

Miskolc Mathematical Notes Vol. 8 (2007), No 1, pp. 11-21 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2007.150

Algebraic structures derived from BCK-algebras

Ivan Chajda and Jan Kühr

Miskolc Mathematical Notes Vol. 8 (2007), No. 1, pp. 11–21

ALGEBRAIC STRUCTURES DERIVED FROM BCK-ALGEBRAS

IVAN CHAJDA AND JAN KÜHR

Received 17 January, 2006

Abstract. Commutative BCK-algebras can be viewed as semilattices whose sections have antitone involutions and it is known that bounded commutative BCK-algebras are equivalent to MV-algebras. In the first part of this paper we assign to an arbitrary BCK-algebra a semilattice-like structure every section of which possesses a certain antitone mapping. The remaining part is devoted to algebras of the MV-language $\{\oplus, \neg, 0\}$ which are defined on bounded BCK-algebras in the same way as MV-algebras.

1991 *Mathematics Subject Classification:* 03G25, 06D35, 06F35 *Keywords:* BCK-algebra, MV-algebra, semilattice, antitone mapping

1.

A *BCK-algebra* is an algebra $\mathcal{A} = (A; \rightarrow, 1)$ of type (2,0) satisfying the following quasi-identities:

- (I) $(x \to y) \to ((y \to z) \to (x \to z)) = 1$,
- (II) $x \to ((x \to y) \to y) = 1$,
- (III) $x \to x = 1$,
- (IV) $x \to 1 = 1$,

(V)
$$(x \to y = 1 \& y \to x = 1) \Rightarrow x = y$$
.

BCK-algebras were introduced by Y. Imai and K. Iséki [5–7] and form an algebraic semantics for C. A. Meredith's logic.

The relation \leq on A given by

$$x \le y \quad \Leftrightarrow \quad x \to y = 1 \tag{1}$$

is a partial order on A with 1 as the top element, but the poset $(A; \leq)$ has no particular properties because any poset $(P; \leq)$ with 1 can be made a BCK-algebra $(P; \rightarrow, 1)$ by setting $x \rightarrow y := 1$ for $x \leq y$, and $x \rightarrow y := y$ otherwise.

By a *bounded BCK-algebra* we mean an algebra $\mathcal{A} = (A; \rightarrow, 0, 1)$, where $(A; \rightarrow, 1)$ is a BCK-algebra with the bottom element 0.

© 2007 MISKOLC UNIVERSITY PRESS

This work was supported by the Research and Development Council of the Czech Government via project MSM6198959214.

In every BCK-algebra $(A; \rightarrow, 1)$, the following hold for all $x, y, z \in A$:

$$x \le y \quad \Rightarrow \quad y \to z \le x \to z,$$
 (2)

$$x \le y \quad \Rightarrow \quad z \to x \le z \to y,$$
 (3)

$$x \to (y \to z) = y \to (x \to z),$$
 (exchange) (4)

$$y \le x \to y,\tag{5}$$

$$1 \to x = x,\tag{6}$$

$$x \to y \le (z \to x) \to (z \to y),\tag{7}$$

$$((x \to y) \to y) \to y = x \to y.$$
(8)

A commutative BCK-algebra is a BCK-algebra that satisfies the identity

$$(x \to y) \to y = (y \to x) \to x. \tag{9}$$

In this case, the underlying poset is a join-semilattice in which $x \lor y = (x \to y) \to y$. Commutative BCK-algebras form a variety that is axiomatized by the identities (9), (4), (III) and (6).

We have proved in [1,2] that commutative BCK-algebras (named here *weak implication algebras* and defined in a slightly different way) can be characterized as join-semilattices whose sections (= principal order filters) posses antitone involutions.

Recall that by a *semilattice with sectionally antitone involutions* we mean a structure $\mathscr{S} = (S; \lor, (^a)_{a \in S}, 1)$, where $(S; \lor)$ is a join-semilattice with the greatest element 1, and for every $a \in S$, the mapping $x \mapsto x^a$ is an antitone involution on the section $[a, 1] = \{x \in S : a \leq x\}$. If $\mathscr{A} = (A; \rightarrow, 1)$ is a commutative BCK-algebra, then $\mathscr{S}(\mathscr{A}) = (A; \lor, (^a)_{a \in A}, 1)$, where $x \lor y = (x \rightarrow y) \rightarrow y$ and $x^a = x \rightarrow a$ $(x \in [a, 1])$, is a semilattice with sectionally antitone involutions in which we have $x \rightarrow y = (x \lor y)^y$. On the other hand, given a structure $\mathscr{S} = (S; \lor, (^a)_{a \in S}, 1)$, we define a new algebra $\mathscr{A}(\mathscr{S}) = (S; \rightarrow, 1)$ via $x \rightarrow y = (x \lor y)^y$. Then $\mathscr{A}(\mathscr{S})$ is a BCKalgebra if and only if it satisfies identity (4), and if this is the case, then $\mathscr{A}(\mathscr{S})$ is a commutative BCK-algebra.

