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Received 17 January, 2006

Abstract. Commutative BCK-algebras can be viewed as semilattices whose sections have an-
titone involutions and it is known that bounded commutative BCK-algebras are equivalent to
MV-algebras. In the first part of this paper we assign to an arbitrary BCK-algebra a semilattice-
like structure every section of which possesses a certain antitone mapping. The remaining part is
devoted to algebras of the MV-language f˚;:;0g which are defined on bounded BCK-algebras
in the same way as MV-algebras.
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1.

A BCK-algebra is an algebra AD .AI!;1/ of type .2;0/ satisfying the following
quasi-identities:

(I) .x! y/! ..y! ´/! .x! ´//D 1,
(II) x! ..x! y/! y/D 1,

(III) x! x D 1,
(IV) x! 1D 1,
(V) .x! y D 1 & y! x D 1/ ) x D y.

BCK-algebras were introduced by Y. Imai and K. Iséki [5–7] and form an algebraic
semantics for C. A. Meredith’s logic.

The relation � on A given by

x � y , x! y D 1 (1)

is a partial order on A with 1 as the top element, but the poset .AI�/ has no particular
properties because any poset .P I�/ with 1 can be made a BCK-algebra .P I!;1/ by
setting x! y WD 1 for x � y, and x! y WD y otherwise.

By a bounded BCK-algebra we mean an algebra AD .AI!;0;1/, where .AI!

;1/ is a BCK-algebra with the bottom element 0.
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In every BCK-algebra .AI!;1/, the following hold for all x;y;´ 2 A:

x � y ) y! ´� x! ´; (2)
x � y ) ´! x � ´! y; (3)

x! .y! ´/D y! .x! ´/; (exchange) (4)
y � x! y; (5)
1! x D x; (6)

x! y � .´! x/! .´! y/; (7)

..x! y/! y/! y D x! y: (8)

A commutative BCK-algebra is a BCK-algebra that satisfies the identity

.x! y/! y D .y! x/! x: (9)

In this case, the underlying poset is a join-semilattice in which x_yD .x! y/! y.
Commutative BCK-algebras form a variety that is axiomatized by the identities (9),
(4), (III) and (6).

We have proved in [1,2] that commutative BCK-algebras (named here weak impli-
cation algebras and defined in a slightly different way) can be characterized as join-
semilattices whose sections (= principal order filters) posses antitone involutions.

Recall that by a semilattice with sectionally antitone involutions we mean a struc-
ture S D .S I_; .a/a2S ;1/, where .S I_/ is a join-semilattice with the greatest ele-
ment 1, and for every a 2 S , the mapping x 7! xa is an antitone involution on the
section Œa;1� D fx 2 S W a � xg. If A D .AI!;1/ is a commutative BCK-algebra,
then S.A/ D .AI_; .a/a2A;1/, where x _ y D .x ! y/ ! y and xa D x ! a

(x 2 Œa;1�), is a semilattice with sectionally antitone involutions in which we have
x! y D .x_y/y . On the other hand, given a structure S D .S I_; .a/a2S ;1/, we
define a new algebra A.S/D .S I!;1/ via x! yD .x_y/y . Then A.S/ is a BCK-
algebra if and only if it satisfies identity (4), and if this is the case, then A.S/ is a
commutative BCK-algebra.

Our first objective is to give a similar description for general BCK-algebras, i. e. to
an arbitrary BCK-algebra we assign a semilattice-like structure the sections of which
have certain antitone mappings, and also conversely, we describe the reverse passage
from such structures to BCK-algebras.

