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Abstract. Commutative BCK-algebras can be viewed as semilattices whose sections have an-
titone involutions and it is known that bounded commutative BCK-algebras are equivalent to
MV-algebras. In the first part of this paper we assign to an arbitrary BCK-algebra a semilattice-
like structure every section of which possesses a certain antitone mapping. The remaining part is
devoted to algebras of the MV-language {®,—,0} which are defined on bounded BCK-algebras
in the same way as M V-algebras.
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1.

A BCK-algebra is an algebra A = (A;—, 1) of type (2,0) satisfying the following
quasi-identities:
D Ex=>y=>(—=2)=>x=>2)=1
) x = (x> y) > y) =1,
n x - x =1,
vy x—>1=1,
V) (x—>y=1&y—>x=1) = x=y.
BCK-algebras were introduced by Y. Imai and K. Iséki [5-7] and form an algebraic
semantics for C. A. Meredith’s logic.
The relation < on A given by

x<y & x—->y=1 (D)

is a partial order on A with 1 as the top element, but the poset (A4; <) has no particular
properties because any poset (P; <) with 1 can be made a BCK-algebra (P;—, 1) by
setting x — y := 1 for x <y, and x — y := y otherwise.

By a bounded BCK-algebra we mean an algebra A = (A; —,0,1), where (4;—
,1) is a BCK-algebra with the bottom element 0.
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In every BCK-algebra (A4;—, 1), the following hold for all x, y,z € A:

X<y = y—->z<x-—2z, (2)
X<y = zZ—->x=<z-Y, 3)
x=>@—>2)=y—>(x—2), (exchange) 4)
y=<x-—y, ()

l->x=x, (6)
x—>y=<(@—>x)—>@—>y), (7)
(x—=>y)=>y)—>y=x—y. (8)

A commutative BCK-algebra is a BCK-algebra that satisfies the identity
x—=>y)=>y=0—>x)—>x 9)

In this case, the underlying poset is a join-semilattice in whichx vy = (x - y) — y.
Commutative BCK-algebras form a variety that is axiomatized by the identities (9),
(4), (III) and (6).

We have proved in [1,2] that commutative BCK-algebras (named here weak impli-
cation algebras and defined in a slightly different way) can be characterized as join-
semilattices whose sections (= principal order filters) posses antitone involutions.

Recall that by a semilattice with sectionally antitone involutions we mean a struc-
ture 8§ = (S;V,(%)ges,1), where (S;V) is a join-semilattice with the greatest ele-
ment 1, and for every a € S, the mapping x — x¢ is an antitone involution on the
section [a,1] ={x € S :a < x}. If A = (A;—,1) is a commutative BCK-algebra,
then 8(A) = (4;V,(%)gea,1), where xVy =(x > y) >y and x* = x > a
(x € [a,1]), is a semilattice with sectionally antitone involutions in which we have
x =y = (x VvV y)?Y. On the other hand, given a structure 8 = (S;V, (%)ges, 1), we
define a new algebra A(8) = (S;—,1) viax — y = (x Vy)”. Then A(¥) is a BCK-
algebra if and only if it satisfies identity (4), and if this is the case, then A(S) is a
commutative BCK-algebra.

Our first objective is to give a similar description for general BCK-algebras, i. e. to
an arbitrary BCK-algebra we assign a semilattice-like structure the sections of which
have certain antitone mappings, and also conversely, we describe the reverse passage
from such structures to BCK-algebras.

Theorem 1. Let A = (A;—, 1) be a BCK-algebra. Define a binary term operation
U on A by
xUy=(x—>y)—>y.
and for every a € A, a unary operation ® on the section [a,1] ={x € A:a < x} by

x4 =x—>a.