Our first objective is to give a similar description for general BCK-algebras, i. e. to an arbitrary BCK-algebra we assign a semilattice-like structure the sections of which have certain antitone mappings, and also conversely, we describe the reverse passage from such structures to BCK-algebras.

Theorem 1. Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCK-algebra. Define a binary term operation \sqcup on A by

$$x \sqcup y = (x \to y) \to y,$$

and for every $a \in A$, a unary operation ^a on the section $[a, 1] = \{x \in A : a \le x\}$ by

$$x^a = x \rightarrow a$$
.

Then the structure $\mathscr{S}(\mathcal{A}) = (A; \sqcup, (^a)_{a \in A}, 1)$ satisfies the following quasi-identities: (i) $x \sqcup x = x$, (ii) $(x \sqcup y = y \& y \sqcup x = x) \Rightarrow x = y,$ (iii) $x \sqcup y = (x \sqcup y) \sqcup y = x \sqcup (x \sqcup y) = y \sqcup (x \sqcup y),$ (iv) $(x \sqcup z) \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z,$ (v) $x \sqcup 1 = 1,$ (vi) $x^x = 1, 1^x = x,$ (vii) $x \sqcup y = (x \sqcup y)^{yy} = ((x \sqcup y)^y \sqcup y)^y,$ (viii) $(x \sqcup y)^y \sqcup ((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z} = ((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z},$ (ix) $((x \sqcup z)^z \sqcup (y \sqcup z))^{y \sqcup z} = ((y \sqcup z)^z \sqcup (x \sqcup z))^{x \sqcup z},$ (x) $((x \sqcup y) \sqcup x)^x = (x \sqcup y)^x.$

Proof. First note that $x \sqcup y \in [y, 1]$ by (5), hence using (8) we have

$$(x \sqcup y)^y = ((x \to y) \to y) \to y = x \to y.$$
(10)

Further

$$x \le y \quad \Leftrightarrow \quad x \to y = 1 \quad \Leftrightarrow \quad x \sqcup y = y.$$
 (11)

Indeed, $x \to y = 1$ implies $x \sqcup y = (x \to y) \to y = 1 \to y = y$, and conversely, if $y = x \sqcup y = (x \to y) \to y$, then $1 = y \to y = ((x \to y) \to y) \to y = x \to y$.

Now, we can verify the properties (i)-(x) by direct computations:

(i) $x \sqcup x = (x \to x) \to x = 1 \to x = x$.

(ii) If $x \sqcup y = y$ and $y \sqcup x = x$, then $x \to y = 1$ and $y \to x = 1$ by (11), so that x = y by axiom (V).

(iii) We have $(x \sqcup y) \sqcup y = (((x \to y) \to y) \to y) \to y = (x \to y) \to y = x \sqcup y$, and the equalities $x \sqcup (x \sqcup y) = y \sqcup (x \sqcup y) = x \sqcup y$ follow from (11) as $x, y \le x \sqcup y$. (iv) Since $x \le x \sqcup y$ implies $x \sqcup z = (x \to z) \to z \le ((x \sqcup y) \to z) \to z = (x \sqcup z)$

 $y) \sqcup z$, we have $(x \sqcup z) \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z$ by (11).

 $(\mathbf{v}) \ x \sqcup \mathbf{1} = (x \to 1) \to \mathbf{1} = \mathbf{1}.$

(vi) $x^x = x \rightarrow x = 1$ and $1^x = 1 \rightarrow x = x$.

(vii) According to (10), $(x \sqcup y)^{yy} = (x \to y) \to y = x \sqcup y$ and $((x \sqcup y)^y \sqcup y)^y = ((x \to y) \sqcup y)^y = (x \to y) \to y = x \sqcup y$.