Theorem 1. Let AD .AI!;1/ be a BCK-algebra. Define a binary term operation
t on A by

xty D .x! y/! y;

and for every a 2 A, a unary operation a on the section Œa;1�D fx 2 A W a � xg by

xa
D x! a:

Then the structure S.A/D .AIt; .a/a2A;1/ satisfies the following quasi-identities:
(i) xtx D x,
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(ii) .xty D y & ytx D x/ ) x D y,
(iii) xty D .xty/ty D xt .xty/D yt .xty/,
(iv) .xt´/t ..xty/t´/D .xty/t´,
(v) xt1D 1,

(vi) xx D 1, 1x D x,
(vii) xty D .xty/yy D ..xty/y ty/y ,

(viii) .xty/y t ..xt´/t .yt´//yt´ D ..xt´/t .yt´//yt´,
(ix) ..xt´/´t .yt´//yt´ D ..yt´/´t .xt´//xt´,
(x) ..xty/tx/x D .xty/x .

Proof. First note that xty 2 Œy;1� by (5), hence using (8) we have

.xty/y
D ..x! y/! y/! y D x! y: (10)

Further
x � y , x! y D 1 , xty D y: (11)

Indeed, x! y D 1 implies xty D .x! y/! y D 1! y D y, and conversely, if
y D xty D .x! y/! y, then 1D y! y D ..x! y/! y/! y D x! y.

Now, we can verify the properties (i)–(x) by direct computations:
(i) xtx D .x! x/! x D 1! x D x.
(ii) If xty D y and y tx D x, then x! y D 1 and y! x D 1 by (11), so that

x D y by axiom (V).
(iii) We have .xty/ty D ...x! y/! y/! y/! y D .x! y/! y D xty,

and the equalities xt .xty/D yt .xty/D xty follow from (11) as x;y � xty.
(iv) Since x � xty implies xt´D .x! ´/! ´ � ..xty/! ´/! ´D .xt

y/t´, we have .xt´/t ..xty/t´/D .xty/t´ by (11).
(v) xt1D .x! 1/! 1D 1.
(vi) xx D x! x D 1 and 1x D 1! x D x.
(vii) According to (10), .xty/yy D .x! y/! y D xty and ..xty/y ty/y D

..x! y/ty/y D .x! y/! y D xty.
(viii) Due to (10), we have

..xt´/t .yt´//yt´
D .xt´/! .yt´/

D ..x! ´/! ´/! ..y! ´/! ´/

D .y! ´/! ...x! ´/! ´/! ´/

D .y! ´/! .x! ´/;

whence

.xty/y
t ..xt´/t .yt´//yt´

D .x! y/t ..y! ´/! .x! ´//

D .y! ´/! .x! ´/

D ..xt´/t .yt´//yt´

by (I) and (11).
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(ix) Again, in view of (10),

..xt´/´
t .yt´//yt´

D .x! ´/! .yt´/

D .x! ´/! ..y! ´/! ´/

D .y! ´/! ..x! ´/! ´/

D .y! ´/! .xt´/

D ..yt´/´
t .xt´//xt´:

(x) We have ..x ty/tx/x D ...x ty/! x/! x/! x D .x ty/! x D .x t

y/x . �

Lemma 2. Let .AIt/ be a groupoid satisfying the quasi-identities (i)–(iv) of The-
orem 1. Then the binary relation defined by

x � y , xty D y (12)

is a partial order on A such that, for every x;y 2A, xty is a common upper bound
of x;y.

Proof. By (i) and (ii), � is reflexive and antisymmetric. For transitivity, assume
that x t y D y and y t ´ D ´. Then x t ´ D .x t ´/t ´ D .x t ´/t .y t ´/ D

.xt´/t ..xty/t´/D .xty/t´D yt´D ´ by (iii) and (iv). Thus � is a partial
order on A. Moreover, from (iii) we conclude that x;y � xty. �

Therefore, any BCK-algebra induces a semilattice-like structure with a join-like
operation t. Another kind of generalizations of join-semilattices was introduced by
J. Ježek and R. Quackenbush [8]:

A directoid is a groupoid .AIt/ satisfying the identities
(a) xtx D x,
(b) .xty/tx D xty,
(c) yt .xty/D xty,
(d) xt ..xty/t´/D .xty/t´.

