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Abstract. We introduce the notions of purely Baer and purely Rickart modules. We provide
several characterizations and investigate properties of each of these concepts. We provide new
characterizations of several well-known classes of rings in terms of purely Baer and purely Rick-
art modules. It is shown that R is a von Neumann regular ring iff every right R-module is purely
Baer (purely Rickart). Also, we prove R is left semihereditary iff every (finitely generated) free
right R-module is purely Baer. Examples illustrating the results are presented.
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1. INTRODUCTION

The notions of Rickart and Baer rings have their roots in functional analysis, with
close links to C �-algebras and von Neumann algebras. Kaplansky introduced Baer
rings to abstract various properties of AW �-algebras and von Neumann algebras and
complete �-regular rings in [11]. Motivated by Kaplansky’s work on Baer rings, the
notion of Rickart rings appeared in Maeda [15] and was further studied by Hattori
[9] and other authors. A ring R is called Baer (resp. right Rickart (or p.p.)) if the
right annihilator of any nonempty subset (resp. any single element) of R is generated
by an idempotent, as a right ideal of R. It is well known that Baer rings and Rickart
rings play an important role in providing a rich supply of idempotents and hence in
the structure theory for rings.

Recently, the notions of Baer and Rickart rings and their generalizations were
extended and studied in a general module-theoretic setting [1, 13, 14, 16–18].

A module is called extending if every its submodule is essential in a direct sum-
mand. In [6], the notion of extending generalized to purely extending by replacing
“direct summand” with “pure submodule”. In [4], basic characterizations of purely
extending modules are given.

Motivated by the notions of Baer and purely extending modules, we introduce the
notion of purely Baer modules. In Section 3, we investigate purely Baer modules and
give some results related to them. It is shown that a direct summand of a purely Baer
module is purely Baer. Our focus, in this section, is on the question: When are (free)
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right R-modules over a ring R purely Baer? We obtain characterizations of well-
known classes of rings, in terms of free purely Baer modules over them. We show
that the class of rings for which every (resp. free) module is purely Baer, is precisely
that of (resp. left semihereditary) von Neumann regular rings. As an application of
this, we prove that a commutative domain R is Prüfer if and only if every free R-
module is purely Baer. Some characterizations of right purely Baer rings are given.
It is known that the definition of Baer rings is left-right symmetric. However we show
that the definition of purely Baer rings is asymmetric.

In Section 4, the notion of purely Rickart modules is introduced. A characteriza-
tion of von Neumann regular rings in terms of purely Rickart modules is given. It is
shown that every free rightR-module is purely Rickart if and only if every right ideal
of R is flat. We provide some characterizations of right purely Rickart rings. Also
we show that the definition of purely Rickart rings is left-right symmetric, however
the definition of Rickart rings is asymmetric.

2. PRELIMINARIES

Throughout this paper, R is an associative ring with identity and all modules are
unitary. By MR (resp. RM ), we denote a right (resp. left) R-module and S D
End.MR/ denotes the endomorphism ring of MR. M I (resp. M .I /) stands for the
direct product (resp. direct sum) of copies ofM indexed by a set I . LetM be a right
R-module, I a subset of R and X a subset of End.MR/. We write rM .X/D fm 2
M W xmD 0 for all x 2Xg and rR.I / (resp: lR.I /) = the right (resp. left) annihilator
I in R. Let M be a module over a ring R. For submodules N and K of M , N �K
denotes N is a submodule of K. I what follows, by �˚, �ess and E.M/ we denote,
respectively, a module direct summand, an essential submodule and the injective hull
of M . For a ring R, Matn.R/ denotes the ring of n�n matrices over R.

In the following, we recall some known notions and facts needed in the sequel.

Definition 1. (1) A (short) exact sequence � W 0!K!
'

N !M ! 0 of rightR-
modules is said to be pure (exact) if �˝R T is an exact sequence (of abelian groups)
for any left R -module T . In this case, we say that '.K/ is a pure submodule of N
(see [12] and [19]). It is clear that every direct summand is a pure submodule.