(viii) Due to (10), we have

$$((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z} = (x \sqcup z) \to (y \sqcup z)$$
$$= ((x \to z) \to z) \to ((y \to z) \to z)$$
$$= (y \to z) \to (((x \to z) \to z) \to z)$$
$$= (y \to z) \to (x \to z),$$

whence

$$(x \sqcup y)^{y} \sqcup ((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z} = (x \to y) \sqcup ((y \to z) \to (x \to z))$$
$$= (y \to z) \to (x \to z)$$
$$= ((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z}$$

by (I) and (11).

(ix) Again, in view of (10),

$$((x \sqcup z)^{z} \sqcup (y \sqcup z))^{y \sqcup z} = (x \to z) \to (y \sqcup z)$$
$$= (x \to z) \to ((y \to z) \to z)$$
$$= (y \to z) \to ((x \to z) \to z)$$
$$= (y \to z) \to (x \sqcup z)$$
$$= ((y \sqcup z)^{z} \sqcup (x \sqcup z))^{x \sqcup z}.$$

(x) We have $((x \sqcup y) \sqcup x)^x = (((x \sqcup y) \to x) \to x) \to x = (x \sqcup y) \to x = (x \sqcup y)^x$.

Lemma 2. Let $(A; \sqcup)$ be a groupoid satisfying the quasi-identities (i)–(iv) of Theorem 1. Then the binary relation defined by

$$x \le y \quad \Leftrightarrow \quad x \sqcup y = y \tag{12}$$

is a partial order on A such that, for every $x, y \in A$, $x \sqcup y$ is a common upper bound of x, y.

Proof. By (i) and (ii), \leq is reflexive and antisymmetric. For transitivity, assume that $x \sqcup y = y$ and $y \sqcup z = z$. Then $x \sqcup z = (x \sqcup z) \sqcup z = (x \sqcup z) \sqcup (y \sqcup z) = (x \sqcup z) \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z = y \sqcup z = z$ by (iii) and (iv). Thus \leq is a partial order on *A*. Moreover, from (iii) we conclude that $x, y \leq x \sqcup y$.

Therefore, any BCK-algebra induces a semilattice-like structure with a join-like operation \sqcup . Another kind of generalizations of join-semilattices was introduced by J. Ježek and R. Quackenbush [8]:

A *directoid* is a groupoid $(A; \sqcup)$ satisfying the identities

(a) $x \sqcup x = x$,

(b) $(x \sqcup y) \sqcup x = x \sqcup y$,

(c) $y \sqcup (x \sqcup y) = x \sqcup y$,

(d) $x \sqcup ((x \sqcup y) \sqcup z) = (x \sqcup y) \sqcup z$.

The relation \leq given by (12) is a partial order. The binary operation \sqcup assigns to a pair (x, y) a common upper bound of $\{x, y\}$ in such a way that $x \sqcup y = y \sqcup x = y$ provided $x \leq y$.

Observe that this is the point where directoids differ from our semilattice-like structures since in our case $x \le y$ does not imply $y \sqcup x = y$.

Lemma 3. Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCK-algebra and \sqcup be the binary operation defined in Theorem 1. Then the following conditions are equivalent:

(a) $(A; \sqcup)$ is a directoid;

- (b) *A* is a commutative BCK-algebra;
- (c) $(A; \sqcup)$ is a join-semilattice.

Proof. (a) \Rightarrow (b). Assume that $(A; \sqcup)$ is a directoid. Remember that $x \leq y$ iff $x \rightarrow y = 1$ iff $x \sqcup y = y$. Since $(A; \sqcup)$ is a directoid, $x \leq y$ entails $x \sqcup y = y \sqcup x = y$, so A satisfies the quasi-identity

$$x \le y \quad \Rightarrow \quad y = (y \to x) \to x.$$

Hence $x \le (x \to y) \to y$ yields $(x \to y) \to y = (((x \to y) \to y) \to x) \to x$. But from $y \le (x \to y) \to y$ it follows $(y \to x) \to x \le (((x \to y) \to y) \to x) \to x$, and hence $(y \to x) \to x \le (x \to y) \to y$. The converse inequality is obtained by interchanging x and y, thus A is a commutative BCK-algebra.

(b) \Rightarrow (c). As we already know, if A is a commutative BCK-algebra, then $x \sqcup y = (x \to y) \to y$ is the supremum of $\{x, y\}$, hence $(A; \sqcup)$ is a join-semilattice.

(c) \Rightarrow (a). Clearly, every join-semilattice is a directoid.