The relation � given by (12) is a partial order. The binary operation t assigns to a
pair .x;y/ a common upper bound of fx;yg in such a way that x ty D y tx D y

provided x � y.
Observe that this is the point where directoids differ from our semilattice-like

structures since in our case x � y does not imply ytx D y.

Lemma 3. Let AD .AI!;1/ be a BCK-algebra and t be the binary operation
defined in Theorem 1. Then the following conditions are equivalent:

(a) .AIt/ is a directoid;
(b) A is a commutative BCK-algebra;
(c) .AIt/ is a join-semilattice.
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Proof. (a) ) (b). Assume that .AIt/ is a directoid. Remember that x � y iff
x! yD 1 iff xtyD y. Since .AIt/ is a directoid, x � y entails xtyD ytxD y,
so A satisfies the quasi-identity

x � y ) y D .y! x/! x:

Hence x � .x! y/! y yields .x! y/! y D ...x! y/! y/! x/! x. But
from y � .x ! y/! y it follows .y ! x/! x � ...x ! y/! y/! x/! x,
and hence .y ! x/! x � .x ! y/! y. The converse inequality is obtained by
interchanging x and y, thus A is a commutative BCK-algebra.

(b)) (c). As we already know, if A is a commutative BCK-algebra, then xty D

.x! y/! y is the supremum of fx;yg, hence .AIt/ is a join-semilattice.
(c)) (a). Clearly, every join-semilattice is a directoid. �

Theorem 4. Let S D .S It; .a/a2S ;1/ be a structure—where t is a binary opera-
tion on S and for each a 2 S , a W x 7! xa is unary operation on fx 2 S W atx D xg,
and 1 is a distinguished element of S—satisfying the quasi-identities (i)–(ix) from
Theorem 1. Define a new binary operation! on S by

x! y D .xty/y :

Then A.S/D .S I!;1/ is a BCK-algebra.

Proof. The definition of! is correct since y t .xty/D xty by (iii). Further-
more, we note that

xty D y , x! y D 1: (13)

Indeed, if x ty D y, then x! y D .x ty/y D yy D 1, and conversely, 1 D x!

y D .xty/y implies y D 1y D .xty/yy D xty.
Now, we verify the axioms of BCK-algebras:
(I) By (viii) we have

.x! y/t ..xt´/! .yt´//D .xty/y
t ..xt´/t .yt´//yt´

D ..xt´/t .yt´//yt´

D .xt´/! .yt´/;

so .x! y/! ..xt´/! .yt´//D 1. Further, using (vii) and (ix), we obtain

.x! ´/! ..y! ´/! ´/D .x! ´/! ..yt´/´
t´/´

D .x! ´/! .yt´/

D ..xt´/´
t .yt´//yt´

D ..yt´/´
t .xt´//xt´

D .y! ´/! .xt´/

D .y! ´/! ..x! ´/! ´/:
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When we replace x by x! ´, we get

.xt´/! .yt´/D ..x! ´/! ´/! ..y! ´/! ´/

D .y! ´/! ...x! ´/! ´/! ´/

D .y! ´/! .x! ´/

since ..x! ´/! ´/! ´ D ...x t´/´ t´/´ t´/´ D ..x t´/t´/´ D .x t´/´ D

x! ´. Altogether, we have proved

.x! y/! ..y! ´/! .x! ´//D .x! y/! ..xt´/! .yt´//D 1:

(II) We have .x! y/! yD ..xty/yty/y D xty, hence xt..x! y/! y/D

xt .xty/D xty D .x! y/! y and by (13) we obtain x! ..x! y/! y/D 1.
(III) Due to (13), from xtx D x it follows x! x D 1.
(IV) Analogously, xt1D 1 gives x! 1D 1.
(V) If x ! y D 1 and y ! x D 1, then x t y D y and y t x D x which imply

x D y. �

Remark 5. Observe that in Theorem 4 we did not employ the identity (x) of The-
orem 1. Actually, this identity is useful in order to establish a one-to-one correspon-
dence between BCK-algebras and semilattice-like structures with sectionally antitone
mappings:

Theorem 6. Let AD .AI!;1/ be a BCK-algebra and let S D .S It; .a/a2S ;1/

be an algebra as in Theorem 4 satisfying (i)–(x) of Theorem 1. Then A.S.A//DA

and S.A.S//D S .

