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Abstract. In this paper we introduce a class of quasipolar rings which is a generalization of J -
quasipolar rings. Let R be a ring with identity. An element a 2 R is called ı-quasipolar if
there exists p2 D p 2 comm2.a/ such that aCp is contained in ı.R/, and the ring R is called
ı-quasipolar if every element of R is ı-quasipolar. We use ı-quasipolar rings to extend some
results of J -quasipolar rings. Then some of the main results of J -quasipolar rings are special
cases of our results for this general setting. We give many characterizations and investigate
general properties of ı-quasipolar rings.
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1. INTRODUCTION

Throughout this paper all rings are associative with identity unless otherwise stated.
Let R be a ring. According to Koliha and Patricio [10], the commutant and double
commutant of an element a 2 R are defined by comm.a/ D fx 2 R j xa D axg,
comm2.a/ D fx 2 R j xy D yx for all y 2 comm.a/g, respectively. If Rqnil D

fa 2R j 1Cax 2 U.R/ for every x 2 comm.a/g and a 2Rqnil , then a is said to be
quasinilpotent (see [9]). The element a is called quasipolar if there exists p2Dp 2R

such that p 2 comm2.a/, aCp is invertible in R and ap 2 Rqnil . Any idempotent
p satisfying the above conditions is called a spectral idempotent of a, and this term
is borrowed from spectral theory in Banach algebra and it is unique for a.

Quasipolar rings have been studied by many ring theorists (see [1, 2, 5–7, 9, 10]
and [15]). In [7], the element a 2 R is called nil-quasipolar if there exists p2 D

p 2 comm2.a/ such that aCp is nilpotent, the idempotent p is called a nil-spectral
idempotent of a. The ring R is said to be nil-quasipolar if every element of R is nil-
quasipolar. Recently, J -quasipolar rings are studied in [4]. The element a is called
J -quasipolar if there exists p2D p 2R such that p 2 comm2.a/ and aCp 2 J.R/,
p is called a J -spectral idempotent of a. The ring R is said to be J -quasipolar if
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every element of R is J -quasipolar. Motivated by these, we introduce a new class
of quasipolar rings which is a generalization of J -quasipolar rings. By using ı-
quasipolar rings, we extend some results of J -quasipolar rings.

An outline of the paper is as follows: Section 2 deals with ı-quasipolar rings. We
prove various basic characterizations and properties of ı-quasipolar rings. It is proven
that every J -quasipolar ring is ı-quasipolar. We supply an example to show that all
ı-quasipolar rings need not be J -quasipolar. Among others the ı-quasipolarity of
Dorroh extensions and some classes of matrix rings are investigated. In Section 3, we
introduce an upper class of ı-quasipolar rings, namely, weakly ı-quasipolar rings. We
show that every direct summand of a weakly ı-quasipolar ring is weakly ı-quasipolar
and every direct product of weakly ı-quasipolar rings is weakly ı-quasipolar, and we
give some properties of such rings.

In what follows, Z and Q denote the ring of integers and the ring of rational
numbers and for a positive integer n, Zn is the ring of integers modulo n. For a
positive integer n, let Matn.R/ denote the ring of all n� n matrices and Tn.R/

the ring of all n� n upper triangular matrices with entries in R. We write J.R/
and nil.R/ for the Jacobson radical of R and the set of nilpotent elements of R,
respectively.

2. ı-QUASIPOLAR RINGS

In this section we introduce the concept of ı-quasipolar rings and investigate some
properties of such rings. We show that every quasipolar ring need not be ı-quasipolar
(Example 2). It is proven that every J -quasipolar ring is ı-quasipolar and the con-
verse does not hold in general (see Example 3). Among others we extend some results
of J -quasipolar rings for this general setting.

A right ideal I of the ringR is said to be ı-small inR if wheneverRD ICK with
R=K singular right R-module for any right ideal K then R D K. In [16], the ideal
ı.R/ is introduced as a sum of ı-small right ideals ofR. We begin with the equivalent
conditions for ı.R/ which is proved in [16, Theorem 1.6] for an easy reference for
the reader.

