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Abstract. We investigate Egervary’s rank reduction method and related conjugation al-
gorithms. We give an exact characterization of the full rank factorization produced by the
rank reduction algorithm and exploit this result concerning matrix decompositions and con-
jugation procedures.
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1. Introduction

In the paper we investigate the rank reduction procedure of Egervéry [8], [10], [11],
[24] and conjugation algorithms which are related to the following class of conjugate
direction methods [25] for solving linear systems of the form

Az=b (AeR™™ beR™, det(A)+#0). (1.1)

ALGORITHM 1
Let y; € R™ be arbitrary.

fork=1:m
ry = Ayp — b
o = v i/ (o] Apy)
Yk+1 = Yk — OkPE
end

Let P = [p1,p2,--. ,Pm] € R™*™ and V = [v1,v2,... ,Up] € R™*™ be nonsin-
gular. The pair (P,V) is said to be A-conjugate if the matrix L = VT AP is lower
triangular. The pair (P,V) is said to be A-biconjugate if VI AP = D is diagonal.
Algorithm 1 terminates in m steps if Ay,,,+1 = b. Combining the results of Stewart
[25] and Broyden [4] we can establish the following

Theorem 1 Algorithm 1 terminates in m steps for any starting point y1, if and only
if the pair (P,V) is A-conjugate.

A particular conjugate direction method is defined by the A-conjugate pair (P, V).
In the paper we investigate conjugation procedures which are related to the rank
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reduction algorithm of Egervéry. Thus we deal with the ABS conjugation procedure
of Abaffy, Broyden and Spedicato [1],[3], the conjugation procedure of Stewart [25],
the two-sided Gram-Schmidt procedure of Hegedts [16], [17], [18], Parlett [21], Chu,
Funderlic and Golub [6] (for other A-conjugation procedures, see Voyevodin [26]).

It should be mentioned that the rank reduction algorithm was rediscovered con-
cerning the ABS methods which were developed using quasi-Newton techniques [3].

We define A-conjugation for rectangular matrices as well. Let A € R™*" V €
R™ " and P € R™". The pair (P,V) is said to be A-conjugate if L = VTAP
is nonsingular lower triangular. The pair (P, V) is A-biconjugate if D = VT AP is
nonsingular diagonal.

Given any matrix A, the matrices A%, Al¥, A% and A*l will denote the subma-
trices consisting of the first k rows, the first k columns, the last k rows and the last
k columns, respectively. Thus Al* is the leading principal submatrix of order k. A
nonsingular matrix A € R™*"™ is said to be strongly nonsingular, if A has an LU de-
composition. It is well known that a nonsingular matrix A has an LU decomposition,
if and only if each Al* is nonsingular for k =1,... ,m — 1.

In Section 2 we introduce the rank reduction procedure. In Sections 3 and 4 we
investigate the necessary and sufficient conditions for performing the rank reduction
procedure without breakdown. In Section 5 we give an exact characterization for the
components of the full rank factorization H; = Q, D 'PT € R™*" produced by the
rank reduction algorithm and derive various factorization results. It is also shown
that the components of the full rank factorization are biconjugate. More precisely the
pair (@, P.) is Hy -biconjugate, where H; denotes any g-inverse of Hy. The ABS
conjugation procedure, which produces I-conjugate pairs (X, P), is investigated in
Section 6. Here we show that ABS conjugation is essentially a full rank factorization
by Egervéry’s rank reduction algorithm. The equivalence of Stewart’s conjugation
algorithm and the ABS conjugation is shown in Section 7. In Section 8 we investigate
the TSGS biconjugation process of Hegedis [16], [17], [18], Parlett [21], Chu, Funderlic
and Golub [6]. It is shown to be a special case of Egervéry’s rank reduction algorithm.
Section 9 reviews some of the TSGS related results of Chu, Funderlic and Golub [6]
giving new proofs as well.

2. Egervary’s rank reduction procedure

The rank reduction procedure is based on the following theorem of Egervary [10] and
Wedderburn [28].

Theorem 2 (Egervdry [10]) Let A € R™*™ be arbitrary with rank (A) > 1. Then
rank (A —bc") =rank (A) — 1 (be R™, ce R") (2.1)

holds if and only if be” = AuvT A/vT Au, where u € R™, v € R"™ are arbitrary vectors
subject only to the restriction v Au # 0.
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It was Wedderburn who proved the if part of the theorem first [28]. Therefore
we call this result the Egervary-Wedderburn theorem. For other proofs and related
matters we refer to Elsner-Rézsa [12] and Ouellette [20]. It is also noted that some
authors mistakenly attribute Theorem 2 only to Wedderburn ([19]), to Householder
([20]) or to Wedderburn and Householder ([7]).

The rank reduction procedure of Egervary [10], [11] is the following.

Let H; € R™*™ be an arbitrary matrix of rank r and let
Hyyr = Hy — Hyzpyl HJyg Heew, k=1,...,r (2:2)

for any vectors x; € R™ and y, € R™ for which ykTHkxk #0.

As rank (Hy11) = rank (Hy) — 1 the procedure terminates in r steps, that is
H, .1 = 0. Using the notation Dy = diag (y{ Hix1,... ,y} Hixy) we can write Hy,
and H; in outer-product form

yi Hy
Hyy1 = Hy — [Hyzy,... , Hyzy] Dy : (2.3)
yi Hy,
and
yi Hy
Hy, = [Hyzy,... ,H.x,] Dt : , (2.4)
y;FHT

respectively. It follows from recursion (2.2) that Range (Hyy1) C Range (Hj) and
Range (H[,,) C Range (H!). If X = [z1,...,x,] and Y = [y1,...,y,], then for
m=n=r

Null (Hy,) = Span (X'k*) ., Range (Hy) = Span™ (Y'kil) . (2.5)

3. The canonical form of Egervary

We seek for conditions under which k steps of successive simple rank reduction
operations (2.2) can be performed. We need the following result of Guttman [15]
(see also Ouellette [20]).