(2) A module M over a ring R will be called finitely presented if there exists an
exact sequence 0!K! F !M ! 0 of R-modules, where F is free and both F
and K are finitely generated (see [12] and [19]).

(3) A right module M over a ring R is called divisible provided Mx DM for all
regular elements x 2R (see [8]).

(4) A right R- module M is called pure injective, if M is injective with respect
to every pure exact sequence of right R-modules. A ring R is called right pure
semisimple if every right R-module is pure injective (see [22]).
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(5) A module MR is called FP-injective (or absolutely pure) if, for any finitely
generated submodule K of a free right R-module F , every homomorphism K!M

extends to a map F !M (see [22]).
(6) A module MR is called regular, provided that each of its submodule is pure

(see [5]).
(7) A rightR-moduleM is said to be Baer (resp. Rickart), if for any left ideal I of

End.M/ (resp. � 2 End.M/), rM .I / (resp. rM .�/) is a direct summand of M (see
[17], [18], [13] and [14]).

(8) A moduleM is called purely extending if every submodule ofM is essential in
a pure submodule of M . Equivalently, every closed submodule is a pure submodule
(see [4]).

(9) A module is called torsionless if it can be embedded in a direct product of
copies of the base ring (see [12]).

We refer to [12] and [22] for the undefined notions in this article.

Proposition 1 ( [12, Corollary 4.86]). Let � W 0!K! F !M ! 0 be an exact
sequence of R-modules with F flat. Then M is flat if and only if � is pure.

Proposition 2 ( [21, Lemma 2.2]). Let R be a ring and 0!K!P !M ! 0 an
exact sequence of right R-modules with P projective. Then the following statements
are equivalent:

(1) M is flat;
(2) Given any x 2K, there exists a homomorphism g WP !K such that g.x/D x;
(3) Given any x1; :::;xn in K, there exists a homomorphism g W P ! K such that

g.xi /D xi for i D 1;2; :::;n.

Proposition 3 ( [2, Theorem 4.1] ). For any ring R, the following statements are
equivalent:

(1) R is left semi-hereditary;
(2) Every right ideal of R is flat, and the direct product of an arbitrary family of

copies of R is flat as a right R-module;
(2) Every torsion-less right R-module is flat.

3. PURELY BAER MODULES

In this section, we investigate connections between purely Baer modules and vari-
ous existing concepts and obtain some of their useful properties. Examples of purely
Baer modules include semisimple modules, regular modules, Baer modules, nonsin-
gular purely extending modules and modules over von Neumann regular rings.

Definition 2. Let M be a right R-module and S D EndR.M/. Then M is called
a purely Baer module, if rM .I / is a pure submodule of M for each left ideal I of S .

A ring R is called (resp. left) right purely Baer, if (resp. lR.I /) rR.I / is a pure
(resp. left) right ideal of R for each (resp. right) left ideal I of R.
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First, we characterize right purely Baer rings in terms of cyclic torsionless mod-
ules.

Theorem 1. Let R be a ring. Then R is right purely Baer if and only if every
cyclic torsionless right R-module is flat.

Proof. It is known that a cyclic right R-module R=I is torsionless if and only if
I D rR.X/ for some subset X of R. Assume that R is right purely Baer. Let M
be a cyclic torsionless right R-module. As M Š R=I for some right ideal I of R,
I D rR.X/ for some X �R. Since R is right purely Baer, I D rR.J / is pure in RR,
where J is a left ideal generated by X . Thus R=I is flat by Proposition 1 and so M
is flat.

Conversely, assume that every cyclic torsionless right R-module is flat. Let I be
a left ideal of R. Then R=rR.I / is torsionless and so is flat. Hence rR.I / is pure by
Proposition 1. Thus R is right purely Baer. �

In the following, it is shown that direct summands of a purely Baer module are
purely Baer.