Theorem 4. Let $\mathscr{S} = (S; \sqcup, (^a)_{a \in S}, 1)$ be a structure—where \sqcup is a binary operation on S and for each $a \in S$, $^a : x \mapsto x^a$ is unary operation on $\{x \in S : a \sqcup x = x\}$, and 1 is a distinguished element of S—satisfying the quasi-identities (i)–(ix) from Theorem 1. Define a new binary operation \rightarrow on S by

$$x \to y = (x \sqcup y)^y.$$

Then $\mathcal{A}(\mathcal{S}) = (S; \rightarrow, 1)$ is a BCK-algebra.

Proof. The definition of \rightarrow is correct since $y \sqcup (x \sqcup y) = x \sqcup y$ by (iii). Furthermore, we note that

$$x \sqcup y = y \quad \Leftrightarrow \quad x \to y = 1. \tag{13}$$

Indeed, if $x \sqcup y = y$, then $x \to y = (x \sqcup y)^y = y^y = 1$, and conversely, $1 = x \to y = (x \sqcup y)^y$ implies $y = 1^y = (x \sqcup y)^{yy} = x \sqcup y$.

Now, we verify the axioms of BCK-algebras:

(I) By (viii) we have

$$(x \to y) \sqcup ((x \sqcup z) \to (y \sqcup z)) = (x \sqcup y)^y \sqcup ((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z}$$
$$= ((x \sqcup z) \sqcup (y \sqcup z))^{y \sqcup z}$$
$$= (x \sqcup z) \to (y \sqcup z),$$

so $(x \to y) \to ((x \sqcup z) \to (y \sqcup z)) = 1$. Further, using (vii) and (ix), we obtain

$$(x \to z) \to ((y \to z) \to z) = (x \to z) \to ((y \sqcup z)^z \sqcup z)^z$$
$$= (x \to z) \to (y \sqcup z)$$
$$= ((x \sqcup z)^z \sqcup (y \sqcup z))^{y \sqcup z}$$
$$= ((y \sqcup z)^z \sqcup (x \sqcup z))^{x \sqcup z}$$
$$= (y \to z) \to (x \sqcup z)$$
$$= (y \to z) \to ((x \to z) \to z).$$

When we replace *x* by $x \rightarrow z$, we get

$$(x \sqcup z) \to (y \sqcup z) = ((x \to z) \to z) \to ((y \to z) \to z)$$
$$= (y \to z) \to (((x \to z) \to z) \to z)$$
$$= (y \to z) \to (x \to z)$$

since $((x \to z) \to z) \to z = (((x \sqcup z)^z \sqcup z)^z \sqcup z)^z = ((x \sqcup z) \sqcup z)^z = (x \sqcup z)^z = x \to z$. Altogether, we have proved

$$(x \to y) \to ((y \to z) \to (x \to z)) = (x \to y) \to ((x \sqcup z) \to (y \sqcup z)) = 1.$$

(II) We have $(x \to y) \to y = ((x \sqcup y)^y \sqcup y)^y = x \sqcup y$, hence $x \sqcup ((x \to y) \to y) = x \sqcup (x \sqcup y) = x \sqcup y = (x \to y) \to y$ and by (13) we obtain $x \to ((x \to y) \to y) = 1$. (III) Due to (13), from $x \sqcup x = x$ it follows $x \to x = 1$.

(IV) Analogously, $x \sqcup 1 = 1$ gives $x \to 1 = 1$.

(V) If $x \to y = 1$ and $y \to x = 1$, then $x \sqcup y = y$ and $y \sqcup x = x$ which imply x = y.

Remark 5. Observe that in Theorem 4 we did not employ the identity (x) of Theorem 1. Actually, this identity is useful in order to establish a one-to-one correspondence between BCK-algebras and semilattice-like structures with sectionally antitone mappings:

Theorem 6. Let $\mathcal{A} = (A; \rightarrow, 1)$ be a BCK-algebra and let $\mathcal{S} = (S; \sqcup, (^a)_{a \in S}, 1)$ be an algebra as in Theorem 4 satisfying (i)–(x) of Theorem 1. Then $\mathcal{A}(\mathcal{S}(\mathcal{A})) = \mathcal{A}$ and $\mathcal{S}(\mathcal{A}(\mathcal{S})) = \mathcal{S}$.