Then the structure 8 (A) = (A;U, (%)aeca, 1) satisfies the following quasi-identities:
(1) xUx =ux,
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(i) (xUy=y&yUx=x) = x =),
(i) xUy =(xUy)Uy=xU(xUy)=yuU(xUy),
(iv) (xuz)u((xUy)dz) =(xUy)Uz,
v) xul=1,
(vi) x* =1, 1* =x,
(vi) xUy = (xUy)?? =((xUy)’Uy)’,
(vii)) (xUy)’U((xUz)U(yUz))’"* = ((xuz)u(yuz))’rs,
(ix) (xUZ)*U(yU)™ = ((yUz)*U(xUz)*M5,
x) ((xUy)Ux)* = (xuy)*.
Proof. First note that x LI y € [y, 1] by (5), hence using (8) we have
(xuy) =((x—>y)=>y)>y=x—y. (10)
Further
X<y & x—-y=1 & xUy=y. (11)
Indeed, x - y = 1 implies x Uy = (x - y) > y = 1 — y = y, and conversely, if
y=xUy=@x—>y)—=ythenl=y—>y=(x—>y)—>y)—=>y=x—>y.
Now, we can verify the properties (i)—(x) by direct computations:
DxUx=x—>x)>x=1—>x=nx.
@) Ifxuy=yand yUx =x,thenx -y =1and y - x =1 by (11), so that
x = y by axiom (V).
(iii) We have (xUy)Uy =((x > y) > y) > y) >y =(x —>y) >y =xUy,
and the equalities x U (x U y) = yU (x Uy) = x Uy follow from (11) as x,y < xUy.
(iv) Since x < xUy impliesxUz =(x > 2) >z <((xUy) —>2z) > z=(xU
y)Uz,wehave (xUz)U((xUy)Uz)=(xUy)Uz by (11).
Mxul=x—>1)—->1=1.
V)x*=x—=>x=1land 1" =1—x =x.
(vii) According to (10), (xUy)??Y =(x > y) >y =xUyand (xUy)’ Uy)’ =
(x=>y)Uy)=(x—>y)—>y=xuUy.
(viii) Due to (10), we have
(xuz)U(yuz)”’™ = (xUz) = (yUz)
=((x=>2)=2)=>((y>2)—2)
== ->(x=>2)=>2)—>2)
=0 =2 —>x—2),
whence

(xuy) U((xuz)u(yuz)’ =@ —=y)u(y —2) = (x > 2))
=(Qy—>2)>(x—>2)
= ((xUz)u(yuz))’*s
by (I) and (11).
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(ix) Again, in view of (10),

(xUz)*U(yuUz)’*=(x—-2)—(yUz)
=x—>2)>((y—>2)—>2)
=(y—2—>(x—>2)—>2)
=y —>2—>kUz)
= ((yUz)?u(xUz))*2.

(x) We have (xUy)Ux)* =(((xUy) >x)—>x)—>x=(xUy)—>x=(xU
y)*r. O

Lemma 2. Let (A;U) be a groupoid satisfying the quasi-identities (1)—(iv) of The-
orem 1. Then the binary relation defined by

X<y <& xUy=y (12)

is a partial order on A such that, for every x,y € A, x Uy is a common upper bound
of x,y.

Proof. By (i) and (ii), < is reflexive and antisymmetric. For transitivity, assume
that xUy =y and yUz=2z. Then xUz =(xUz)Uz=(xUz)U(yUz) =
(xUz)U((xUy)uz)=(xUy)Uz = yUz =z by (iii) and (iv). Thus < is a partial
order on A. Moreover, from (iii) we conclude that x,y < x U y. O

Therefore, any BCK-algebra induces a semilattice-like structure with a join-like
operation LI. Another kind of generalizations of join-semilattices was introduced by
J. Jezek and R. Quackenbush [8]:

A directoid is a groupoid (A;Ll) satisfying the identities

(a) xUx =x,

(b) (xuUy)Ux =xUy,

(©) yu(xuy)=xuy,

(d) xu((xuy)uz)=(xUy)Uz.
The relation < given by (12) is a partial order. The binary operation LI assigns to a
pair (x,y) a common upper bound of {x,y} in suchaway that x Uy =ylx =y
provided x < y.

Observe that this is the point where directoids differ from our semilattice-like
structures since in our case x < y does not imply y Lix = y.

Lemma 3. Let A = (A;—,1) be a BCK-algebra and U be the binary operation
defined in Theorem 1. Then the following conditions are equivalent:
(a) (A;U) is a directoid;
(b) A is a commutative BCK-algebra;
(¢) (A;U) is a join-semilattice.
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Proof. (a) = (b). Assume that (A;L) is a directoid. Remember that x < y iff
x—>y=1iffxUy =y. Since (4;L) is adirectoid, x < yentailsx Uy = yUx =y,
so + satisfies the quasi-identity

X<y = y=((p-—x)—>=x.

Hence x < (x — y) — y yields (x > y) > y = (((x > y) > y) = x) — x. But
from y < (x — y) — y it follows (y > x) > x < ((x = y) > y) = x) = x,
and hence (y — x) - x < (x = y) — y. The converse inequality is obtained by
interchanging x and y, thus + is a commutative BCK-algebra.

(b) = (c). As we already know, if # is a commutative BCK-algebra, then x LI y =
(x = y) — y is the supremum of {x, y}, hence (4;L!) is a join-semilattice.