Proposition 4. Let M be a purely Baer module with S D End.M/. Then every
direct summand of M is purely Baer.

Proof. Let M be a purely Baer module and N �˚M say M D N ˚K for some
K �M . Let J be a left ideal of S 0 D End.N /. Set I D f ˚ 0jK W  2 J g. Then
rM .SI / is a pure submodule of M , because M is purely Baer. As K � rM .SI /,
rM .SI /D rM .SI /\N ˚K. An inspection shows that rM .SI /\N D rN .J /. Since
rN .J / �˚ rM .SI /, rN .J / is pure in rM .SI /. Therefore by transitivity of the pure
submodules property, rN .J / is pure in M . Hence rN .J / is pure in N . Therefore N
is purely Baer. �

In the following, it is shown that the notions of purely Baer modules and Baer
modules coincide for finitely generated flat modules over a right noetherian ring and
torsion free injective modules over a semiprime right Goldie ring.

Theorem 2. (1) Let R be a right noetherian ring and M a finitely generated flat
right R-module. Then M is purely Baer if and only if it is Baer.

(2) LetM be a torsion free injective rightR-module over a semiprime right Goldie
ring R. Then M is purely Baer if and only if it is Baer.

(3) Let R be a right pure semisimple ring. Then a right R-module M is purely
Baer if and only if M is Baer.

Proof. (1) Let M be a purely Baer module and I a left ideal of S D End.MR/.
Then rM .I / is pure in M . Hence by Proposition 1, M=rM .I / is flat. As M=rM .I /
is finitely generated and R is right noetherian, M=rM .I / is finitely presented by
[12, Theorem 4.29]. Hence M=rM .I / is projective by [12, Theorem 4.30]. This
implies that rM .I /�˚M . Hence M is a Baer module. The converse is clear.
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(2) Let M be a purely Baer module and I a left ideal of S D End.MR/. Then
rM .I / is pure in M . Hence by [22, 34.8], for each regular element x 2R,

rM .I /x D rM .I /\Mx D rM .I /\M D rM .I /;

because M is divisible. Hence rM .I / is divisible. Therefore [7, Theorem 7.11]
implies that rM .I / is injective. Hence rM .I /�˚M . So M is Baer. The converse is
clear.

(3) If R is right pure semisimple, then every pure exact sequence splits. Hence M
is purely Baer if and only if it is Baer. �

Theorem 3. Let M be a nonsingular right R-module. If M is purely extending,
then M is a purely Baer module.

Proof. Let M be a purely extending module and I a left ideal of EndR.M/. Then
rM .I /�ess T for some pure submodule T ofM . Let t 2 T . Then J D fr 2R W t r 2
rM .I /g is an essential right ideal of RR. Thus tJ � rM .I / and so for each f 2 I ,
f .tJ / D f .t/J D 0. As M is nonsingular, f .t/ D 0 for each f 2 I . Therefore
rM .I /D T is a pure submodule ofM and it implies thatM is a purely Baer module.

�

The next example shows that the converse of Theorem 3 is not true.

Example 1. [4] Let

RD

0@F 0 F

0 F F

0 0 F

1A ;
the F -subalgebra of the ring of 3�3matrices over a field F . This ring is left and right
artinian hereditary (so it is left and right semihereditary). Hence R is left and right
nonsingular. Hence by Theorem 5, R is right purely Baer. We show R is not purely
extending. Let I be a closed right ideal of R. Then I is finitely generated (because
R is noetherian) and so R=I is finitely presented. If I is pure, then R=I is flat by
Proposition 1. AsR=I is finitely presented,R=I is projective by [12, Theorem 4.30].
Hence I �˚ RR. This implies that if RR is purely extending, then RR is extending.
However R is not right extending (see [4] and [3, Example 5.5 ]).

Next, we characterize the class of ringsR for which every right R-module is purely
Baer as precisely that of the von Neumann regular rings.