Lemma 3 (Guttman [15]) Let A € R™*™ be partitioned in the form

A:[g IIH (3.1)

where E € R¥*¥ is nonsingular. Then

rank (A) = rank (E) +rank (H — GE™'F) . (3.2)
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If both A and E are nonsingular, then the Schur complement H — GE~'F is also
nonsingular. The if part of the following basic theorem was first proved by Egervary
[10], [11], while the only if part was first proved by Abaffy, Broyden and Spedicato

1], [3]-

Theorem 4 The first k steps of rank reduction algorithm (2.2) can be carried out if
and only if Y'*T H, X% is strongly nonsingular. If YT H, X ¥ is strongly nonsingular,
then

—1
Hyor = Hi — HiX® (YlkTﬂlxlk) YT g, (3.3)

Proof. We first assume that k successive steps were performed, which means that
y! Hixy #0fori=1,... k. Let Qp = [Hyw1, ..., Hyay) and Py = [H{ y1, ... H yi).
Then

Hyy1 = Hy — QD' PL.

k

Let us observe that YFTQ, = [yiTHjxj]ij:I = Ly = LDy, is nonsingular lower

triangular and P,;‘FX““ = [leHlacJ] y

ij=1
Here Lj, and Uy, are unit lower and upper triangular, respectively. We can also observe
that

= U, = DUy is nonsingular upper triangular.

Hi X'¥ = (Hy — Hyp1) X* = QD PEXF = QD' Uy, = QiUy
from which Qy = 1171)(““U,;1D;€ = H1X|kU,;1 follows. Similarly we obtain that
VM) = Y (Hy — He) = YT QuD ' P = LD ' P = Ly P

and P! = DL 'Y Hy = L 'YI*" . Hence

- - .|
Hy = H - Ky XU ' D LYYW Hy = 1y — Hy XF (LkaUk> YT g1,

As
v Xk = YIFT Q. Dt PEX I = L, DU, (3.4)

we proved that YI*T H; X ¥ is strongly nonsingular. By substitution we obtain formula
(3.3). Let us suppose that YI*T H; XI* is strongly nonsingular. We must prove that
yI'Hiz; # 0 for i = 1,... k. As by assumption y{ Hixqy # 0 the matrix Hy =
Hy — Hyz1yf Hy /yT Hyz1 is defined. Let us assume that we have defined H; for i < k.
Then

AT CONT _ -1 AT
H, = H, — H, (X“‘1> <(Y|1‘1) H1X|1—1> (Y|2‘1> H,
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and

CN\T - \T SNt
vl Hiz: =yl -yl Hy (X170 ((Y'“) Hlxl“)

(Y'i*1>TH1mi.

Let us observe that y! H;z; is the Schur complement of the bordered matrix

Y‘iTHlei _

(vi=1" gy xli=t (vi=)T g,
yl Hy X I=1 y! Hyx; .

As rank (Y'iTHlX“) = ¢ and rank ((Y'i’l)T H1X|i’1> = i—1, the Guttman lemma

implies that rank (yZTHla:Z) =1 and leHla:Z # 0. Hence H;y; is defined and we
completed the proof of the theorem. m

The first part of the proof is a slight modification of Theorems 4.2 and 4.3 in [3].
The second part of the proof is new.

We recall that for general bordered matrices of the form

B’—[wbér i} (BGRka,z,wGRk)

the identity det (B’) = det (B) (A —w? B~12) holds, if B is nonsingular. For i > 1 we
can write
. ) . T )
yl Hix; = det (Y“THlX“) / det ((Yll_l) H1X|Z_1> . (3.5)

For i > 1 it easily follows that

f[ y! Hjz; = det (YliTﬂlx‘i) : (3.6)

J=1

This formula is well-known concerning the bordering inversion method, where 1/(A—
w? B712) appears in place of A in the inverse of B’ (see, e.g. [23], [6]).

Using the canonical form (3.3) we can easily prove
Proposition 5 Let H; be any g-inverse of Hy. Then
HyHyH; = H;H; Hy = H, (j <k). (3.7)
This result was first observed by Abaffy, Broyden and Spedicato for nonsingular H

[1], [3]. Let us notice that H; Hy’s are projectors. Particularly, for Hy = I € R™*™
all Hy’s are projectors.

For k = r the canonical form (3.3) leads to the decomposition

H = HX (YTHX) YTH, (3.8)
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where Z = X (YTHlX)_1 YT satisfies H1ZH, = H, and ZH,Z = Z. Hence Z is
a reflexive g-inverse of Hy. If H; = FG is a full rank factorization, X = GTM and
Y = FN (M,N € R™™" any nonsingular matrices), then Z = X (YTHlX)_1 Y7 is
the Moore-Penrose inverse of Hy. For other properties of the reflexive g-inverse Z we
refer to Egervary [9].

Proposition 6 If H, = FG is a full rank factorization, X = GT (GGT)_1 and
Y=F (FTF)fl, then Hy11 can be factorized in the form

Hyp1 = F (1 . I‘kﬁ) G (IeR™). (3.9)

4. Block rank reduction

Egervéry considered formula (3.3) as one block rank reduction [10], [11]. Block rank
reduction was also investigated by Cline and Funderlic [7], and Ouellette [20] (see also
Rao [22]). Here we recall the result of Cline and Funderlic ([7], Corollary 3.1) and
give a new proof which exploits a technique of Ouellette ([20], Thms. 2.6a and 2.6b).

Theorem 7 (Cline-Funderlic [7]) Let H,S € R™*™, rank (H) > rank (S) =k and
let UR'WVT (U € R™**, R €¢ R*>** vV € R"™¥) be a full rank factorization of S.
Then

rank (H — S) = rank (H) — rank (S) (4.1)
if and only if
U=HX, VI=YTH, Y'THX=R (4.2)

for some matrices X € R*** and Y € R™**.

