g are uniformly integrable:

Assume that

lim inf
n!1 �min

�
��d

n jDnj�1˙n

�
> 0:

Then ˙
� 1

2
n Sn ) N .0; Ip/ as n!1.

Here, �min.A/ denotes the minimal eigenvalue of the matrix A and Ip is the p�p

type unit matrix.

PROOF. Apply Theorem 2 to the field fa>Yn.k/g: ¤

Several other versions of the above theorems can be obtained. For example, the
uniform integrability condition can be substituted by a strong stationarity condition
and an integrability condition.
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