Theorem 4. The following are equivalent for a ring R.
(1) Every right R-module is purely Baer;
(2) Every purely extending right R-module is purely Baer;
(3) Every extending right R-module is purely Baer;
(4) Every injective right R-module is purely Baer;
(5) Every right R-module is FP-injective;
(6) R is von Neumann regular.
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Proof. .1/) .2/, .2/) .3/ and .3/) .4/ are clear.
.4/) .5/ LetM be an arbitrary rightR-module. Then by (4), E.M/˚E.E.M/=M/

is purely Baer. Let  W E.M/! E.E.M/=M/ be defined by  .x/D xCM for each
x 2 E.M/. We can extend  to an endomorphism  of E.M/˚E.E.M/=M/ and
Ker. / DM . Hence M is pure in E.M/˚E.E.M/=M/. This implies that M is
pure in E.M/. Hence M is FP-injective by [22, 35.8].
.5/) .6/ By [22, 37.6], R is a von Neumann regular ring.
.6/) .1/ By [20, Proposition 3.18], every rightR-module is flat. LetM be a right

R-module and I a left ideal of End.M/. By (6), M and M=rM .I / are flat modules.
This implies that rM .I / is pure in M by Proposition 1. �

The following examples exhibit purely Baer modules which are not Baer.

Example 2. Let

RD

�
˘1iD1Fi ˚1iD1Fi
˚1iD1Fi <˚1iD1Fi ;1 >

�
;

where Fi DF is a field for each i 2N and<˚1iD1Fi ;1 > is the F -algebra generated
by˚1iD1Fi and 1. Then R is a von Neumann regular ring. Hence by Theorem 4, RR
is a purely Baer module. However, it is not a Baer module by [13, Example 2.19].

Example 3. Let F be a field and V be an infinite dimensional vector space over F .
Set J D fx 2 EndF .V /j dimF .xV / <1g and R D F CJ . By [7, Example 6.19],
R is regular. Therefore M DR˚R=J is purely Baer by Theorem 4. However, M is
not Baer. If M is Baer, then M is Rickart and so J �˚ R by [13, Proposition 2.24],
a contradiction (because J D Soc.RR/ and J is essential in RR (see [7]).

Proposition 5. Let P be a finitely generated projective right R-module. Then P
is a purely Baer module if and only if S D End.P / is a right purely Baer ring.

Proof. Let P D x1RC :::C xnR (xi 2 P ) be a purely Baer projective module
and I be a left ideal of S . We show rS .I / is a pure right ideal of S . Let f 2
rS .I /. Then f .xi / 2 rP .I / for each 1 � i � n. As P is purely Baer, rP .I / is a
pure submodule. Hence P=rP .I / is flat by Proposition 1 and so by Proposition 2,
there exists a homomorphism  W P ! rP .I / such that  .f .xi //D f .xi / for each
1 � i � n. Hence  f D f . We can take  as an endomorphism of P . Since
 .P / � rP .I /,  2 rS .I /. Now let � W S ! rS .I / be defined by �.h/ D  h for
each h 2 S . Then �.f / D  f D f . Therefore by Proposition 2, S=rS .I / is a flat
right S -module. Hence by Proposition 1, rS .I / is a pure right ideal of S . Thus S is
right purely Baer.

Conversely, assume that P is a finitely generated projective right R-module and
S D End.PR/ a right purely Baer ring. We show P is purely Baer. Since P is fi-
nitely generated and projective, P �˚Rn for some positive integer n. As End.Rn/Š
Matn.R/, there existsE2DE 2Matn.R/ such thatP DERn. Hence S DEMatn.R/E.
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Let I be a left ideal of S and b D

0BBB@
b1
b2
:::

bn

1CCCA 2 rP .I /. Then an inspection shows that

B D

0BBB@
b1 b1 � � � b1
b2 b2 � � � b2
:::

:::
: : :

:::

bn bn � � � bn

1CCCA 2 rS .I /:

As b 2P ,EbD b. ThusEB DB . This implies thatB 2 S , becauseBhDEBh2
ERn for each h 2 Rn. Since rS .I / is a pure right ideal in S , S=rS .I / is a flat right
S -module by Proposition 1. Hence by Proposition 2, there exists a homomorphism
� W S ! rS .I / such that �.B/ D B . We can take � as a right endomorphism of
S . Hence �.B/ D �.1/B D B , where 1 is identity element of S and �.1/ 2 rS .I /.