Proof. We first prove the if part. Let us consider the matrix

B_[YTHX YTH]_[YT

S e,

From the Sylvester law of nullity it follows that rank (H) = rank (B). Applying the
Guttman lemma we obtain

rank (H —HX (YTHX) ™ YTH) = rank (H) — rank (S).

The only if part is demonstrated in the following way. Let us assume that rank (H — S) <
rank (H) — k 4+ 1 and let
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As by the Guttman lemma
rank (H) < rank (B) = rank (R) + rank (H — UR™'V") < rank (H) + 1,

we obtain that rank (H) = rank (B). Hence there exist matrices X and Y such that

[R,VT] =YT U H], [5}: [ ‘;{T }X.

From here we obtain that VI = YTH, U =HX and R=V X =Y'U =YTHX.
Thus we proved the theorem. m

Remark 8 The case k = 1 gives the Wedderburn-Egervary theorem. The if part
of Theorem 7 was first proved by Egervary [10], [11] and also appears in Rao [22].
Ouellette investigated the block rank reduction

H-HX (Y'"HX) Y'H
with rectangular YT HX and any choice of generalized inverse [20)].

The block rank reduction and the successive simple rank reductions are not equiv-
alent. Egervary proved that for strongly nonsingular Y/*7 H; X% the block reduction
(3.3) is obtainable by k successive simple rank operations [10], [11]. This is not the
case if YI*T H, XI¥ is not strongly nonsingular as shown by the following example

010
Hi=|110]|, X=Y=1I, k=2
00 1

So the conditions of block rank reduction are less restrictive. We can easily extend
the canonical formula of Egervary to the block rank reduction algorithm

—1
Hy = Hy — He Xp (Y HiXe) Y He, k=1,... .t (4.3)

where X, € R™* Y, € R™*% [, > 1 and rank (H;) > 2221 .

Let m = Zle l;. A matrix A € R™*™ is said to be partitioned with respect to
the partition {l1,...,lx}, if A= [Aij]f,jzl and A;; € Rli*li. A matrix A is said to
be block strongly nonsingular with respect to the partition {l,... I} if there exist
nonsingular block lower triangular L and nonsingular block upper triangular U such
that A = LU, and both matrices are partitioned with respect to {ly,...,lx}. Let
Xk =1[xy,..., X, YI* =[¥1,...,Y%]. Then

Range (Hy) = Span™ (}7““_1) . Null (Hy) = Span ()N(W_1> . (4.4)

The following result can be proved in the same way as Theorem 4.



18 A. Galantai

Theorem 9 The first k steps of block rank reduction algorithm (4.8) can be carried
out if and only if YT H X% is block strongly nonsingular. If Y*T H, X% s block
strongly nonsingular, then

~ ~ ~ -1 -
Hyn = Hy = i X (VT XI0) 90Ty, (4.5)

The only if part of the theorem first appeared in [2] with a slightly different proof
(see, also [3]). If YI*T Hy XI¥ is strongly nonsingular in the usual sense, then it is also
block strongly nonsingular for any partition. In this case the if part of the theorem
follows from Theorem 4, which is a special case of Theorem 9. We also note that all
the results of subsequent sections which follow from Theorem 4 can also be established
for the block case in a straightforward way.

5. Matrix factorizations and rank reduction

We determine the components of the full rank factorization (2.4) in terms of the pa-
rameters Hy, X and Y and derive important consequences such as matrix decomposi-
tions, orthogonalization and similarity transformations to Hessenberg and tridiagonal
forms. It is also shown that the pair (Q,, P.) is H -biconjugate, where H; is any
g-inverse.

Let B = LgDgUpg be the unique LD U-decomposition of matrix B € R™*™ with
unit lower triangular Lp, diagonal Dp and unit upper triangular Ug. We later use
the following simple observations.

If Y is nonsingular lower triangular, then Ly 4 = YL AD;,l7 Dy =DyDy and
Uy s = Uy. If X is nonsingular upper triangular, then Lax = La, Dax = DaDx
and Usx = D;(l UsX. LetY be anonsingular lower triangular matrix. A is strongly
nonsingular, if and only if YA is also strongly nonsingular. Similarly, let X be a
nonsingular upper triangular matrix. Then A is strongly nonsingular if and only if
AX is also strongly nonsingular.

If two nonsingular matrices A and B have the LU-decompositions A = L,U and
B = LyU with the same upper triangular U, then there is a unique lower triangular
matrix L such that A = LB. Similarly, if A = LU; and B = LU, hold with the
same lower triangular L, then there is a unique upper triangular matrix U such that
A = BU.

From the proof of Theorem 4 (formula (3.4)) we can easily establish that

Ek = Ly\kTHlx\k, Dk - DY\kTHlX““? ﬁk = Uy|kTHlx|k, (51)
P];F = L;/\lkTHlxlk,YlkTHlﬂ Qk = HlekU;l:I;«THlx\k' (52)

For k = r we obtain the components of Egervary’s full rank factorization in terms of
the parameters X,Y and H;.
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Theorem 10 Let H; € R™*™ of rank r and let YT H, X be strongly nonsingular.
The components of the full rank factorization Hy = QD 'PT are

T

Po=H{YLyTy «, Qr=HXUyt, «, Dp=Dyry,x, (5.3)

and Hy can be expressed in the form

-1 -1 —1 T
Hy = (B XUgty ) Dyt (b Y 7). (5.4)

Expression (5.3) for P, first appeared in [13], [14] with a different proof. It was
not realized until writing this paper that the proof of Theorem 4 can be modified so
that expressions (5.3)-(5.4) could be derived easily.