Proof. Let $\mathscr{S}(\mathcal{A}) = (A; \sqcup, (^a)_{a \in A}, 1)$ be the structure satisfying (i)–(x) which is assigned to a given BCK-algebra \mathcal{A} by Theorem 1. Then in $\mathscr{A}(\mathscr{S}(\mathcal{A})) = (A; \to, 1)$ we have $x \to y = (x \sqcup y)^y = ((x \to y) \to y) \to y = x \to y$, so that $\mathscr{A}(\mathscr{S}(\mathcal{A})) = \mathcal{A}$.

Conversely, let $\mathscr{S} = (S; \sqcup, (^a)_{a \in S}, 1)$ be a structure that satisfies (i)–(x) of Theorem 1, $\mathscr{A}(\mathscr{S}) = (S; \to, 1)$ its corresponding BCK-algebra (cf. Theorem 4) and $\mathscr{S}(\mathscr{A}(\mathscr{S})) = (S; \bigcup, (r_a)_{a \in S}, 1)$. Then $x \bigcup y = (x \to y) \to y = ((x \sqcup y)^y \sqcup y)^y = x \sqcup y$, and for $x \in [a, 1], r_a(x) = x \to a = (x \sqcup a)^a = ((a \sqcup x) \sqcup a)^a = (a \sqcup x)^a = x^a$ in view of (x), and hence $\mathscr{S}(\mathscr{A}(\mathscr{S})) = \mathscr{S}$.

Corollary 7. Let $\mathscr{S} = (S; \sqcup, (^a)_{a \in S}, 1)$ be an algebra satisfying (i)–(x) of Theorem 1. Then the relation defined by (12) is a partial order on S, 1 is the greatest element of S and for every $x, y \in S$, $x, y \leq x \sqcup y$. Moreover, for each $a \in S$, $x \mapsto x^a$ is an antitone mapping on $[a, 1] = \{x \in S : a \leq x\}$.

The MV-algebras were introduced by C. C. Chang [3] as an algebraic counterpart of the Łukasiewicz many-valued propositional logic. Here we use the present simplest definition from [4]:

^{2.}

An *MV*-algebra is an algebra $\mathcal{M} = (M; \oplus, \neg, 0)$ of type (2, 1, 0) satisfying the identities

(MV1) $x \oplus (y \oplus z) = (x \oplus y) \oplus z$, (MV2) $x \oplus y = y \oplus x$, (MV3) $x \oplus 0 = x$, (MV4) $x \oplus \neg 0 = \neg 0$, (MV5) $\neg \neg x = x$,

(MV6) $\neg(\neg x \oplus y) \oplus y = \neg(\neg y \oplus x) \oplus x$.

MV-algebras are known to be termwise equivalent to bounded commutative BCK-algebras (see [4]):

(a) Let $\mathcal{M} = (M; \oplus, \neg, 0)$ be an MV-algebra and define $x \to y = \neg x \oplus y$ and $1 = \neg 0$. Then $\mathcal{A}(\mathcal{M}) = (M; \rightarrow, 0, 1)$ is a bounded commutative BCK-algebra in which $x \oplus y = (x \to 0) \to y = (y \to 0) \to x$ and $\neg x = x \to 0$.

(b) Let $\mathcal{A} = (A; \rightarrow, 0, 1)$ be a bounded commutative BCK-algebra. Define $x \oplus y = (x \rightarrow 0) \rightarrow y$ and $\neg x = x \rightarrow 0$. Then $\mathcal{M}(\mathcal{A}) = (A; \oplus, \neg, 0)$ is an *MV*-algebra in which $x \rightarrow y = \neg x \oplus y$.

In what follows, we are concerned with algebras in the language $\{\oplus, \neg, 0\}$ which arise from bounded (non-commutative) BCK-algebras in the same manner as MV-algebras.

Let $\mathcal{A} = (A; \rightarrow, 0, 1)$ be a bounded BCK-algebra and define binary operation \oplus and a unary operation \neg on A by

$$x \oplus y = (x \to 0) \to y, \tag{14}$$

$$\neg x = x \to 0. \tag{15}$$

We refer to $\mathcal{M}(\mathcal{A}) = (A; \oplus, \neg, 0)$ as the *induced algebra* of a BCK-algebra \mathcal{A} . We also introduce a supplementary binary operation \odot by

$$x \odot y = (x \to (y \to 0)) \to 0. \tag{16}$$

Lemma 8. Given a bounded BCK-algebra \mathcal{A} , its induced algebra $\mathcal{M}(\mathcal{A})$ satisfies the following identities:

- (1) $0 \oplus x = x, x \oplus 0 = \neg \neg x,$ (2) $x \oplus \neg \neg y = y \oplus \neg \neg x,$ (3) $x \oplus 1 = 1 \oplus x = 1,$ (4) $\neg \neg \neg x = \neg x,$ (5) $\neg x \oplus 0 = \neg x,$ (6) $\neg \neg x \oplus y = x \oplus y,$ (7) $x \oplus \neg y = \neg y \oplus \neg \neg x,$ (8) $x \oplus (y \oplus z) = y \oplus (x \oplus z).$ In addition, we have
 - (9) $x \odot 1 = 1 \odot x = \neg \neg x$,
 - (10) $x \odot y = y \odot x = \neg \neg x \odot y = \neg (\neg x \oplus \neg y),$

(11) $x \odot 0 = 0$, (12) $\neg x \odot 1 = \neg x$, (13) $\neg(\neg x \odot \neg y) = \neg \neg(x \oplus \neg \neg y).$ *Proof.* (1) $0 \oplus x = (0 \to 0) \to x = 1 \to x = x$ and $x \oplus 0 = (x \to 0) \to 0 = \neg \neg x$. $(2) x \oplus \neg \neg y = (x \to 0) \to ((y \to 0) \to 0) = (y \to 0) \to ((x \to 0) \to 0) = y \oplus$ $\neg \neg x$. (3) $x \oplus 1 = (x \to 0) \to 1 = 1$ and $1 \oplus x = (1 \to 0) \to x = 0 \to x = 1$. $(4) \neg \neg \neg x = ((x \to 0) \to 0) \to 0 = x \to 0 = \neg x.$ (5) This follows from (1) and (4). $(6) \neg \neg x \oplus y = (((x \to 0) \to 0) \to 0) \to y = (x \to 0) \to y = x \oplus y.$ (7) This is a consequence of (2) and (4). $(8) \ x \oplus (y \oplus z) = (x \to 0) \to ((y \to 0) \to z) = (y \to 0) \to ((x \to 0) \to z) =$ $y \oplus (x \oplus z).$ (9) $x \odot 1 = (x \to (1 \to 0)) \to 0 = (x \to 0) \to 0 = \neg \neg x$ and analogously $1 \odot x =$ $(1 \rightarrow (x \rightarrow 0)) \rightarrow 0 = (x \rightarrow 0) \rightarrow 0 = \neg \neg x.$ (10) We have $x \odot y = (x \to (y \to 0)) \to 0 = (y \to (x \to 0)) \to 0 = y \odot x$ and $\neg \neg x \odot y = (((x \to 0) \to 0) \to (y \to 0)) \to 0 = (y \to (((x \to 0) \to 0) \to 0)) \to 0)$ $0 = (y \to (x \to 0)) \to 0 = y \odot x$, and finally $\neg \neg x \odot y = (((x \to 0) \to 0) \to (y \to 0))$ $0)) \to 0 = \neg(\neg x \oplus \neg y).$ $(11) \ x \odot 0 = (x \to (0 \to 0)) \to 0 = (x \to 1) \to 0 = 1 \to 0 = 0.$

(12) This is a consequence of (9) and (4).

(13) By (10) and (7) we have $\neg(\neg x \odot \neg y) = \neg(\neg y \odot \neg x) = \neg\neg(\neg \neg y \oplus \neg \neg x) = \neg\neg(x \oplus \neg \neg y).$

Lemma 9. Let $\mathcal{M}(\mathcal{A})$ be the induced algebra of a BCK-algebra \mathcal{A} . Then

(a) $x \le y$ implies $x \oplus z \le y \oplus z$ and $z \oplus x \le z \oplus y$, and the same is true for \bigcirc , (b) $x \le y \to \neg z$ iff $x \odot y \le \neg z$,

where \leq is the partial order of A defined by (1).

Proof. (a) From $x \le y$ it follows $x \to 0 \ge y \to 0$ and hence $x \oplus z = (x \to 0) \to z \le (y \to 0) \to z = y \oplus z$. Similarly, $x \le y$ yields $z \oplus x = (z \to 0) \to x \le (z \to 0) \to y = z \oplus y$.

Now, let $x \le y$. Then $\neg x \ge \neg y$ which implies $\neg x \oplus \neg z \ge \neg y \oplus \neg z$ and hence $x \odot z = \neg(\neg x \oplus \neg y) \le \neg(\neg y \oplus \neg z) = y \odot z$.