Proof. Let S.A/ D .AIt; .a/a2A;1/ be the structure satisfying (i)–(x) which is
assigned to a given BCK-algebra A by Theorem 1. Then in A.S.A// D .AIÝ;1/

we have x Ýy D .xty/y D ..x! y/! y/! y D x! y, so that A.S.A//DA.
Conversely, let S D .S It; .a/a2S ;1/ be a structure that satisfies (i)–(x) of The-

orem 1, A.S/ D .S I!;1/ its corresponding BCK-algebra (cf. Theorem 4) and
S.A.S// D .S Id; .ra/a2S ;1/. Then x d y D .x ! y/! y D ..x t y/y t y/y D

xty, and for x 2 Œa;1�, ra.x/D x! aD .xta/aD ..atx/ta/aD .atx/aD xa

in view of (x), and hence S.A.S//D S . �

Corollary 7. Let S D .S It; .a/a2S ;1/ be an algebra satisfying (i)–(x) of Theorem
1. Then the relation defined by (12) is a partial order on S , 1 is the greatest element
of S and for every x;y 2 S , x;y � x ty. Moreover, for each a 2 S , x 7! xa is an
antitone mapping on Œa;1�D fx 2 S W a � xg.

2.

The MV -algebras were introduced by C. C. Chang [3] as an algebraic counter-
part of the Łukasiewicz many-valued propositional logic. Here we use the present
simplest definition from [4]:
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An MV -algebra is an algebra M D .M I˚;:;0/ of type .2;1;0/ satisfying the
identities
(MV1) x˚ .y˚´/D .x˚y/˚´,
(MV2) x˚y D y˚x,
(MV3) x˚0D x,
(MV4) x˚:0D:0,
(MV5) ::x D x,
(MV6) :.:x˚y/˚y D:.:y˚x/˚x.

MV -algebras are known to be termwise equivalent to bounded commutative BCK-
algebras (see [4]):

(a) Let M D .M I˚;:;0/ be an MV -algebra and define x ! y D :x˚ y and
1 D :0. Then A.M/ D .M I!;0;1/ is a bounded commutative BCK-algebra in
which x˚y D .x! 0/! y D .y! 0/! x and :x D x! 0.

(b) Let AD .AI!;0;1/ be a bounded commutative BCK-algebra. Define x˚yD

.x ! 0/! y and :x D x ! 0. Then M.A/ D .AI˚;:;0/ is an MV -algebra in
which x! y D:x˚y.

In what follows, we are concerned with algebras in the language f˚;:;0g which
arise from bounded (non-commutative) BCK-algebras in the same manner as MV -
algebras.

Let A D .AI!;0;1/ be a bounded BCK-algebra and define binary operation ˚
and a unary operation : on A by

x˚y D .x! 0/! y; (14)
:x D x! 0: (15)

We refer to M.A/ D .AI˚;:;0/ as the induced algebra of a BCK-algebra A. We
also introduce a supplementary binary operationˇ by

xˇy D .x! .y! 0//! 0: (16)

Lemma 8. Given a bounded BCK-algebra A, its induced algebra M.A/ satisfies
the following identities:

(1) 0˚x D x, x˚0D::x,
(2) x˚::y D y˚::x,
(3) x˚1D 1˚x D 1,
(4) :::x D:x,
(5) :x˚0D:x,
(6) ::x˚y D x˚y,
(7) x˚:y D:y˚::x,
(8) x˚ .y˚´/D y˚ .x˚´/.

In addition, we have
(9) xˇ1D 1ˇx D::x,

(10) xˇy D yˇx D::xˇy D:.:x˚:y/,
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(11) xˇ0D 0,
(12) :xˇ1D:x,
(13) :.:xˇ:y/D::.x˚::y/.