The matrices P, and @, can be written in the form P, = HI YU} and Q, =

XTHTY
H X L;(:; HTY respectively. The role of P, can be changed with @, by transposing
Hl- AS
T Ty r7—1 -1 -1 T 17T
HE = (HIYUGh ) Dxbpyy (B ey XTHT) (5.5)

several results on P, can be formulated for Q, if we replace H; by H{, X and Y by
each other.

We also note that for nonsingular upper triangular U; and U, the transformations
Y — YU; and X — XU, change the factorization (5.4) to

Hy = (B XUpty Do) (D5 Dyt D) (Do Lyh g xYTHL) . (5.6)

Hence the effect of these transformations is only a diagonal scaling.

The following observation enlightens a basic property of the full rank factorization
(5.4).

Proposition 11 Let H; denote any g-inverse of Hy. Then the pair (Q, P,) is Hy -
biconjugate.

Proof. By definition

PIH; Q= Ly y Y (HiH; Hy) XUy = Dyt x.
The rank reduction procedure defines a full rank factorization (5.4) of matrix
H;. The next observation, which follows from Theorem 10, shows that all full rank
factorizations can be generated by Egervédry’s rank reduction procedure.

Proposition 12 Let H; € R™ ™ be of rank r and let Hi = FG be any full rank
factorization. Let X = GT (GGT)f1 andY = F (FTF)fl. Then Q, =F, D, =1
and PT = G.
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We mention here two simple examples.

Example 13 Let the singular value decomposition of Hy € R™*"™ be given in the
form Hy = U(EVT), where U € R™*", V. € R UTU = I, VIV = I and
Y € R"™" is nonsingular. The choice F = U, G = V7T yields X = VX~ and
Y=U. Thus Q, =U and P, =XV 7.

The polar decomposition theorem says that every nonsingular matrix A € R™*™
can be written in the form A = QP, where @ is an orthogonal and P is a symmetric
positive definite matrix.

Example 14 Let Hy € R™*™ be nonsingular and let Hy = QP be its polar decom-
position. The choice F =P, G=Q yields X =P ! and Y = Q. Thus Q,, = Q and
PT =Pp.

We consider now the matrix factorizations we can obtain from Theorem 10. For
the rest of this section we assume that all matrices Hy, X,Y € R™*™ are nonsingular
so that XTH Y are strongly nonsingular. Then Q,, and P,, are also nonsingular,
Qm = H1P,;TD,, and formula (5.4) can be written in the form

Hy = (Y "Lyry,x Dy, x) Dyt g, x (Dyra,xUyr,xX71) . (5.7)

Proposition 15 P~ is upper triangular if and only if X is upper triangular. P~ is
lower triangular if and only if YT H,y is lower triangular. Q,, is upper triangular
if and only if H1 X is upper triangular. Q.,, is lower triangular if and only if YT is
lower triangular.

Proof. From the relation P’ = (Dyrpy, xUyrg,x) X ' = U, where U is upper

triangular, it follows that X! = U;% H, XD;% H, Xﬁ is also upper triangular. Hence

X is upper triangular. If PL = L;lT o XYTH 1= E, where L is lower triangular, then
YTH, = LyTHIXz is also lower triangular. Similarly, Q,, = HlXU;%Hlx = (7, if
and only if H;X is upper triangular. Finally, @,, = Y_TLyTHlXDyTHIX = E, if
and only if Y7 is lower triangular. m

Corollary 16 Q,, is lower triangular and PL is upper triangular, if and only if X
and 'Y are upper triangular.

In this case factorization (5.4) simplifies to the LU factorization
Hy = (Ly,Du,Dx) (Dx' Dy Dyt) (Dyr Dy, Ug,)

in agreement with (5.6). For X =Y = I this result was first observed by Egervary
[8], [10] (for ABS conjugation, see [3]).
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Proposition 17 P,, is upper Hessenberg if and only if HLY is upper Hessenberg.
Q. is upper Hessenberg if and only if H1 X is upper Hessenberg.

Proof. We exploit the fact that the upper Hessenberg form is invariant un-
der multiplication by upper triangular matrix from both sides. By definition P,, =
HfYL;ZHIX = F, where F is upper Hessenberg if and only if H{Y = FL%F,THIX
is upper Hessenberg. Similarly, @,, = H1 X U;% X = F' is upper Hessenberg if and
only if H1X = FUyrpy, x is upper Hessenberg.

Proposition 18 Let B € R™*™ be a symmetric and positive definite matrix. Py,
is B-orthogonal if and only if X = BHIYU holds with any nonsingular Y and a
nonsingular upper triangular U.

Proof. P,, is B-orthogonal, if and only if

PLBPy = Lyt Y THIBHYL T, =D,
where D is diagonal. This holds exactly if YT H,BHTY = LyTHlxDLz;THlx. This
implies Lyry, HTY = Lyry, x. Hence a nonsingular upper triangular U exists
such that YTH;BH{YU = YTH; X, from which X = BH{YU follows. As B is
symmetric and positive definite, the nonsingularity of Y and U is the condition for
the strong nonsingularity of Y7 H, X. m

We can drop the positive definiteness condition of B if we assume that Y7 H, X =
YTH, BH]'Y is strongly nonsingular.

Corollary 19 P,, is orthogonal up to a diagonal scaling and Q, is lower triangular
if and only if X = H{ YU holds with any nonsingular upper triangular U and Y. In
such a case, factorization (5.4) is the LQ-factorization of H;.

Proposition 20 Let B € R™*"™ be a symmetric and positive definite matriz. Q,
is B-orthogonal, if and only if Y = BH,XL" holds with any nonsingular X and a
nonsingular lower triangular L.