(b) If $x \le y \to \neg z$, then $x \odot y \le (y \to \neg z) \odot y = ((y \to (z \to 0)) \to (y \to 0)) \to 0 \le ((z \to 0) \to 0) = z \to 0 = \neg z$ since $(z \to 0) \to 0 \le (y \to (z \to 0)) \to (y \to 0)$. Conversely, if $x \odot y \le \neg z$, then $y \to \neg z \ge y \to (x \odot y) = y \to ((x \to (y \to 0)) \to 0) = (x \to (y \to 0)) \to (y \to 0) = (y \to (x \to 0)) \to (y \to 0) \Rightarrow 0 \ge x$.

From now on, we will assume that a given bounded BCK-algebra A satisfies the *law of double negation*

$$x = \neg \neg x. \tag{17}$$

It should be underlined that (17) is not enough for a BCK-algebra \mathcal{A} to be commutative. Indeed, for instance, the following bounded BCK-algebra obeys the law of double negation but it is not commutative as $(a \rightarrow b) \rightarrow b = b \neq 1 = (b \rightarrow a) \rightarrow a$:

\rightarrow	0	а	b	1
0	1	1	1	1
a	b	1	1	1
b	a	а	1	1
1	0	а	b	1

Recall that a structure $(P; \leq, \cdot, e)$ is a *partially ordered monoid* or briefly a *pomonoid* if $(P; \cdot, e)$ is a monoid, $(P; \leq)$ is a poset and, for all $x, y, z \in P$, $x \leq y$ implies $x \cdot z \leq y \cdot z$ and $z \cdot x \leq z \cdot y$.

A partially ordered commutative residuated integral monoid, a pocrim for short, is a structure $(P; \leq, \cdot, \rightarrow, 1)$ such that $(P; \leq, \cdot, 1)$ is a commutative po-monoid with the greatest element 1, and for all $x, y, z \in P$,

$$x \cdot y \le z \quad \Leftrightarrow \quad x \le y \to z. \tag{18}$$

Lemma 10. Let $\mathcal{A} = (A; \rightarrow, 0, 1)$ be a bounded BCK-algebra satisfying the law of double negation (17). Then both $(A; \leq, \oplus, 0)$ and $(A; \leq, \odot, 1)$ are commutative po-monoids. Moreover, $(A; \leq, \odot, \rightarrow, 1)$ is a pocrim.

Proof. First, we show that \oplus is commutative:

$$x \oplus y = (x \to 0) \to y$$

= $(x \to 0) \to ((y \to 0) \to 0)$
= $(y \to 0) \to ((x \to 0) \to 0)$
= $(y \to 0) \to x$
= $y \oplus x$.

Further, \oplus is associative:

$$(x \oplus y) \oplus z = (((x \to 0) \to y) \to 0) \to z$$

= (((x \to 0) \to y) \to 0) \to ((z \to 0) \to 0)
= (z \to 0) \to ((((x \to 0) \to y) \to 0) \to 0)
= (z \to 0) \to (((x \to 0) \to y))
= (x \to 0) \to ((z \to 0) \to y)
= x \oplus (z \oplus y)
= x \oplus (y \oplus z).

Commutativity and associativity of the operation \odot is a direct consequence. Now, by Lemma 8 (1), (9) and Lemma 9 (a), $(A; \leq, \oplus, 1)$ as well as $(A; \leq, \odot, 1)$ is a commutative po-monoid.

In order to prove the latter statement, it suffices to note that by (b) of Lemma 9 we have $x \le y \to \neg \neg z = y \to z$ if and only if $x \odot y \le \neg \neg z = z$ verifying (18).

In the next theorem we characterize "MV-like" algebras arising from bounded BCK-algebras satisfying the law of double negation:

Theorem 11. Given a bounded BCK-algebra $\mathcal{A} = (A; \rightarrow, 0, 1)$ satisfying the law of double negation (17), the induced algebra $\mathcal{M}(\mathcal{A}) = (A; \oplus, \neg, 0)$ fulfils the identities (MV1)–(MV5) and the axioms

(A1) $\neg(\neg x \oplus y) \oplus \neg(\neg y \oplus z) \oplus \neg x \oplus z = 1$, (A2) $(\neg x \oplus y = 1 \& \neg y \oplus x = 1) \Rightarrow x = y;$

moreover, we have $x \to y = \neg x \oplus y$ *.*

Conversely, let $\mathcal{M} = (M; \oplus, \neg, 0)$ be an algebra of type (2, 1, 0) and put $1 = \neg 0$. If \mathcal{M} satisfies (MV1)–(MV5), (A1) and (A2), then upon defining $x \to y = \neg x \oplus y$, the algebra $\mathcal{A}(\mathcal{M}) = (M; \rightarrow, 0, 1)$ is a bounded BCK-algebra satisfying (17). In addition, $x \oplus y = (x \to 0) \to y$ and $\neg x = x \to 0$.

