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Abstract. In this paper, we study the r-Jacobi-Stirling numbers of the second kind introduced
by Gelineau in his Phd thesis. We give, upon using combinatorial and analytic arguments, the
ordinary generating function of these numbers, two recurrence relations, their exact expressions
and the log-concavity.

2010 Mathematics Subject Classification: 11B75; 03E05

Keywords: the r-Jacobi-Stirling of the second kind, generating function, recurrence relations,
log-concavity

1. INTRODUCTION

Let @ and B be real numbers such that « > —1 and 8 > —1. The n-th Jacobi

polynomial Pn(a”g ) (x) is defined as the unique polynomial solution with degree n
satisfies the following Jacobi ordinary differential equation of second order:

(1-x?))y" () +(B-a—(@+B+2)x)y (x)+n(n+a+B+1)y(x)=0
(1.1)

with initial conditions

n

We introduce Jacobi differential operator /(o gy [y](x) to be

(—Wat1,p41) ()Y (X))
W(q,p) (X)

la,p) [¥](x) = , Wiapy () = (1—x)* (1 +x)f. (1.3)

Then, the polynomial solution y = P,fa’ﬂ ) (x) of (1.1) satisfies

lapVIx)=nn+a+B+1)y(x). (1.4)
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For the n-th composite powers of the Jacobi operator /(4 gy given inductively by
l(n o [v] = l(.p) ( (@ ﬂ) [y]) Everitt et al. [2, Thm. 4.2] proved that

p 1) = Z( DTS 1k B) (wiask,pn ()7 >(x>) ,

(1.5)
where the coefficients JS (n,k;o, B) are the Jacobi-Stirling numbers of the second
kind. The same authors proved in [2, Eq. 4.4] that the Jacobi-Stirling number
JS (n,k;a, B) has the following exact expression

1)k (@+p+2j+D(j(j+a+p+1)"
JS (n.k:a,p) = k'Z( J(])

p) (x)

’

(@+B+k+j+Di
(1.6)
where (x), :=x(x—1)--(x—n+1)ifn > 1 and (x), := 1.
We remark that the last expression of JS (n,k;, ) depends only on o + B, so if
wesetz:=a+pB+1and JS (n,k;a,B) := JS (n,k;z), the identity given in (1.6)
becomes

ISk = S e ()2 GGy 21 7
(n.k;z) JX;( 1) ()(z+k+1)+1(](1+2)) z> (1.7)

Using different methods, Everitt et al. [2, Thm. 4.1] and Gelineau et al. [4, Sec. 4.2]
showed that

=Y TS (ki) (X (1.8)
k=0
k—1
where (X ) , := ]_[ (X —i(i+z)ifk>1and (X),:=1

i=0
The equation (1.8) shows the the Jacobi-Stirling numbers satisfy the following recur-
rence relation:

JS§(0,0;z) =1,
JS (n,0;z) =JS(0,k;2) =0 ifn,k > 1,
JS(n,k;2)=JSm—-1,k—1;2)+k(k+2)JS(n—1,k;z) ifn,k>1.

To give a combinatorial interpretation of the Jacobi-Stirling number J.S (n,k;2y — 1),

let [4+n] be the set {+1,42,...,£n} and we will use definition of the Jacobi-Stirling
set partition [1, Def. 4.1] given as follows.

Definition 1. For all positive integers n, k, y, a Jacobi-Stirling set partition of
[£n] into y zero blocks Ay,..., A, and k nonzero blocks Bj,..., By is an ordinary
set partition of [£n] into k + y blocks for which the following conditions hold:
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(1) The blocks Ajq,..., Ay, called the zero blocks, are distinguishable, but the
blocks By, ..., B are indistinguishable.
(2) The zero blocks may be empty, but all other blocks are nonempty.

@) Vieln]=1{1,2,....n}, {—i.i} & 'E/JlAj,
j=
(4) Yj €[k], Vi €[n], we have {—i,i} C B; <& i = minB;.

Andrews et al. showed that the Jacobi-Stirling number JS (n,k;2y —1) is the
number of Jacobi-Stirling set partitions of [£n] into y zero blocks and k nonzero
blocks [, Thm. 4.1].