Lemma 1. Given a ring R, each of the following sets is equal to ı.R/.

(1) R1 = the intersection of all essential maximal right ideals of R.
(2) R2 = the unique largest ı-small right ideal of R.
(3) R3 D fx 2R j xRCKR DR implies KR is a direct summand of RRg.
(4) R4 D

T
fideals P of R jR=P has a faithful singular simple moduleg.

(5) R5D fx 2R j for all y 2R there exists a semisimple right ideal Y of R such
that .1Cxy/R˚Y DRRg.

Now we give our main definition.



A GENERALIZATION OF J -QUASIPOLAR RINGS 157

Definition 1. Let R be a ring. An element a 2 R is called ı-quasipolar if there
exists p2 D p 2 comm2.a/ such that aC p 2 ı.R/ and p is called a ı-spectral
idempotent. The ring R is called ı-quasipolar if every element of R is ı-quasipolar.

The following are examples for ı-quasipolar rings.

Example 1. (1) Every semisimple ring and every Boolean ring is ı-quasipolar.
(2) Since ı.Q/ D Q, Q is ı-quasipolar. On the other hand, Z is not ı-quasipolar
since ı.Z/D 0.

One may suspects that every quasipolar ring is ı-quasipolar. But the following
example erases the possibility.

Example 2. Let p be a prime integer with p � 3 and RDZ.p/ the localization of
Z at the ideal .p/. By [4, Example 2.8], R is a quasipolar ring. Since J.R/D ı.R/,
it is not ı-quasipolar.

Let Sr denote the right socle of the ring R, that is, Sr is the sum of minimal
right ideals of R. We now prove that the class of J -quasipolar rings is a subclass of
ı-quasipolar rings.

Lemma 2. IfR is a J -quasipolar ring, thenR is ı-quasipolar. The converse holds
if Sr � J.R/.

Proof. The first assertion is clear since J.R/ � ı.R/. Assume that R is ı-quasi-
polar. If Sr � J.R/, then J.R/=Sr D J.R=Sr/ D ı.R/=Sr by [16, Corollary 1.7]
and we have J.R/D ı.R/. Hence, R is J -quasipolar. �

The converse of Lemma 2 is not true in general as the following example shows.

Example 3. Let F be a field and consider the ring R D
�
F F

F F

�
. Then R is a

semisimple ring and R D ı.R/ and J.R/D 0. Hence R is ı-quasipolar and it is not
J -quasipolar.

Lemma 3. Let R be a ring. Then we have the following.
(1) If a;u 2 R and u is invertible, then a is ı-quasipolar if and only if u�1au is

ı-quasipolar.
(2) The element a 2R is ı-quasipolar if and only �1�a is ı-quasipolar.
(3) If R is a ı-quasipolar ring with ı.R/D J.R/, then the spectral idempotent

for any invertible element in R is the identity of R.

Proof. (1) Assume that a is ı-quasipolar. Let p2 D p 2 comm2.a/ such that
aCp 2 ı.R/. Let x 2 comm.u�1au/. Then .uxu�1/a D a.uxu�1/. Since p 2
comm2.a/, .uxu�1/pDp.uxu�1/. Hence .u�1pu/2Du�1pu2 comm2.u�1au/.
Since ı.R/ is an ideal of R, u�1.aCp/uD u�1auCu�1pu 2 ı.R/. Thus u�1au

is ı-quasipolar. Conversely, if u�1au is ı-quasipolar, then by the preceding proof
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u.u�1au/u�1 D a is ı-quasipolar.
(2) Assume that a is ı-quasipolar. Let p2 D p 2 comm2.a/ such that aCp D r 2
ı.R/. Then �1�aC .1�p/D�r 2 ı.R/. Then 1�p 2 comm2.�1�a/ and 1�p
is the spectral idempotent of �1�a. Conversely, if �1�a is ı-quasipolar, then from
what we have proved that �1� .�1�a/D a is quasipolar.
(3) Assume that ı.R/D J.R/. Then ı-quasipolarity of R implies J -quasipolarity of
R. So its proof can be directly obtained from [4, Example 2.2]. �

In [4, Corollary 2.3], it is proved that if R is a J -quasipolar ring, then 2 2 J.R/.
In this direction we prove the following.