Let �.1/DAD

0BBB@
a11 a12 � � � a1n
a21 a22 � � � a2n
:::

:::
: : :

:::

an1 an2 � � � ann

1CCCA. As AB DB ,
Pn
jD1aij bj D bi for each

1� i � n. HenceAbD b. AsA2 rS .I /, we can define ˇ WP ! rP .I / by f .p/DAp
for each p 2 P . Since A 2 rS .I /, Ap 2 rP .I / for each p 2 P . Also Ab D b implies
that ˇ.b/D Ab D b. Therefore by Proposition 2, P=rP .I / is a flat right R-module
and so by Proposition 1, rP .I / is pure in P . Hence P is purely Baer. �

Next, we characterize rings R for which every (finitely generated) free right R-
module is purely Baer. We show that these are precisely the left semihereditary rings.

Theorem 5. The following are equivalent for a ring R:
(1) Every free right R-module is purely Baer;
(2) Every projective right R-module is purely Baer;
(3) Every finitely generated free right R-module is purely Baer;
(4) Every finitely generated projective right R-module is purely Baer;
(5) Every finitely generated torsionless right R-module is flat;
(6) Every torsionless right R-module is flat;
(7) R is a left semihereditary ring.

Proof. .1/) .2/ and .3/) .4/ are clear from Proposition 4.
.2/) .3/ is clear.
.4/) .5/ Let M be a finitely generated torsionless right R-module. Hence M �

RI for some index set I . As M is finitely generated, there exists an epimorphism
 W F !M , where F is a finitely generated free rightR-module. By (4), F is purely
Baer. It can be shown that Ker. / D \i2IKer.�i /, where �i is the canonical
projection from RI onto its i th coordinates. We can take �i as an endomorphism
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of F . Hence Ker. / D rM .J /, where J is a left ideal of S D End.F / generated
by the set f�i gi2I . Since F is purely Baer, Ker. / is a pure submodule of F .
Therefore M Š F=Ker. / is flat by Proposition 1.
.5/) .6/ As every submodule of a torsionless rightR is torsionless, every finitely

generated submodule of a torsionless right R-module is flat. Hence every torsionless
right R-module is flat (it is known that, a module is flat provided that every of its
finitely generated submodule is flat).
.6/) .7/ is from Proposition 3.
.7/) .1/ Let F be a free right R-module and I a left ideal of S D End.F /. As

for each  2 S , F=Ker. / Š Im. /, F=Ker. / is a torsionless module. HenceQ
 2I F=Ker. / is torsionless, because direct product of torsionless modules is

torsionless. Let � W F=
T
 2I Ker. / !

Q
 2I F=Ker. / be defined by �.x CT

 2I Ker. / D .xCKer. // 2I for each x 2 F . It is clear that � is a mono-
morphism. Thus F=

T
 2I Ker. / is torsionless. Therefore by Proposition 3,

F=
T
 2I Ker. / is flat. Hence rF .I /D

T
 2I Ker. / is pure in F by Proposition

1. Thus F is a purely Baer module. �

Corollary 1. The following are equivalent for a ring R.
(1) R is left semihereditary;
(2) For each n > 1, Matn.R/ is a right purely Baer ring.