In his Phd Thesis, Gelineau [3, Sec. 1.4] has introduced the r-Jacobi-Stirling numbers
of the second kind J Sy (n,k;z), n > r > 0, as follows.

Definition 2. The r-Jacobi-Stirling number JS; (n,k;2y —1) is the number of
Jacobi-Stirling set partitions of [+n] into y zero blocks and k nonzero blocks such
thatminB; = j for j =1,...,r.

The author gives some interesting properties of these numbers. In this paper, we
study the r-Jacobi-Stirling numbers of the second kind by giving, with combinatorial
and analytic proofs, their ordinary generating function, two recurrence relations, their
exact expressions and the log-concavity.

2. MAIN RESULTS
To start, we give in the following theorem the ordinary generating function.

Theorem 1. For all positive integers n, k, the r-Jacobi-Stirling number
J S, (n,k;z) has ordinary generating function to be

k -1

dISsn+k ki)t =[[[a-iG+2)0

n>0 i=r

Proof. Let y be a positive integer and z = 2y — 1. According to Definition 2, let
mj; =minBj, j =1,... k be fixed and ordering the minimal elements of the nonzero
blocks to get my < my < --- <my. We have my = 1,...,m, =r and m; > j for
J =r+1,... k. Forinstance, let the sets Ay,..., 4, be empty and B; = {mj}, j=
1,...,k. Hence, we count the number of ways to construct such blocks A1,..., 4,
and By,..., B by insertion the elements of the set [£n]—{+my,...,Ltm;}. Since
the elements of the set [n] — {m1,...,my} are the integer elements of the set
Jmy,mpsq[U---U]mg,n + 1], we can proceed the proof by insertion the integer ele-
ments (and their opposites) of each interval.

Indeed, let j € {r,....k} and s € ]mj,mj+1 [ with convention myg 1 =n+ 1.
Case 1: If —s € .L)le,- and s € Llj B;, there are y ways to insert —s in the zero

1=

1=
blocks and since the blocks B;t1,..., B, when they exist, have minimal elements
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>mj41>s>m; > j,itfollows that s can be inserted only in the blocks By,..., B;.
So, we count in this case yj possibilities.

y k
Case2: Ifs € .UlA,- and —s € 'UlBi’ by symmetry, there are yj ways.
1= 1=

k
Case 3: If &5 € U B;, since —s and s can be inserted only in the blocks By,..., B;

i=1
and can’t be inserted in the same block, there are j (j — 1) ways.
So, there are 2yj + j (j —1) = j (j +z) ways to insert +s and since the inter-
val ]m j.m j+1[ contains n; := mj;4+1 —m; — 1 integer elements, then the number
of ways to insert the elements (and their opposites) of the interval ]m‘,-,m j+1[ is

(j (j +2))™ . It follows that the number to insert the elements (and their oppos-
k

ites) of the set |m, ,m,41[U---U]mg,mp4q[ is 1_[ (j (j +2))™ . So, the number
j=r

JS; (n,k;z) must be equal to

k k
> [ToG+av = > J]UG+™

r=mr<"'<mk<n+1=mk+l j:r nr++nk=n_k j:r
which gives the desired result. 0

Proposition 1. For all positive integers n, k, r, the r-Jacobi-Stirling numbers
JS;y (n,k;z) satisfy

JS, (nk;z)=JSr—1(n,k;2)—(r—=1)(r=14+2)JS,—1(n—1,k;2).

Proof. The number of the set partitions of [£#] into y zero blocks and k nonzero
blocks such that minB; = j for j = 1,...,r —1 but minB, # r is
JSr—1(n,k2y—1)—JS, (n,k;2y —1).

This number is exactly (r — 1) (r —2+2y) JS,—1 (n — 1,k;2y — 1) since the number
of set partitions of the set [n] —{Z£r} is exactly the number of the set partitions of
the set [ (n — 1)] and the elements 4r can be inserted only in the zero blocks or in
BiU...UB;_1in (r —1)(r —2+42y) ways, i.e.:

Case 1: If r is in one of the zero blocks (there are y ways to insert it), then the ele-
ment —r can be inserted in the nonzero blocks in r — 1 ways, i.e. —r can’t be inserted
in the blocks By, ..., By since these blocks have minimal elements > r 4 1. So this
case gives y (r — 1) possibilities.