Lemma 4. If R is a ı-quasipolar ring, then 2 2 ı.R/.

Proof. For the identity 1, there exists p2 D p 2 R such that 1Cp 2 ı.R/. Mul-
tiplying the latter by p, we have 2p 2 ı.R/. So 2D 2.1Cp/�2p 2 ı.R/. �

Lemma 4 can be used to determine whether given rings are ı-quasipolar.

Example 4. (1) The ring Z3 is a semisimple ring and ı-quasipolar but the ring

RD

�
Z3 Z3

0 Z3

�
is not ı-quasipolar since ı.R/D

�
0 Z3

0 Z3

�
and 2 does not contained

in ı.R/.
(2) Let R D f.aij / 2Tn.Z3/ j a11 D a22 D �� � D anng. Z3 is ı-quasipolar but R
is not since ı.R/ D f.aij / 2Tn.Z3/ j a11 D a22 D �� � D ann D 0g and 2 does not
contained in ı.R/.

Recall that a ring R is called local if it has only one maximal left ideal, equival-
ently, maximal right ideal.

Proposition 1. Let R be a local ring. If R=J.R/ŠZ2, then R is ı-quasipolar.

Proof. Let a 2R. If a 2 J.R/, it is clear. Assume that a … J.R/. Since R is local,
a is invertible. Hence aC1 2 ı.R/ by ı.R/D J.R/. �

A ringR is said to be clean [12] if for each a 2R there exists e2D e 2R such that
a� e is invertible, and R is called strongly clean [13] provided that every element of
R can be written as the sum of an idempotent and an invertible element that commute.

Example 5. Let R D f.q1;q2;q3; : : : ;qn;a;a;a; : : :/ j n � 1Iqi 2 QI a 2 Z.2/g.
Then R is strongly clean but not quasipolar (see [15, Example 3.4(3)]). Therefore R
is not J -quasipolar since every J -quasipolar ring is quasipolar. On the other hand,
since Sr D 0 and ı.R/=Sr D J.R/=Sr , ı.R/D J.R/. Thus R is not ı-quasipolar.

In [4, Theorem 2.9], it is shown that if the ring R is J -quasipolar, then R=J.R/
is Boolean and idempotents in R=J.R/ lift R. We have the following result for ı-
quasipolar rings.
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Theorem 1. IfR is a ı-quasipolar ring, thenR=ı.R/ is a Boolean ring and idem-
potents in R=ı.R/ lift R.

Proof. Let a 2 R=ı.R/. There exists p2 D p 2 comm2.�1Ca/ such that �1C
aCp 2 ı.R/. Hence aD 1�p is an idempotent inR=ı.R/ andR=ı.R/ is a Boolean
ring. Let a2

D a 2 R=ı.R/. Then there exists p2 D p 2 comm2.�a/ such that
�aCp 2 ı.R/. This yields aD p, as asserted. �

The concept of ır -clean rings are defined in [8]. A ring R is called ır -clean if for
every element a 2R there exists an idempotent e 2R such that a�e 2 ı.R/. A ring
is abelian if all idempotents are central.

Lemma 5. If R is a ı-quasipolar ring, then it is ır -clean. The converse holds if R
is abelian.

Proof. Let R be a ı-quasipolar ring and a 2 R. There exists p2 D p 2 comm2

.�1Ca/ such that �1CaCp 2 ı.R/. Then a� .1�p/ 2 ı.R/. For the converse,
assume that R is abelian. Let a 2 R. There exists an idempotent e such that 1Ca�
e 2 ı.R/. By assumption, 1�e is a central idempotent and so 1�e 2 comm2.a/. �

Recall that a ring R is exchange if for every a 2 R, there exists an idempotent
e 2 aR such that 1� e 2 .1� a/R. Namely, von Neumann regular rings and clean
rings are exchange.