Proof. By Theorem 5, R is left semihereditary if and only if Rn is purely Baer
rightR-module if and only if Matn.R/ is right purely Baer for each n, by Proposition
5. �

Remark 1. By Theorem 5, every finitely generated free right R-module is purely
Baer if and only if every free right R-module is purely Baer. But it is not true for
the class of Baer modules. Let R be a commutative Prüfer domain which is not a
Dedekind domain (hereditary). Then every finitely generated free right R-module is
Baer by [18, Theorem 3.9]. However there is a free right R-module that is not Baer,
by [18, Theorem 3.3].

The following example gives an example of a module M such that every submod-
ule of M is purely Baer.

Example 4. Let

RD

�
Z Q
0 Q

�
:

By [12, Example 2.33],R is right hereditary and left semihereditary. LetM D .eR/n,
where e is an arbitrary idempotent of R and n 2N. Since R is right noetherian and
right hereditary, every submodule of M is finitely generated and projective. There-
fore by Theorem 5, every submodule of M is purely Baer. Also, for each submodule
N of M , End.N / is a right purely Baer ring, by Proposition 5.
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The next example shows that the definition of purely Baer rings is not left-right
symmetric. As we know, the definition of Baer rings is left-right symmetric.

Example 5. Let

T D

�
S=I S=I

0 S

�
;

where S is a von Neumann ring and I a right ideal of S which is not a direct sum-
mand of SS . Then by [12, Example 2.34], T is left semihereditary but not right
semihereditary. By Corollary 1, there exists positive integer n such that Matn.T / is
a right purely Baer ring which is not left purely Baer ring.

As a consequence of Theorem 5, we provide a characterization of Prüfer domains
in terms of the purely Baer property for (finitely generated) free (projective) modules.

Theorem 6. For any commutative domain R, the following are equivalent:
(1) Every free R-module is purely extending;
(2) Every free R-module is purely Baer;
(3) Every finitely generated free R-module is purely Baer;
(4) R is a Prüfer domain.

Proof. .1/) .2/ Since R is nonsingular, every free R-module is nonsingular.
Therefore every free R-module is purely Baer by Theorem 3.
.2/) .3/ is clear.
.3/) .4/ It is known that a commutative domain is semihereditary if and only if

it is a Prüfer domain by [12, Theorem 4.69]. Hence the result is clear by Theorem 5.
.4/) .1/ [4, Proposition 2.1] �

4. PURELY RICKART MODULES

Motivated by the definitions of Rickart modules, we introduce the notions of
purely Rickart modules and relatively purely Rickart modules and collect some basic
properties of these classes of modules. Examples of purely Rickart modules include
semisimple modules, Rickart modules, purely Baer modules and modules over regu-
lar rings. We begin with the key definition of this section.

Definition 3. Let M be a right R-module and S D End.MR/. Then M is called
a purely Rickart module, if rM . / D Ker. / is a pure submodule of M for each
 2 S .

A ring R is called (resp. left) right purely Rickart, if (resp. lR.a/) rR.a/ is a pure
(resp. left) right ideal of R for each a 2R.

It is known that the definition of Rickart rings is asymmetric. However the fol-
lowing shows that the definition of purely Rickart rings is symmetric. Also purely
Rickart rings are known as P.F rings [10].
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Theorem 7. The following are equivalent for a ring R:
(1) R is right purely Rickart;
(2) Every principle right ideal of R is flat;
(3) Every principle left ideal of R is flat;
(4) R is left purely Rickart.

Proof. .1/, .2/ and .3/) .4/ Let a 2 R. Then (resp. Ra) aR is flat as a (resp.
left) right R-module if and only if (resp. lR.a/) rR.a/ is a pure (resp. left) right ideal
of R by Proposition 1.
.2/, .3/ By [10]. �

One can easily show that under the following conditions, the notions of Rickart
module and purely Rickart module coincide, as in the proof of Theorem 2.

Proposition 6. (1) Let R be a right noetherian ring and M a finitely generated
flat right R-module. Then M is purely Rickart if and only if it is Rickart.