Proof. @,, is B-orthogonal if and only if

QnBQum = Uyt y X HBH\XUyz = D,
where D is diagonal. This holds exactly if X" Hf BH, X = Ug;THlXDUyTHlx from
which Uxrgrpm, x = Uyrh, x follows. Hence a nonsingular lower triangular matrix
L exists such that LXTHlTBHlX =YTH;X. This implies Y = BH; XL"”. As B is
symmetric and positive definite, the nonsingularity of X and L is the condition for
the strong nonsingularity of Y7 H; X. m

Corollary 21 Q,, is orthogonal up to a diagonal scaling and PL is upper triangular
if and only if Y = H1 XL" holds with any nonsingular lower triangular L and upper
triangular X. In such a case, factorization (5.4) is the QR-factorization of Hj.



22 A. Galantai

We note that special cases of Corollaries 19 and 21 appear in the ABS conjugation
[3].

Given a matrix H; € R™*™  a GR decomposition of H; is a factorization of
H, into a product B = GR, where G is nonsingular and R is upper triangular [27].
By Proposition 12 any GR decomposition can be obtained by the rank reduction
algorithm of Egervéary. For special cases such as the LU and QR factorizations we
refer to Corollaries 16 and 21.

Finally we investigate the special case H; = I. Then

I = (XUyty) Dyry (Lys

YTX YTXYT) (5-8)

and the factors Q@ = XU;%X = Y_TLyTXDYTXa D, = Dyrx and P, = YL;/:;X —
X*TUgTXDyTX are such that QVTH = (Pmel)_l'

m

The following table gives some LU factorization related results for H; = I and
the parameters given therein.

X Y [Qn D ITPT

A I LaDy Dzl Lzl
AT |1 [UYDs | Dy | UL
I | A |L,7 | D' | DALl
I AT [ Uyt D' | DaU,

It is noted that the parameters X = A” and Y = I define the implicit LU ABS
method (see [3]).

The following observations are related to the Lénczos reductions (see, e.g. [19]).
Let y; € R™ and y; = A ly; (i =2,...,m). Let y; € R™ be such that the Krylov
matrix Y = [yl, Ayq,. .. ,Amflyl] is nonsingular. Then A™y = Y7 ;A 'y; and
AY =Y F, where the companion matrix F' is defined by

o o0 ... 0 m
1 0 D
F=1lo0 1
: : 0 v,
L0 ... 0 1 v, |

We exploit that Q1 = (PmDnjl)fl for Hy = I . Let us consider the similarity
transformation

QLA(P.D;)Y) = DyrxLT, (YTIAY) L7 Dyry

_ _ 5.9
DYTXLgTXFLYg:XDY%X’ 59)

where the upper Hessenberg matrix F' is multiplied by two upper triangular ma-
trices. This multiplication keeps the upper Hessenberg form. Hence Egervary’s
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rank reduction algorithm defines a similarity transformation of matrix A to up-
per Hessenberg form and gives the transformation matrices Q1 and Q.7 simul-
taneously. Let us assume again that x; € R™ is such that the Krylov matrix
X = [ml,ATxl,... ,(AT)m_lxl] is nonsingular. Then A”X = XF; holds with
a suitable companion matrix Fy. With this choice of X, relation (5.9) becomes
QLA (PnD,)") =Uyty (XTAX Uy = Uyt Y Uy,
where the lower Hessenberg matrix Fi is multiplied by two lower triangular matrices.
This multiplication keeps the lower Hessenberg form. As QT A (PmD;ll) is of both
upper and lower Hessenberg form, the matrix must be tridiagonal. Hence the rank
reduction algorithm also defines a similarity transformation of matrix A to tridiagonal
form giving the transformation matrices Q1 and ;7 simultaneously.

Theorem 22 Let y; € R™ be such that Y = [yl, Ay, ... ,Am_lyl] s monsingular.
If H = I and X is such that YT X is strongly nonsingular, then QL A (PmD;ll)
defines an upper Hessenberg matrix which is similar to A. If, in addition X =
xy, ATxy, ... ,(AT)m_1 1:1} , then QL A (PmDT_nl) s a tridiagonal matriz, which is
similar to A.

Similar results appeared in Stewart [25], and Abaffy and Spedicato [3] in associa-
tion with the A-conjugation algorithms. What is really new here is the simultaneous
computation of the transformation matrix and its inverse.

6. The ABS conjugation procedure

In this section we investigate the ABS conjugation procedure of Abaffy, Broyden
and Spedicato [3]. This algorithm, which is based on the rank reduction procedure,
produces A-conjugate pairs (X, P). We assume that Hy, A € R™>™ are nonsingular.

ALGORITHM 2
H; € R™*™ is arbitrary nonsingular
fork=1:m
pr=Hlzx (21 € R™, xip #0)
Hyy1 = Hy — Hyxpyl He/yi Heoe (yr € R™, gl Hray #0)
end
As for i < j the relation z; € Null (H;) implies z] Ip; = x;fFHijj = 0, the
matrix L = X7 P is nonsingular lower triangular. Hence Algorithm 2 produces the
I-conjugate pair (P, X). The substitution x; = ATv; (i = 1,...,m) or X = ATV
yields L = XTP = VT AP. So the resulting pair (P, V) is A-conjugate. Therefore it
is enough to formulate and prove statements only for I-conjugate pairs.
We can also define the conjugate pair (Q,Y) by setting gr = Hrwi (K =1,... ,m)
and Q = [q1,... ,qm). Fori < j, yI'Iq; = yI Hjw; = 0. Hence the pair (Q,Y) is
indeed I-conjugate.
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For further use let Z = [21,. .. , z;y]. We seek for conditions under which Algorithm
2 produces nonsingular I-conjugate pairs (P, X). This happens if and only if

aelpe 20, yiHyxp #0 (i=1,...,m). (6.1)

The second condition holds if and only if X7 H,Y is strongly nonsingular. By defini-
tion 27p; = 2T H 2, and

-1
ol pes = ab  H 2y — ol HTY (X““THlTY““) X T,
which is the Schur complement of the bordered matrix

T XlkTHTy\k X|kTHTZ
X|k+1> HT {Y'k,z } _ [ 1 1 241 ] .
( 1 kol xf_HH;‘FY'k zi  Hi 2z

By the Guttman lemma $£+1pk+1 = 0 holds if and only if

T
rank (2} 1pr+1) = rank ((XlkH) HT |:Y|k72k+1:|) — rank (X““THlTY““) =1.