Proof. (1) 0˚x D .0! 0/! x D 1! x D x and x˚0D .x! 0/! 0D::x.
(2) x˚::y D .x! 0/! ..y! 0/! 0/D .y! 0/! ..x! 0/! 0/D y˚

::x.
(3) x˚1D .x! 0/! 1D 1 and 1˚x D .1! 0/! x D 0! x D 1.
(4) :::x D ..x! 0/! 0/! 0D x! 0D:x.
(5) This follows from (1) and (4).
(6) ::x˚y D ...x! 0/! 0/! 0/! y D .x! 0/! y D x˚y.
(7) This is a consequence of (2) and (4).
(8) x˚ .y˚ ´/ D .x ! 0/! ..y ! 0/! ´/ D .y ! 0/! ..x ! 0/! ´/ D

y˚ .x˚´/.
(9) xˇ1D .x! .1! 0//! 0D .x! 0/! 0D::x and analogously 1ˇx D

.1! .x! 0//! 0D .x! 0/! 0D::x.
(10) We have xˇy D .x! .y! 0//! 0D .y! .x! 0//! 0D yˇx and

::xˇy D ...x! 0/! 0/! .y ! 0//! 0 D .y ! ...x! 0/! 0/! 0//!

0D .y! .x! 0//! 0D yˇx, and finally ::xˇy D ...x! 0/! 0/! .y!

0//! 0D:.:x˚:y/.
(11) xˇ0D .x! .0! 0//! 0D .x! 1/! 0D 1! 0D 0.
(12) This is a consequence of (9) and (4).
(13) By (10) and (7) we have:.:xˇ:y/D:.:yˇ:x/D::.::y˚::x/D

::.x˚::y/. �

Lemma 9. Let M.A/ be the induced algebra of a BCK-algebra A. Then
(a) x � y implies x˚´� y˚´ and ´˚x � ´˚y, and the same is true forˇ,
(b) x � y!:´ iff xˇy � :´,

where � is the partial order of A defined by (1).

Proof. (a) From x � y it follows x! 0 � y! 0 and hence x˚´D .x! 0/!

´ � .y! 0/! ´D y˚´. Similarly, x � y yields ´˚x D .´! 0/! x � .´!

0/! y D ´˚y.
Now, let x � y. Then :x � :y which implies :x˚:´ � :y˚:´ and hence

xˇ´D:.:x˚:y/� :.:y˚:´/D yˇ´.
(b) If x � y!:´, then xˇy � .y!:´/ˇyD ..y! .´! 0//! .y! 0//!

0� ..´! 0/! 0/! 0D ´! 0D:´ since .´! 0/! 0� .y! .´! 0//! .y!

0/. Conversely, if xˇy � :´, then y !:´ � y ! .xˇy/ D y ! ..x! .y !

0//! 0/D .x! .y! 0//! .y! 0/D .y! .x! 0//! .y! 0/� .x! 0/!

0� x. �

From now on, we will assume that a given bounded BCK-algebra A satisfies the
law of double negation

x D::x: (17)
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It should be underlined that (17) is not enough for a BCK-algebra A to be commu-
tative. Indeed, for instance, the following bounded BCK-algebra obeys the law of
double negation but it is not commutative as .a! b/! b D b ¤ 1D .b! a/! a:

! 0 a b 1

0 1 1 1 1

a b 1 1 1

b a a 1 1

1 0 a b 1

Recall that a structure .P I�; �; e/ is a partially ordered monoid or briefly a po-
monoid if .P I �; e/ is a monoid, .P I�/ is a poset and, for all x;y;´ 2 P , x � y

implies x �´� y �´ and ´ �x � ´ �y.
A partially ordered commutative residuated integral monoid, a pocrim for short,

is a structure .P I�; �;!;1/ such that .P I�; �;1/ is a commutative po-monoid with
the greatest element 1, and for all x;y;´ 2 P ,

x �y � ´ , x � y! ´: (18)

Lemma 10. Let A D .AI!;0;1/ be a bounded BCK-algebra satisfying the law
of double negation (17). Then both .AI�;˚;0/ and .AI�;ˇ;1/ are commutative
po-monoids. Moreover, .AI�;ˇ;!;1/ is a pocrim.