(2) LetM be a torsion free injective rightR-module over a semiprime right Goldie
ring R. Then M is purely Rickart if and only if it is Rickart.

(3) Let R be a right pure semisimple ring and M a right R-module. Then M is
purely Rickart if and only if it is Rickart.

Definition 4. A module M is called N -purely Rickart, if Ker.�/ is a pure sub-
module of M for every homomorphism � WM !N .

In view of the above definition, a right R-module M is purely Rickart if and only
if M is M -purely Rickart.

The following propositions are useful to prove our main theorems.

Proposition 7. (1) Let M and N be right R-modules. Then M is any N -purely
Rickart if and only if for any direct summand K �˚M and any submodule L � N ,
K is L-purely Rickart.

(2) The following are equivalent for a right R-module M :
(i) M is purely Rickart;
(ii) For any submoduleN �M and any direct summandK �˚M ,K isN -purely

Rickart;
(iii) For any K;N �˚M , and � 2 HomR.M;N /, Ker.�jK/ is pure in K.
(3) Every direct summand of a purely Rickart module is a purely Rickart module.

Proof. (1) Suppose thatM is any N -purely Rickart. LetK D eM for some idem-
potent element e of End.MR/ and � W K ! L be a homomorphism. Then �e is
a homomorphism from M to N . Hence Ker.�e/ is pure in M . As Ker.�e/ D
Ker.�/˚ .1� e/M , Ker.�/ is pure in Ker.�e/. This implies that Ker.�/ is pure
in M and so is in N . Thus K is L-purely Rickart. The converse is clear.

(2) and (3) are clear from (1). �
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We now characterize the von Neumann regular rings in terms of purely Rickart
modules.

Theorem 8. The following are equivalent for a ring R:
(1) Every right R-module is purely Baer;
(2) Every right R-module is purely Rickart;
(3) Every pure injective right R-module is injective;
(4) R is von Neumann regular.

Proof. .1/) .2/ is clear.
.2/) .3/ LetM be a pure injective rightR-module. By (2),E.M/˚E.E.M/=M/

is purely Rickart. It implies that E.M/ is E.E.M/=M/-purely Rickart by Proposi-
tion 7. Therefore Ker.�/DM is pure in E.M/, where � W E.M/! E.E.M/=M/

is natural homomorphism. Since M is pure injective, the pure exact sequence 0!
M !E.M/!E.M/=M ! 0 splits. Hence M �˚ E.M/. Thus M is injective.
.3/) .4/ By [22, 37.6]
.4/) .1/ By Theorem 4. �

It is clear that every Rickart module is purely Rickart. The following examples
exhibit purely Rickart modules which are not Rickart.

Example 6. Let R D
Q1
iD1Fi , where Fi D F is a field for each i 2 N and

I D ˚1iD1Fi . Then by Theorem 8, M D R˚R=I is a purely Rickart right R-
module, which is not a Rickart module (if M is a Rickart module then I �˚ R by
[13, Proposition 2.24] which is a contradiction).

Example 7. Let S D
Q1
iD1Z2. Consider

RD f.an/
1
nD1 2 S j an is eventually constantg;

a subring of S . Then R is a von Neumann regular ring. Hence by Theorem 8,
R˚E.R/ is a purely Rickart module which is not a Rickart module by [14, Example
2.18].

In the next theorem, we characterize the rings R for which every free R-module is
purely Rickart.

Theorem 9. The following are equivalent for a ring R:
(1) Every free right R-module is purely Rickart;
(2) Every projective right R-module is purely Rickart;
(3) Every finitely generated free right R-module is purely Rickart;
(4) Every finitely generated projective right R-module is purely Rickart;
(5) For each n > 1, Matn.R/ is a right purely Rickart ring;
(6) Every right ideal of R is flat;
(7) Every submodule of a flat right R-module is flat.
Since condition (6) is left-right symmetric, the left-handed versions of (1), (2), (3),

(4), (5) and (7) also hold.
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Proof. .1/) .2/ and .3/) .4/ are clear by Proposition 7.
.2/) .3/ is clear.
.5/) .6/ Assume that Matn.R/ is a right purely Rickart ring for any n > 1.