Corollary 1. Let R be a ı-quasipolar ring. Then
(1) R is an exchange ring.
(2) R=ı.R/ is a clean ring.

Proof. (1) Let R be a ı-quasipolar ring. By Lemma 5, R is a ır -clean ring. By
[8, Theorem 2.2(2)], every ır -clean ring is an exchange ring.
(2) By Theorem 1, R=ı.R/ is Boolean, therefore, it is clean. �

Corollary 2. Consider following conditions for a ring R.
(1) R is ı-quasipolar and ı.R/D 0.
(2) R is Boolean.
(3) R is von Neumann regular and ı-quasipolar.

Then (1)) (2)) (3).

Proof. (1)) (2) Assume that R is ı-quasipolar and ı.R/D 0. By Theorem 1, R
is Boolean.
(2)) (3) Assume that R is Boolean. Then it is commutative with characteristic 2
and a2C a D 0 2 ı.R/ and a2 D a D a3 for all a 2 R. Hence R is von Neumann
regular and ı-quasipolar. �

Strongly J -clean rings were introduced by Chen in [3]. For a ring R the element
a 2 R is called J -clean if a is the sum of an idempotent and a radical element in
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its Jacobson radical. The ring R is called J -clean if every element is a sum of an
idempotent and a radical element.

Theorem 2. If R is an abelian J -clean ring, then it is ı-quasipolar.

Proof. Let a 2 R. Then we have �a 2 R. Since R is J -clean, there exist e2 D

e 2R and j 2 J.R/ such that �aD eCj . Hence aCe 2 J.R/. Since R is abelian,
e2 D e 2 comm2.a/ and J.R/� ı.R/, R is ı-quasipolar as asserted. �

All ı-quasipolar rings need not be Boolean and the converse statement of Theorem
2 is not true in general.

Example 6. The ring Z3 is semisimple and so Z3 D ı.Z3/. Therefore Z3 is ı-
quasipolar, but it is neither Boolean nor J -clean.

In [4, Proposition 2.11], it is shown that a ring R is local and J -quasipolar if and
only if R is J -quasipolar with only trivial idempotents if and only if R=J.R/ŠZ2.
We have the following for ı-quasipolar rings.

Proposition 2. Let R be a ring with only trivial idempotents. Then R is ı-
quasipolar if and only if R=ı.R/ŠZ2.

Proof. Assume that R is ı-quasipolar. Let a 2 R. There exists an idempotent
p 2 comm2.a/ such that�aCp 2 ı.R/. By hypothesis pD 1 or pD 0. If ı.R/D 0,
then R=ı.R/ŠZ2. Suppose that ı.R/¤ 0. For any a 2R n ı.R/, NaD N1 2R=ı.R/.
Hence R=ı.R/ Š Z2. Conversely, suppose that R=ı.R/ is isomorphic to Z2 by
isomorphism f . Let a 2 R n ı.R/. Then f .�a/ D 1 2 Z2. Then f .�a/ D f .1/
implies �a� 1 2 Kerf D 0. Hence �a D 1. That is, aC 1 2 ı.R/. Thus R is
ı-quasipolar. �

Recall that a ring R is called strongly �-regular if for every element a of R there
exist a positive integer n (depending on a) and an element x of R such that an D

anC1x, equivalently, an element y of R such that an D yanC1. In spite of the fact
that J.R/ is contained in both ı.R/ and Rqnil , no comparings between ı.R/ and
Rqnil exist. Strongly �-regular rings play crucial role in this direction.

Proposition 3. LetR be a ı-quasipolar ring and ı.R/D J.R/. ThenR is strongly
�-regular if and only if J.R/DRqnil D nil.R/D ı.R/.