This happens exactly if rank ((X““H)T HT [Y'k, Zk+1]> =k + 1, that is if

det ((X’”l)THlT [Ylk,ZkJrl}) # 0.

Thus we have

Theorem 23 Algorithm 2 produces a nonsingular I-conjugate pair (P, X) if and only
if the matriz YT H, X is strongly nonsingular, ¥ HE 2y # 0 and

T
det <(X|k+1) Hr {Y'k,zkHD £0 (k=1,...,m—1). (6.2)
If we choose z; = y; (i =1,...,m), then condition (6.1) changes to
ipy =yl Hyxr, 20 (i=1,...,m). (6.3)

Hence, the strong nonsingularity of Y7 H; X is the necessary and sufficient condition
for producing nonsingular I-conjugate pairs (X, P). The choice Z = Y defines the
generalized implicit LU or GILUABS subclass of the ABS methods [13], [14]. Let
us notice that p; = Hl'y; is the ith component of P, the transpose of which we
investigated in Section 5. As P = P,, we can conclude that GILUABS conjugation
is producing the pair (X, P,;,), which is I-conjugate. So the GILUABS conjugation
is nothing else but a full rank factorization by Egervary’s rank reduction procedure.
Similarly, we have that pair (Q,,,Y) is also I-conjugate. Theorems 4 and 10 imply
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Theorem 24 Let Z = Y. Algorithm 2 produces a monsingular I-conjugate pair
(P, X) if and only if the matriz YT H, X is strongly nonsingular. If YT H, X is strongly
. _ Ty -T _ gTvrr—1
nonsingular, then P = Hj YLYTHlX = Hj YUXTHlTY‘
We prove the following characterizations of Algorithm 2.

Theorem 25 For any I-conjugate pair (P, X) there exist an orthogonal matriz Q and
a nonsingular diagonal matriz D such that Algorithm 2 with Hy =1,Y =7 = QD
generates the pair (P, X).

Proof. Let P = QDR; be a QR-factorization of P with diagonal D and unit
upper triangular Ry. As XTP = XTQDR, = L implies X7QD = LRl_l, the matrix
XTQD is strongly nonsingular. Hence by Theorem 24 Algorithm 2 produces exactly
the pair (P, X) for the parameters Hy =1, Z=Y =QD. ®

For a given X and orthogonal @) there does not necessarily exist an I-conjugate
pair (P, X) produced by a GILUABS conjugation. For example, let H; = I,

010 1 0 0
X=[|110]|, Q=0 a 2 (> +5°=1).
0 0 1 0 -8 «
Then
0 1 0
YITHX=Q"X=|a a -
B«

is not strongly nonsingular.

Proposition 26 Let Z =Y. Algorithm 2 produces a nonsingular I-biconjugate pair
(P, X), if and only if the matriz YT H1 X is lower triangular.

Proof. The pair (P, X) is I-biconjugate, if X7 P = D is diagonal. As XTP =
XTHITYU);;HlTY = LyrpryDxryry this may happen exactly if Lxryry is also
diagonal. m

Theorem 27 Let B € R™*™ be a symmetric positive definite matrix and Z =Y . Al-
gorithm 2 produces a nonsingular I-conjugate pair (P, X) such that P is B-orthogonal,
if and only if X = BHYY LT, where Y is any nonsingular and L is any nonsingular

: : _ gTyyr—1
lower triangular matriz. In such a case P = Hj YUYTHlBHlTY'

The same P can be obtained, if we select X = BP in Algorithm 2. Then X7 P =
PTBP = L implies that L = D is diagonal,

=T T T -1 _
Ut yry Y HABH YU} oy = D,
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YTH,BHTY = U§THTYDUXTHiTY and X = BH{YLT with a nonsingular lower

triangular L. In fact, the choice X = BP = BHlTYU_1 corresponds to LT =

XTHTY
-1
UXTHlT Y
The above result appeared first in Stewart [25] for the special case X = ATV,
V=AP, H =Z=Y =1and LT = I, when P =Y Uy} ,r ,y (see also [3]).

7. Stewart ’s conjugation procedure

Stewart’s A-conjugation process is based on the LU factorization VTAQ = LS, where
Q = [q1,... ,qn] is the parameter [25]. Clearly, P = QS~! defines the A-conjugate

pair (]3,V>. We prove that Stewart’s A-conjugation procedure is equivalent with

the GILUABS conjugation procedure. Hence it is also related to the rank reduction
algorithm.

STEWART’S CONJUGATION ALGORITHM
P1=q
fork=1:m
if k>1 )
=\~ T
s$p = (L\k—l) (VIE=1)T Ag,
Pr =g <Qk - ﬁlk_lsk) , Ok #0
end
LIF = (vIk)" Aplk
end

It is easy to see that
. N1
Dk+1 = O—IZ-&l-l,k-&-l (I — P (VlkTAP|k> VlkTA) qr+1-

As P = QS we can write Pk = Ql¥ (S‘l)|E and
plk (V|kTAP|k)_1 VIKT 4 — gk {V|kTAQ|k}_1 VIT 4.

By the simple substitution y, = J,;quk we obtain that p; = H,zyk fork=1,...,m.
Thus we proved that Stewart’s conjugation procedure is algebraically equivalent with
Algorithm 2 in the special case Z =Y, Hy = I and X = ATV. In fact, the Stewart
algorithm implicitly uses the canonical form (3.3).