Proof. First, we show that˚ is commutative:

x˚y D .x! 0/! y

D .x! 0/! ..y! 0/! 0/

D .y! 0/! ..x! 0/! 0/

D .y! 0/! x

D y˚x:

Further,˚ is associative:

.x˚y/˚´D ...x! 0/! y/! 0/! ´

D ...x! 0/! y/! 0/! ..´! 0/! 0/

D .´! 0/! ....x! 0/! y/! 0/! 0/

D .´! 0/! ..x! 0/! y/

D .x! 0/! ..´! 0/! y/

D x˚ .´˚y/

D x˚ .y˚´/:
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Commutativity and associativity of the operationˇ is a direct consequence. Now, by
Lemma 8 (1), (9) and Lemma 9 (a), .AI�;˚;1/ as well as .AI�;ˇ;1/ is a commu-
tative po-monoid.

In order to prove the latter statement, it suffices to note that by (b) of Lemma 9 we
have x � y!::´D y! ´ if and only if xˇy � ::´D ´ verifying (18). �

In the next theorem we characterize “MV -like” algebras arising from bounded
BCK-algebras satisfying the law of double negation:

Theorem 11. Given a bounded BCK-algebra AD .AI!;0;1/ satisfying the law
of double negation (17), the induced algebra M.A/D .AI˚;:;0/ fulfils the identi-
ties (MV1)–(MV5) and the axioms

(A1) :.:x˚y/˚:.:y˚´/˚:x˚´D 1,
(A2) .:x˚y D 1 & :y˚x D 1/ ) x D y;

moreover, we have x! y D:x˚y.
Conversely, let M D .M I˚;:;0/ be an algebra of type .2;1;0/ and put 1D :0.

If M satisfies (MV1)–(MV5), (A1) and (A2), then upon defining x! y D :x˚y,
the algebra A.M/ D .M I!;0;1/ is a bounded BCK-algebra satisfying (17). In
addition, x˚y D .x! 0/! y and :x D x! 0.

Proof. Let A be a bounded BCK-algebra with (17). Due to Lemma 8 and the
identity (17) M.A/ satisfies (MV1)–(MV5). Further, :x˚y D ..x! 0/! 0/!

y D x! y, and hence (A1) can be written as

.x! y/! ..y! ´/! .x! ´//D 1

which is just axiom (I). Similarly, (A2) can be rewritten in the form

.x! y D 1 & y! x D 1/ ) x D y

which is (V), the fifth axiom of BCK-algebras.
Conversely, let M D .M I˚;:;0/ be an algebra having the required properties.

By (A1) we have .x! y/! ..y! ´/! .x! ´//D:.:x˚y/˚ .:.:y˚´/˚

.:x˚ ´// D 1 proving (I). When we put y D ´ D 0 in (A1), we obtain x ! x D

x˚:x D ::x˚:x D :.:x˚0/˚:.:0˚0/˚:x˚0D 1, i. e., A.M/ fulfils
(III). Now, x ! ..x ! y/! y/ D :x˚:.:x˚ y/˚ y D 1 which is (II). The
axiom (IV) is clear: x! 1 D :x˚ 1 D 1. Finally, according to (A2), x! y D 1

and y! x D 1 imply x D y. Altogether, A.M/ is a BCK-algebra. Obviously, it is
bounded and obeys (17).

In addition, :x D :x˚ 0 D x! 0 and x˚y D :.:x˚ 0/˚y D .x! 0/!

y. �

Corollary 12. Bounded BCK-algebras satisfying the law of double negation are
termwise equivalent to the class of all algebras MD .M I˚;:;0/ that satisfy (MV1)–
(MV5), (A1) and (A2).
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