Proof. Let \mathcal{A} be a bounded BCK-algebra with (17). Due to Lemma 8 and the identity (17) $\mathcal{M}(\mathcal{A})$ satisfies (MV1)–(MV5). Further, $\neg x \oplus y = ((x \to 0) \to 0) \to y = x \to y$, and hence (A1) can be written as

$$(x \to y) \to ((y \to z) \to (x \to z)) = 1$$

which is just axiom (I). Similarly, (A2) can be rewritten in the form

 $(x \rightarrow y = 1 \& y \rightarrow x = 1) \Rightarrow x = y$

which is (V), the fifth axiom of BCK-algebras.

Conversely, let $\mathcal{M} = (\mathcal{M}; \oplus, \neg, 0)$ be an algebra having the required properties. By (A1) we have $(x \to y) \to ((y \to z) \to (x \to z)) = \neg(\neg x \oplus y) \oplus (\neg(\neg y \oplus z) \oplus (\neg x \oplus z)) = 1$ proving (I). When we put y = z = 0 in (A1), we obtain $x \to x = x \oplus \neg x = \neg \neg x \oplus \neg x = \neg(\neg x \oplus 0) \oplus \neg(\neg 0 \oplus 0) \oplus \neg x \oplus 0 = 1$, i. e., $\mathcal{A}(\mathcal{M})$ fulfils (III). Now, $x \to ((x \to y) \to y) = \neg x \oplus \neg(\neg x \oplus y) \oplus y = 1$ which is (II). The axiom (IV) is clear: $x \to 1 = \neg x \oplus 1 = 1$. Finally, according to (A2), $x \to y = 1$ and $y \to x = 1$ imply x = y. Altogether, $\mathcal{A}(\mathcal{M})$ is a BCK-algebra. Obviously, it is bounded and obeys (17).

In addition, $\neg x = \neg x \oplus 0 = x \to 0$ and $x \oplus y = \neg(\neg x \oplus 0) \oplus y = (x \to 0) \to y$.

Corollary 12. Bounded BCK-algebras satisfying the law of double negation are termwise equivalent to the class of all algebras $\mathcal{M} = (M; \oplus, \neg, 0)$ that satisfy (MV1)–(MV5), (A1) and (A2).

ALGEBRAIC STRUCTURES

References

- I. Chajda, R. Halaš, and J. Kühr, "Implication in MV-algebras," *Algebra Universalis*, vol. 52, no. 4, pp. 377–382 (2005), 2004.
- [2] I. Chajda, R. Halaš, and J. Kühr, "Distributive lattices with sectionally antitone involutions," Acta Sci. Math. (Szeged), vol. 71, no. 1-2, pp. 19–33, 2005.
- [3] C. C. Chang, "Algebraic analysis of many valued logics," *Trans. Amer. Math. Soc.*, vol. 88, pp. 467–490, 1958.
- [4] R. L. O. Cignoli, I. M. L. D'Ottaviano, and D. Mundici, *Algebraic foundations of many-valued reasoning*, ser. Trends in Logic—Studia Logica Library. Dordrecht: Kluwer Academic Publishers, 2000, vol. 7.
- [5] Y. Imai and K. Iséki, "On axiom systems of propositional calculi. XIV," *Proc. Japan Acad.*, vol. 42, pp. 19–22, 1966.
- [6] K. Iséki, "An algebra related with a propositional calculus," *Proc. Japan Acad.*, vol. 42, pp. 26–29, 1966.
- [7] K. Iséki and S. Tanaka, "An introduction to the theory of BCK-algebras," *Math. Japon.*, vol. 23, no. 1, pp. 1–26, 1978/79.
- [8] J. Ježek and R. Quackenbush, "Directoids: algebraic models of up-directed sets," *Algebra Universalis*, vol. 27, no. 1, pp. 49–69, 1990.

Authors' addresses

Ivan Chajda

Department of Algebra and Geometry, Faculty of Science, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic

E-mail address: chajda@inf.upol.cz

Jan Kühr

Department of Algebra and Geometry, Faculty of Science, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic

E-mail address: kuhr@inf.upol.cz