8. The two-sided Gram-Schmidt method

In this section we deal with the two-sided Gram-Schmidt (TSGS) process, which pro-
duces an Hi-biconjugate pair (U, V). Let Hy € R™*™ be of rank v, X = [z1,... , ;]
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and Y = [y1,...,yr].- The two-sided Gram-Schmidt algorithm is defined by

U = 1, V1 =Y (8-1)
v; Hlxk
up = Z T (k=2,...,7) (8.2)
k—1
yi Hiu;
= — =——vw (k=2,..., 8.3
Vk Yk UTHl’lLiU ( T) ( )

i=1 1
where uy, and vg are the projections of xy and yy, respectively.

This process was developed and rediscovered by several authors, the first of which
is C. Hegeds [16], [17],[18]. Hegedts proved that the pair (U, V) is H;-biconjugate,
H, = HiU (VTHlU)f1 VTH,, and U (VTHlU)f1 VT is a reflexive g-inverse of H;
if the process is carried out. Parlett [21] defined algorithm (8.1)-(8.3) for Hy = I €
R™*™_ Chu, Funderlic and Golub [6] defined and investigated the TSGS biconjuga-
tion process in association with the Egervdry rank reduction algorithm. Finally we
mention Broyden [5], who gave a block generalization of the Gram-Schmidt algorithm,
which contains the TSGS biconjugation process of Hegedis as a special case.

Using Theorem 10 we give a unique characterization of U and V in terms of the
parameters Hy, X and Y. We show that TSGS biconjugation is a special case of
Egervéry’s rank reduction algorithm.

Chu, Funderlic and Golub [6] proved the following result in association with the
rank reduction algorithm (2.2).

Theorem 28 (Chu-Funderlic-Golub [6]) Provided that process (8.1)-(8.8) is carried

out, Hyup = Hyxy, vaHl = y,:ng, y,?Hkxk = v,:nguk for all k and vZTHluj =0 for
alli #j.

Let U = [u1,...,u,], V = [v1,...,v] and Q = diag (w;). Then VIH,U = Q
is nonsingular diagonal by Theorem 28. Hence the pair (U, V) is Hj-biconjugate.
We can observe that U and V also satisfy the relations Q, = HU, Q = D, and
P, = HI'V. Thus from the representation (5.3)-(5.4) we can assume that

1 T 1
U=XUptyx» V=YLyiy x=YUstyry- (8.4)

Using the proof of Theorem 4 we can prove this and more.

Theorem 29 Let H; € R™ ™ be of rank r, X € R"*" and Y € R™*" The TSGS
biconjugation algorithm can be carried out if and only if Egervdry’s rank reduction
algorithm can be carried out. In such a case, when YT H,X is strongly nonsingular,
relation (8.4) holds.

Proof. Let us assume first that Y7 H; X is strongly nonsingular. For k = 1,

u; = XUyry xer = Xe; = x1 and v; = YLYZH x€1 = Ye; = y;. Assuming the
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statement for 1 < ¢ < k — 1 we can write

T Ty,T Tr-1 T -1 T
U; Hlui =€ |4 H1U€i =€ LYTHlXY HlXUYTHlXei =€ DYTHlXei = Wj.

By definition we have

3
U = mkfg ——U;
— v-THlui
Mlel Lot JYTH Xey,

YTH X
= Xekf E lw
i=1 v

k=1 _ T
€; € T
_ -1 i€ Dyrm, x
= XUpry x (I E — ) Uyt m,x€k

—1
yTH, x &

i=1
= XUjz, e
YT H, Xk
Similarly we have
k-1 1
R /L L I
= = s .
— vZTHlui ‘ YTH1 X
=1
iq T . _ Tr—-1 T -1 T s
It is also clear that v; Hiu; = e; LYTHIXY HlXUYTHlxej =e; Dyrp, xe; is zero,

ifi # jand w; fori = j (1 <i,j < k). Let us assume now that Y7 H; X is not strongly
nonsingular. Then there is an index ¢ such that y! H;z; = 0 and y! Hyz; # 0 for i <t
(whenever ¢ > 1). Hence we can calculate {u;, Ui}§=1 with the T'SGS algorithm. We
cannot define, however, u;1; and v;41 because ytT Hixy = vtT Hiu; = 0. Thus we
proved the theorem. m

Let us notice that we also proved Theorem 28.

The following part of the above theorem was formulated and proved in a different
way by Chu, Funderlic and Golub [6].

Theorem 30 (/6/, Thm. 2.2) Let Hy € R™*" be of rank r, X € R™*" and Y €
R™ 7" The TSGS biconjugation algorithm can be carried out, if and only if YT H, X
is strongly nonsingular. In such a case, relation (8.4) holds.

This Theorem altogether with Theorem 4 also yields Theorem 29. The close rela-
tionship between the rank reduction and TSGS biconjugation is not at all surprising.
Next we show that TSGS is a special case of Egervdry’s rank reduction algorithm.
We have two possibilities for doing this.

Let Hy = A € R™*" be of rank 7, X € R™*" and Y € R™*" be such that YT AX
is strongly nonsingular. Let A~ = X (YTAX )71 YT be the reflexive g-inverse of A
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produced implicitly by the rank reduction procedure (2.2). Let us define the rank
reduction process

~

H = A™ (8.5)
Hyr = Hy— HoAopyl AHy Jyf AHyAzy, (k=1,....,7)

and the related quantities
pe=HEATyy, G = HyAzy, (k=1,...,7). (8.7)

As (ATY)TI;G (AX) = YTAA-AX = YTAX, the rank reduction process can be

carried out, and by the special choice of A~ we have @T =A"AX U;% ax =X U;% AX
and ﬁr = (A*)T ATYL;,gAX = YL;;AX. These are exactly U and V defined in
(8.4). We have the following recursions

4G A Ykt ~

=~ 77T AT
Pr+1 = H{ A" i1 — = i
i vl Al A,

and
ko
. ~ pi ATk
dk+1 = H1A$k+1 - —_——=—q;-
=1 v AH; Aw;
As for reflexive g-inverses (A~) = A, we can write

Also, by the special choice of A~, we have ﬁlTATka = yp+1 and ﬁlek+1 = Th1.
Thus we have the following recursion

ko
D; A$k+1 ~

ykT+1AZ1\iA g

k
Dkl =Ykt1 — )  —a———Di» Qht1 = Thp1 — (8.8)

i=1

Letting uy, = i and vy = pr, we obtain the TSGS recursion (8.1)-(8.3).