(c) = (a). Clearly, every join-semilattice is a directoid. Il

Theorem 4. Let § = (S; U, (%)ges. 1) be a structure—where U is a binary opera-
tion on S and for eacha € S, ¢ : x — x? is unary operationon {x € S :aUx = x},
and 1 is a distinguished element of S—satisfying the quasi-identities (1)—(ix) from
Theorem 1. Define a new binary operation — on S by

x—y=(xuy)’.
Then A(8) = (S;—,1) is a BCK-algebra.

Proof. The definition of — is correct since y LI (x LI y) = x U y by (iii). Further-
more, we note that

xUy=y & x—->y=1 (13)
Indeed, if xUy =y, then x - y = (x U y)Y = y¥ =1, and conversely, | = x —
y=(xUy)” impliesy =1 = (xUy)¥Y =xUy.
Now, we verify the axioms of BCK-algebras:
(D By (viii) we have
(x = Y)U((xUz) = (yU2) = (xUy)  L((xUz)U(yuz)e
= ((xUz)u(yuz)’=
=(xUz)— (yuz),
so (x > y) = ((xUz) — (yUz)) = 1. Further, using (vii) and (ix), we obtain
(x—>2)>((y—>2)>2)=(Kx—>2)>((yuzx)*uz)’
=(x—>2z)—>(yuz)
= ((xuz)*u(yuz))’*s
= ((yu2)*u(xuz)*™=
=0 =2 —> kU2
= —>2z2)—>(x >2)—>2).
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When we replace x by x — z, we get

xUz) > (uz)=((x—>2)—>2)—>(y >2) —>2)
=(y—->2)>(x—>2)—>2)—2)
=(Qy—>2)>(x—>2)

since (x >z)—>z2) > z=(((xUz)*Uz)*Uz)*=((xUz)Uz)* =(xUz)* =
x — z. Altogether, we have proved

x—=>y)—->(r—>2)>(x—>2)=x—>y)—>((xUz) > (yuz)) =1L

(II) Wehave (x > y) >y =((xUy)’Uy)Y =xUy,hencexU((x > y) > y) =
xU(xUy)=xUy=(x—>y)— yandby (13) weobtainx - ((x > y) > y)=1.

(IIT) Due to (13), from x LU x = x it follows x — x = 1.

(IV) Analogously, x U1 =1 givesx — 1 = 1.

V)Ifx >y=1landy - x =1, then xUy =y and y Ux = x which imply
X =y. O

Remark 5. Observe that in Theorem 4 we did not employ the identity (x) of The-
orem 1. Actually, this identity is useful in order to establish a one-to-one correspon-
dence between BCK-algebras and semilattice-like structures with sectionally antitone
mappings:

Theorem 6. Let A = (A;—,1) be a BCK-algebra and let 8 = (S;U, (%)ges,1)
be an algebra as in Theorem 4 satisfying ()—(x) of Theorem 1. Then A(S(A)) = A
and 8(A(8)) = 5.

Proof. Let 8(A) = (A:U,(%)gea,1) be the structure satisfying (i)—(x) which is
assigned to a given BCK-algebra +A by Theorem 1. Then in A(S(4)) = (4;~>,1)
wehave x ~y = (xUy)Y =((x > y) > y) > y = x — y, so that A(S(A)) = A.

Conversely, let 8 = (S;U,(%)4es, 1) be a structure that satisfies (i)—(x) of The-
orem 1, A(S) = (S;—,1) its corresponding BCK-algebra (cf. Theorem 4) and
8(A(S)) = (S;Y,(ra)aes.1). ThenxUy = (x — y) >y =((xUy)Y Uy)” =
xUy,andforx € [a,1],rg(x) =x >a=(xUa)* =((aUx)Ua)?® = (aUx)? = x¢
in view of (x), and hence §(A(8)) = 8. OJ

Corollary 7. Let 8 = (S;U,(%)ges, 1) be an algebra satisfying (1)—(x) of Theorem
1. Then the relation defined by (12) is a partial order on S, 1 is the greatest element
of S and for every x,y € S, x,y < xUy. Moreover, for each a € S, x +— x% is an
antitone mapping on [a,1] ={x € S :a < x}.

2.

The MV -algebras were introduced by C. C. Chang [3] as an algebraic counter-
part of the Lukasiewicz many-valued propositional logic. Here we use the present
simplest definition from [4]:
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An MV -algebra is an algebra M = (M ;®,—,0) of type (2,1,0) satisfying the
identities
MVD) xe(ydz2)=(xDy)Dz,

(MV2) xy =y ®x,

MV3) xd0=x,

MV4) x @ —0= -0,

(MV5) —=—x = x,

(MV6) =(—x®y)®y =—(-yDx)Dx.