Proof. Necessity. Let a 2Rqnil . Then for any x 2 comm.a/, 1�ax is invertible.
By hypothesis, there exist a positive integer m and b 2 R such that am D amC1b.
Since b 2 comm.a/ by [11, Page 347, Exercise 23.6(1)], am D 0. Hence a 2 nil.R/
and so Rqnil � nil.R/. To prove nil.R/ � ı.R/, let a 2 nil.R/. By hypothesis
there exists p2 D p 2 comm2.1� a/ such that 1� aCp 2 ı.R/. Since 1� a is
invertible, p D 1 by Lemma 3 (3). Hence 2�a 2 ı.R/. Also 2 2 ı.R/ by Lemma 4,
we then have a 2 ı.R/.



A GENERALIZATION OF J -QUASIPOLAR RINGS 161

Sufficiency. Let a 2 R. There exists p2 D p 2 comm2.�1Ca/ such that �1C
aCp 2 ı.R/. Set uD�1CaCp 2 nil.R/. Then aCp is invertible and ap D up
is nilpotent so that anp D 0 for some positive integer n. So an D an.1� p/ D

.uC .1�p//n.1�p/D .uC1/n.1�p/D .aCp/n.1�p/D .1�p/.aCp/n. By
[13, Proposition 1], a is strongly �-regular. This completes the proof. �

LetR and V be rings and V be an .R;R/-bimodule that is also a ring with .vw/r D
v.wr/, .vr/wD v.rw/, and .rv/wD r.vw/ for all v, w 2 V and r 2R. The Dorroh
extension D.R;V / of R by V defined as the ring consisting of the additive abelian
group R˚V with multiplication .r;v/.s;w/D .rs;rwC vsC vw/ where r , s 2 R
and v, w 2 V .

Uniquely clean rings were introduced by Nicholson and Zhou in [14]. A ring
R is uniquely clean in case for any a 2 R there exists a unique idempotent e 2 R
such that a� e 2 R is invertible. In [8], among others, uniquely ır -clean rings are
studied. A ring R is called uniquely ır -clean if for every element a 2R there exists a
unique idempotent e 2R such that a�e 2 ı.R/. Uniquely clean Dorroh extensions in
[14, Proposition 7] and uniquely ır -clean Dorroh extensions in [8, Proposition 3.11]
are considered. Now we consider ı-quasipolar Dorroh extensions.

Proposition 4. Let R be a ring. Then we have the following.
(1) If D.R;V / is ı-quasipolar, then R is ı-quasipolar.
(2) If the following conditions are satisfied, then D.R;V / is ı-quasipolar.

(i) R is ı-quasipolar;
(ii) e2 D e 2R, then ev D ve for all v 2 V ;

(iii) V D ı.V /.

Proof. (1) Let r 2 R. There exists e2 D e 2D.R;V / such that e 2 comm2.r;0/

and .r;0/C e 2 ı.D.R;V //. Since e 2D.R;V /, e has the form such that .p;v/2 D
.p;v/ and p2 D p. Then e D .p;v/ 2 comm2.r;0/ implies that p 2 comm2.r/ and
rCp 2 ı.R/ since .rCp;v/ 2 ı.D.R;V // and by [8, Proposition 3.11]. Hence R
is ı-quasipolar.

(2) Assume that (i), (ii) and (iii) hold. Let .r;v/ 2 D.R;V /. There exists p2 D

p 2 comm2.r/ such that rCp 2 ı.R/. By (iii), .0;V /� ı.D.R;V //. Then .r;v/C
.p;0/ D .r Cp;v/ 2 ı.D.R;V //. To see that .p;0/ 2 comm2..r;v//, let .a;b/ 2
D.R;V / and .a;b/.r;v/ D .r;v/.a;b/. Then ar D ra and so ap D pa since p 2
comm2.r/. Also pb D bp by (ii). Therefore we have .p;0/.a;b/D .a;b/.p;0/ that
is .p;0/ 2 comm2..r;v//. �

As an application of Dorroh extensions we consider the following example. This
example also shows that in Proposition 4 (2), the conditions (i), (ii) and (iii) are not
superfluous.