Theorem 31 The rank reduction process (8.5)-(8.7) can be written as TSGS bicon-
jugation algorithm.

We can obtain the TSGS biconjugation process without using a special reflexive
g-inverse, if we use two rank reduction processes as follows. Let I,,, denote the m x m
unit matrix. Let

H = I, (8.9)
ﬁk+1 = ﬁk - ﬁkATykngIk/mfﬁkATyk (]{,' = 1, e ,’I“) (810)
P = Hlxy (8.11)
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and
H = I, (8.12)
ErkJrl = f:tv[k - EkaxkykaIk/ygfIkAxk (k‘ = 1, ce ,7“) (813)
e = Hly. (8.14)

As YTAX is strongly nonsmgular both recursions can be carried out. By Theorem
10 PT = XL;(TATY = XU_TAX and P = YLYTAX These are exactly U and V

defined by (8.4). Let us notice that the related quantities Qr and QT are not equal
toVor U. For P and PT we have the following recursions

T
Y; AH Tha1 ~
Dkl = Tht1 — D
; oTH ATy,

and

k T AT T
~ z; AV H} Yy ~
Pk+1 = Yk+1 — E — = . D
i1 leHlAJJZ

Noticing that AH T — H; A we can write

yi AH 20 = D] Azpyr, o] ATH yesr = yi 1 Aps
xiTHiATyi = yiTHz-Axi = yiTHiHiA:cL =y; H AH T; = ﬁfAﬁz

By substitution we obtain the following recursion

k Ap,
e _ Di A-TkJrl ~ ~ . yk+1 Pi -
Prk4+1 = Tht1 — =11~ Pir PE4+1 = Yk41 — AT

i=1 bl Api i—1 7 AD;

Letting ur = pr and vy = pr we obtain the TSGS biconjugation process.

Theorem 32 The two rank reduction procedures (8.9)-(8.11) and (8.12)-(8.14) can
be written as TSGS algorithm.

Finally, we note that Abaffy and Spedicato proved that the TSGS algorithm of
Hegedtis (and also of Boddées) is a special case of the ABS conjugation algorithm ([3],
Thm. 8.30).

9. Biconjugation and factorizations

Although the TSGS biconjugation algorithm is a special case of the rank reduction
algorithm, it is useful to review the following main results of Chu-Funderlic and Golub
[6]. It is noted that we formulate and prove these results differently.
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Proposition 33 ([6], Thm. 8.2) Let H; € R"*". For X =Y = I, then the TSGS
algorithm can be carried out if and only if Hy is strongly nonsingular. In this case
the main diagonals of AHy, VT Hy, and Q are identical and Hy = V-TQU ! is the
unique LDU factorization of Hi.

Proof. The first part of the theorem follows from Theorem 29. If X = I and
Y =1, then U =Uy!, V = Ly" and Q = Dy,. Thus HiU = H\Uy = Ly, Dy, ,
VTH, = L;ﬁ H, = Dy, Upg, showing that all three matrices have the same diagonal.
The product V-TQU ! = Ly, Dy, Uy, is indeed an LDU factorization of H;. m

Proposition 34 (6], Thm. 3.3) If Hy € R"*" is symmetric and X € R"*"™ is such
that XTH, X is strongly nonsingular, then the resulting H,-biconjugate pair (U, V)
has U = V. In this case, VI H,U = Q is the canonical form of Hy, with respect to
congruence and the columns of U are A-orthogonal.

Proof. By Theorem 29 U = XUyt y and V = XLy T, = XUy, . Thus
U=V and

VIH,U=VTH,V = L]}

T _
xrxX HiXUxrp, x = Dxrpy, x-

Proposition 35 (/6], Thm. 3.6 ) Let Hy € R™*™ have full column rank, X = I
and Y = Hy. Then the TSGS biconjugation can be carried out and the resulting
H, -biconjugate pair (U, V) is such that Q = VDI_;T/; and R = D;ﬁH U defines a

1 41 1 1
QR-factorization of Hy.

Proof. The YTH,X = H{ H, is symmetric and positive definite. Hence U =

_ _ . _ -1/2 .
UH%HN V= HlUH%Hl. It is clear that @ = HlUHfl"HlDHlT/Hl is orthogonal, and @

and R = D;{; 1, Unr g, define the QR-factorization of Hy. m

For quadratic matrices this result appears in several forms (see, e.g. Stewart [25],
Abaffy-Spedicato [3] and Section 5 of this paper).

Proposition 36 (/6/, Thm. 3.7) Let Hy € R™*™ have the singular value decomposi-
tion Hy =YX XT, where YTY =1 = XTX and ¥ € R"™*" is nonsingular. For these
X andY the TSGS biconjugation algorithm produces the Hy-biconjugate pair (X,Y).

Proof. By definition Y7 H; X = ¥ is strongly nonsingular. So the biconjugation
can be carried out. Also by definition U = XU;%HIX =XandV = YL;ZHIX =Y.
|

This result is a special case of Proposition 12.

Proposition 37 ([6], Thm. 3.8) Let the nonzero singular values of Hy be ordered
such that w1 > we > ... > w, > 0. If in the rank reducing process wiy1 = ||Hk+1||27
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then the corresponding Tjy1and yiy+1 vectors may be chosen to be the corresponding
singular vectors of Hy, and the largest singular value of Hyy1 is the (k 4 1)th largest
singular value of Hy.

The result is a special case of Proposition 6 with the choice F = X and G = £ X7
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