MV -algebras are known to be termwise equivalent to bounded commutative BCK-
algebras (see [4]):

(a) Let M = (M;®,—,0) be an M V-algebra and define x — y = —x & y and
1 = —=0. Then A(M) = (M;—,0,1) is a bounded commutative BCK-algebra in
whichx®y=(x—>0)—y=(y —>0)—xand —x = x — 0.

(b) Let A = (A;—,0, 1) be a bounded commutative BCK-algebra. Define x® y =
(x >0) — y and =x = x — 0. Then M(A) = (A:®,—,0) is an M V -algebra in
whichx -y =—-x®y.

In what follows, we are concerned with algebras in the language {&,—,0} which
arise from bounded (non-commutative) BCK-algebras in the same manner as M V -
algebras.

Let A = (4;—,0,1) be a bounded BCK-algebra and define binary operation &
and a unary operation — on A by

x®y=(x—0)—>y, (14)
—x =x — 0. (15)

We refer to M(A) = (A;H,—,0) as the induced algebra of a BCK-algebra 4. We
also introduce a supplementary binary operation ® by

x@y=x—>(y—0)—0. (16)

Lemma 8. Given a bounded BCK-algebra A, its induced algebra M(A) satisfies
the following identities:
(1) 0hx=x,xP0=——x,
(2) x®——y=y®—x,
B)xpl=1x=1,
(4) ~=—x = =,
B) x0=—x,
6) —xBy=x®y,
(7N x®—y=—-yd——x,
B)xd(y®z)=yd(xd2).
In addition, we have
Q) x01l=10x =—-—x,
(10) xOy=yOQx===x0y ==(=x DY),
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(1) x©0=0,
(12) =x©1 = —x,
(13) ~(~x©=y) = ~=(x & ~).

Proof. 1H)0x=0—-0)—>x=1—-x=xandx®d0=(x —>0) > 0=—-—x.

@ x@—y=(x—>0)— (1= 0)—>0)=(y>0) > (x> 0) > 0) = y&
-,

Bxdl=(x—>0—>1l=land1dx=(1—->0—->x=0—>x=1.

@) ———x=((x—>0—>0—>0=x—>0=—x.

(5) This follows from (1) and (4).

6)——xBy=(x—>0—>0—>0)—>y=x—->0—>y=x®)y.

(7) This is a consequence of (2) and (4).

®xo(e)=x—=>0->((y—>0—->2)=0—->0->((x—>0—->2)=
Yo (xP2).

PDHxol=(x—>(1—-0)—>0=(x—>0)—>0=-—x and analogously | ®x =
1-x—>0)—>0=(x—>0)—>0=—-—x.

(10) Wehave xOy=(x—>(y—>0)>0=(y—>(x—>0) >0=yOx and
-——x0y=((x—>0—->0)—->(—->0)—0=>U—->((x—>0) —>0—>0)—>
0= —>(x—>0)—>0=y0Oux,andfinally -——x 0y = ((x > 0) > 0) > (y —>
0)) > 0=—=(—xDd—y).

AHhx00=x—-0—-0))—>0=x—>1)—>0=1—-0=0.

(12) This is a consequence of (9) and (4).

(13) By (10) and (7) we have =(—x ©®—y) = =(—y ©@—x) = 7~ (—~—y H—-—x) =
——(x H —-y). O

Lemma 9. Let M(A) be the induced algebra of a BCK-algebra A. Then

@ x<yimpliesx®z<y®Dzand z®x <7Dy, and the same is true for ©,

b) x<y—>—-ziff xOy <—gz,

where < is the partial order of A defined by (1).

Proof. (a) From x < y it follows x — 0> y — 0 and hence x $z = (x — 0) —
z2<(y—>0)—>z=y®z Similarly, x <y yields zbx =(z > 0) > x < (z —>
0)—>y=z&y.

Now, let x < y. Then —x > —y which implies —x & —z > —y & —z and hence
XOz="(x®-y)<—-(—yd—-2)=y0Oz.

b)Ifx<y—>-z,thenxOy<(y—>—-2)0y=((y—>(z—0)—>(y—0)—>
0<((z—>0—>0)—>0=z—>0=—zsince(z >0)—->0<(y—>(z—0)—>(y—
0). Conversely, if xOy <—z,theny > —z>y > xQy)=y —>(x —> (y —>
0)—-0)=x—->0O(—->0)>(—->0=Q0—->x—->0)>(—-0>(x—0)—
0> x. |

From now on, we will assume that a given bounded BCK-algebra + satisfies the
law of double negation
X = ——X. (17)
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It should be underlined that (17) is not enough for a BCK-algebra 4 to be commu-
tative. Indeed, for instance, the following bounded BCK-algebra obeys the law of
double negation but it is not commutative as (¢ > b) >b=b#1=(b —>a) - a:

— > ol
O =IO
L Q = =]
S ===
S gy .