Example 7. Consider the ring D.Z;Q/. Then D.Z;Q/ Š Z�Q. Then ı.Z�
Q/D .0/�Q. Since Z is not ı-quasipolar, D.Z;Q/ is not ı-quasipolar.
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Let R and S be any ring and M an .R;S/-bimodule. Consider the ring of the

formal upper triangular matrix ring T D
�
R M

0 S

�
. It is well known that ı.T / ��

ı.R/ M

0 ı.S/

�
. However, if M DRD S D F is a field, then ı.T /D

�
0 F

0 F

�
.

The following example illustrates the ı-quasipolarity of full matrix rings and upper
triangular matrix rings depend on the coefficient ring.

Example 8. (1) Consider the ring R D
�
Z2 Z2

0 Z2

�
. Then J.R/ D

�
0 Z2

0 0

�
and ı.R/D

�
0 Z2

0 Z2

�
. R is ı-quasipolar.

(2) As noted in Example 4, the ring Z3 is semisimple and therefore ı-quasipolar.

However, the ring
�
Z3 Z3

0 Z3

�
is not ı-quasipolar.

(3) Let AD
�
0 1

0 0

�
2Mat2.Z/. For any P 2 D P 2 comm2.A/, the matrix P

has the form P D

�
x y

0 x

�
with x2 D x and 2xy D y where x;y 2Z. This

would imply that P is the zero matrix or the identity matrix. Since ı.Z/D 0,
ı.Mat2.Z//D 0. In consequence, ACP can not be in ı.Mat2.Z//. There-
fore Mat2.Z/ is not ı-quasipolar.

(4) Let A D
�
1 0

0 0

�
2 T2.Z/. The idempotents of T2.Z/ are zero, identity,�

1 0

0 0

�
,
�
0 0

0 1

�
,
�
0 y

0 1

�
and

�
1 y

0 0

�
where y is an arbitrary integer. Since

A commutes with only zero, identity,
�
1 0

0 0

�
and

�
0 0

0 1

�
, among these

idempotents there is no idempotent P such that ACP 2 ı.T2.Z// since

ı.T2.Z//D

�
0 Z
0 0

�
. Hence T2.Z/ is not ı-quasipolar.

3. WEAKLY ı-QUASIPOLAR RINGS

In this section, we introduce an upper class of ı-quasipolar rings, namely, weakly
ı-quasipolar rings, and we give some properties of such rings.

Definition 2. Let R be a ring and a 2 R. The element a is called weakly ı-
quasipolar if there exists p2D p 2 comm.a/ such that aCp 2 ı.R/, and p is called
a weakly ı-spectral idempotent. A ring R is called weakly ı-quasipolar if every
element of R is weakly ı-quasipolar.
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An element of a ring is called strongly J -clean [3] provided that it can be written
as the sum of an idempotent and an element in its Jacobson radical that commute. A
ring is strongly J -clean in case each of its elements is strongly J -clean.

Example 9. (1) Every semisimple ring and every Boolean ring is weakly ı-quasi-
polar, since ı-quasipolar rings are weakly ı-quasipolar.
(2) Every strongly J -clean ring is weakly ı-quasipolar.

Proposition 5. Let f WR! S be a surjective ring homomorphism. If R is weakly
ı-quasipolar, then S is weakly ı-quasipolar.

Proof. Let s 2 S with s D f .r/ where r 2 R. There exists an idempotent p 2
comm.r/ such that rCp 2 ı.R/. Let q D f .p/. Then q2 D q 2 comm.f .r// D

comm.s/. By [16], f .ı.R// � ı.S/. Then sC q D f .r/C f .p/ D f .r Cp/ 2
f .ı.R//� ı.S/. Hence S is weakly ı-quasipolar. �

Corollary 3. Every direct summand of a weakly ı-quasipolar ring is weakly ı-
quasipolar.