Let I D a1RC :::CanR be a finitely generated right ideal of R and A 2Matn.R/
with first row .a1;a2; :::;an/, and zero elsewhere. Then rMatn.R/.Matn.R/A/ is a
pure right ideal of Matn.R/. Hence AMatn.R/ is a flat right Matn.R/-module by
Proposition 1. Since R and Matn.R/ are Morita equivalent and flatness is preserved
across Morita equivalences, .AMatn.R//R Š InR implies that I is a flat right R-
module. Hence every finitely generated right ideal of R is flat. So every right ideal
of R is flat.
.6/) .5/ Let A 2Matn.R/. As Matn.R/ is a flat right R-module, AMatn.R/ is

a flat right R-module. Hence AMatn.R/ is a flat right Matn.R/-module by a similar
argument as in above. Hence Matn.R/ is right purely Rickart by Theorem 7.
.4/) .6/ Let I be a finitely generated right ideal of R. Then I is homomorphic

image of a finitely generated free right R-module F . Hence there exists an epi-
morphism ' W F ! I . We can take ' as an endomorphism F . Hence rF .'/ is a pure
submodule of F . Thus by Proposition 1, F=rF .'/ Š I is a flat R-module. Hence
every finitely generated right ideal of R is flat. So every right ideal of R is flat.
.6/) .7/ By [12, Lemma 4.66], every submodule of a flat right R-module is flat.
.7/) .1/ Let F be a free right R-module and  2 End.F /. Then M=Ker. /Š

Im. /� F implies thatM=Ker. / is flat by (7). Hence Ker. / is a pure submodule
of F . Hence F is a purely Rickart module. �

Remark 2. By Theorem 9, every finitely generated free right R-module is purely
Rickart if and only if every free right R-module is purely Rickart. However, the
similar result for the class of Rickart modules does not hold true. Let R be right
semihereditary ring which is not hereditary. Then by [14, Theorem 3.6], every finitely
generated free rightR-module is Rickart. However there is a free rightR-module that
is not Rickart, by [14, Theorem 3.5].

The next example shows that the class of purely Rickart modules properly contains
the class of purely Baer modules.

Example 8. Let

RD

�
S S=I

0 S=I

�
;

where S is a von Neumann ring and I a right ideal of S which is not a direct sum-
mand of SS . Then by [12, Example 2.34], R is right semihereditary but not left
semihereditary. Since R is right semihereditary, every right ideal of R is flat. Hence
by Theorem 9, every free right R-module is purely Rickart. As R is not left semi-
hereditary, there is a free right R-module which is not purely Baer by Theorem 5.
Hence there exists a free R-module F which is purely Rickart but not purely Baer.
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The following example proves the existence of a module M such that M n is a
purely Rickart (purely Baer) module, but M nC1 is not purely Rickart (purely Baer).
The following example is due to Jøndrup (see [10], [14, Example 3.15] and [18,
Example 3.17]).

Example 9. Let n be any natural number, K be any commutative field, and let R
be theK-algebra on the 2.nC1/ generatorsXi ;Yi (i D 1; :::;nC1) with the defining
relation

nC1X
iD1

XiYi D 0:

AsRn is a Baer module by [18, Example 3.17],Rn is purely Rickart (purely Baer).
But RnC1 is not purely Rickart (purely Baer). Otherwise, if RnC1 is purely Rickart
(purely Baer), then one can show that every .nC1/ generated ideal of R is flat, as in
the proof of Theorem 9 ((4)) (6)). However, it is proved that there exists an .nC1/
generated ideal which is not flat (see [10]). HenceRnC1 is not purely Rickart (purely
Baer).
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