Recall that a structure (P;<,-,e) is a partially ordered monoid or briefly a po-
monoid if (P;-,e) is a monoid, (P;<) is a poset and, for all x,y,z € P, x <y
impliesx-z <y-zandz-x <z-y.

A partially ordered commutative residuated integral monoid, a pocrim for short,
is a structure (P;<,-,—,1) such that (P;<,-, 1) is a commutative po-monoid with
the greatest element 1, and for all x,y,z € P,

X-y<z & Xx=<y—2Zz (18)

Lemma 10. Let A = (A;—,0,1) be a bounded BCK-algebra satisfying the law
of double negation (17). Then both (A;<,®,0) and (A;<,0,1) are commutative
po-monoids. Moreover, (A; <,®,—,1) is a pocrim.

Proof. First, we show that @ is commutative:
xX®y=x—>0—>y
=x—>0—>({(y—>0—0)
=(y—->0—->((x—>0—>0)
=(y—>0—>x
=ydx.

Further, @ is associative:

x®y)®z=((x—>0—>y)—0) —z
=(x—>0—>y)—>0—>((z—0)—0)
=(z—=0 = ((((x—=0)—y)—0)—0)
=z—->0—->({(x—>0—y)
=x—>0—->{(z—>0—y)
=x®@zdy)
=x®(y®2).
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Commutativity and associativity of the operation © is a direct consequence. Now, by
Lemma 8 (1), (9) and Lemma 9 (a), (4;<,,1) as well as (4;<,®, 1) is a commu-
tative po-monoid.

In order to prove the latter statement, it suffices to note that by (b) of Lemma 9 we
havex <y - —-—z =y —zifandonly if x ® y < ——z = z verifying (18). UJ

In the next theorem we characterize “M V -like” algebras arising from bounded
BCK-algebras satisfying the law of double negation:

Theorem 11. Given a bounded BCK-algebra A = (A;—,0,1) satisfying the law
of double negation (17), the induced algebra M(A) = (A;®,—,0) fulfils the identi-
ties MV 1)-(MV5) and the axioms

AD) =(~x@y)O—-(-y®)@~xBz =1

(A2) (xy=1&—ydx=1) = x=y,
moreover, we have x — y = —x @ y.

Conversely, let M = (M ;®,—,0) be an algebra of type (2,1,0) and put 1 = —0.
If M satisfies MV1)-(MV5), (A1) and (A2), then upon defining x — y = —x @y,
the algebra A(M) = (M ;—,0,1) is a bounded BCK-algebra satisfying (17). In
addition, x ®y = (x > 0) - y and ~x = x — 0.

Proof. Let 4 be a bounded BCK-algebra with (17). Due to Lemma 8 and the
identity (17) M () satisfies MV 1)—-(MV5). Further, - x & y = ((x - 0) - 0) —
y = x — y, and hence (A1) can be written as

x=>y)=>((y—2)>x—>2)=1
which is just axiom (I). Similarly, (A2) can be rewritten in the form
x—->y=1l&y—x=1) = x=y

which is (V), the fifth axiom of BCK-algebras.

Conversely, let M = (M ;®,—,0) be an algebra having the required properties.
By (A) wehave (x > y) > (y > 2) > (x > 2)) =~(-x@y)® (~(-y 2) ®
(—x @ z)) = 1 proving (I). When we put y = z = 0 in (A1), we obtain x — x =
X x=-"xXPx=—(xB0)B~(—00)D—-xp0=1,1ie., A(M) fulfils
(D). Now, x = ((x = y) = y) = —x@—~(—x @ y) @y = 1 which is (II). The
axiom (IV) is clear: x — 1 = —=x @& 1 = 1. Finally, according to (A2), x >y =1
and y — x = 1 imply x = y. Altogether, A (M) is a BCK-algebra. Obviously, it is
bounded and obeys (17).

In addition, =x = = xd0=x > 0and x Py =—-(—xP0) Py = (x - 0) —
y. U

Corollary 12. Bounded BCK-algebras satisfying the law of double negation are
termwise equivalent to the class of all algebras M = (M ; &, —,0) that satisfy (MV1)-
(MV5), (A1) and (A2).
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