Proposition 6. Let R D
Qn

iD1Ri be a finite direct product of rings. R is weakly
ı-quasipolar if and only if each Ri is weakly ı-quasipolar for .i D 1;2; : : : ;n/.

Proof. One way is clear from Corollary 3. We may assume that n D 2 and R1

and R2 are weakly ı-quasipolar. Let a D .x1;x2/ 2 R. There exist idempotents
pi 2 comm.xi / such that xi C pi 2 ı.Ri / for .i D 1;2/. Then p D .p1;p2/ is
an idempotent in R and p 2 comm.a/ and aCp 2 ı.R/. Hence R is weakly ı-
quasipolar. �

In [8], Gurgun and Ozcan introduce and investigate properties of ır -clean rings.
Motivated by this work strongly ır -clean rings can be defined as follows.

Definition 3. An element x 2 R is called strongly ır -clean provided that there
exist an idempotent e 2R and an element w 2 ır such that x D eCw and ew Dwe.
A ring R is called strongly ır -clean in case every element in R is strongly ır -clean.

Any strongly J -clean ring is strongly ır -clean. But the converse need not be true,
for example any commutative semisimple ring which is not a Boolean ring is such a
ring.

Note that in the following theorem it is proved that the notions of strongly ır -clean
rings and weakly ı-quasipolar rings coincide.

Theorem 3. Let R be a ring. Then R is a weakly ı-quasipolar ring if and only if
it is strongly ır -clean.

Proof. Let R be a weakly ı-quasipolar ring and a 2 R. There exits p2 D p 2

comm.�1Ca/ such that�1CaCp 2 ı.R/. Then a�.1�p/2 ı.R/ and a.1�p/D
.1�p/a. HenceR is a strongly ır -clean ring. Conversely, assume thatR is a strongly
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ır -clean ring. Let a 2 R. Since �a 2 R, by assumption there exists an idempotent
p 2R such that �a�p 2 ı.R/ and .�a/p D p.�a/. So R is a weakly ı-quasipolar
ring. �

Theorem 3 states that the weakly ı-quasipolarity of a ring is equivalent to the
strongly ır -cleanness of this ring. The following example reveals that a weakly ı-
quasipolar element is different from a strongly ır -clean element.

Example 10. Let R D Z and a D 1 2 R. There exists no idempotent p such that
aCp 2 ı.R/. Then a is not weakly ı-quasipolar. Let p D 1 2 R. Since a�p 2
ı.R/, a is strongly ır -clean. On the other hand, if a D �1 2 R, then there exists no
idempotent p such that a�p 2 ı.R/. Then a is not strongly ır -clean. Let pD 1 2R.
Since aCp 2 ı.R/, a is weakly ı-quasipolar.

Theorem 4. LetR be a local ring with non-zero maximal ideal. Then the following
are equivalent.

(1) R is weakly ı-quasipolar;
(2) R is strongly J -clean;
(3) R is uniquely clean;
(4) R=J.R/ŠZ2;
(5) R=ı.R/ŠZ2.

Proof. Let R be a local ring with non-zero maximal ideal.
.1/, .2/ Assume that R is weakly ı-quasipolar. Let a 2 R. There exists p2 D p 2

comm.�1Ca/ such that �1CaCp 2 ı.R/. Then a� .1�p/ 2 ı.R/. Since p 2
comm.�1Ca/, paD ap. Hence R is strongly J -clean by J.R/D ı.R/. Similarly,
the rest is clear.
.2/, .3/ follows from [3, Lemma 4.2].
.3/, .4/ follows from [14, Theorem 15].
.1/) .5/ Let R be weakly ı-quasipolar and 0¤ aD aC ı.R/ 2 R=ı.R/, we show
that a D 1. Then there exists an idempotent p 2 R such that �aCp 2 ı.R/ and
p2 D p 2 comm.�a/. Since R is a local, p D 0 or p D 1. If p D 0, this contradicts
0¤ a. Therefore p D 1. It follows that aD 1.
.5/) .1/ It follows from Proposition 2. �
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