Case 2: By symmetry, if —r is in one of the zero blocks, we get y (r — 1) possibilit-
ies.

Case 3: If —r and r are both in the nonzero blocks, we get (r — 1) (r —2) possibilities
since they can’t both be in the same block. So JS;—1(n,k;2y—1)
—JS, (n,k2y—D)=0—-D)(r—-242y)JS,—1(n—1,k;2y—1). U
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Proposition 2. For all non-negative integers n, k, r such that 0 <r <k <n and
r < n, the r-Jacobi-Stirling numbers J S, (n,k;z) satisfy

JS, (nk;2)=JS,(n—1Lk—1L;2)+kk+2)JSr(n—1,k;2).

Proof. The number of the set partitions of [+n] into y zero blocks and k nonzero
blocks such that min B; = j for j =1,...,ris JS; (n,k;2y —1). This number can
be obtained in another manner by considering » as a minimal element or not of a
nonzero block. Indeed, if n is a minimal of such nonzero block, then this block con-
tains only the two elements £, in this case we have JS; (n — 1,k —1;2y — 1) ways,
otherwise, [4 (n —1)] can be partitioned in k + y blocks in JS, (n—1,k;2y —1)
ways, and, similar to the above proofs, £n can be inserted in the k 4+ y blocks in
k(k+2y—1) ways. So JS,(n,k;z) = JS,(n—1,k—1;2) + k(k+2)
JSy (n,k—1;z), where z =2y — 1. O

Theorem 2. For non-negative integers n, k, r, the r-Jacobi-Stirling numbers have
the following expression:

1 ki
N = — —1 J
JS,(n+rk+r;z) I E (=1 ; G+hk+2r 1200

k (k)(2j+2r+z)((j+r)(j+r+z))”
1

In particular, forr =0orr =1, we get

k " .
JS (n.k:z) = %Z(—l)k_’ (.)(ZJ—H(J' (j+2)".
s

J) U +k+2)k
Proof. From Theorem 1, there exist numbers A, ..., A such that
) k g A
’gmr (n+k.kiz)t" = i]:[a—z (i+2)1) =§m

One can verify that we have

A= ! _ GG+
J A - = p
[1 (1_11'8':?)) [T G-DG+i+2)
i=ri#] i=ri#j

which can be simplified as

—)* (k- 2j
y =2 ( r) ST GG+

k=) \j—r) (G Hhk+D)i_ri
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In other words, we have

k
ZJSr(n—i-k,k;z)t” Z— Z Z(J (j+2)" "
n>0 I_J(J"'_Z)t n>0
which shows with the expressions of A, ..., A that

k
JSr(n ki)=Y 2 (G G+
j=r

yei (K7 2j+z . n—r
)'Z(_ ]( )(]+k+z)k L U

and this completes the proof. 0

Remark 1. We have JS, (n+r,n+r;z) = 1 which gives with Theorem 2 the
following identity

Z( D ’( )(J e UACCIUATEE

Corollary 1. For non-negative integers n, k, r, the r-Jacobi-Stirling numbers can
be expressed in terms of the Jacobi-Stirling numbers as follows:

n—k

ISy (n+rk+rz)= Z(':) (r(r+2))' IS (n—i k;z+2r).

i=0
Proof. From Theorem 2 we may state:

JS,(n—i—r k+r;z)

k,Z( k’() T (Gt

(J +2r+k+2)gy4q

Jj=0
L& (K DR @ +2r+ (), L ,-
:—Z( ) GA2r+k+ e ;(i)(] (J+z+2r)"7 (r(r+2))

k k—i .
i K\(=D"/@j+2r+z) . . n—i
)(r(r+z)) Z(}.) Garthio, JU+et2)

(n

i

i=0 j=0

=ZE=O(I:) (r(r+2) JS(n—ikiz+2r).



THE R-JACOBI-STIRLING NUMBERS 953

Remark 2. Forr =1 and z = —1 in Corollary 1 we obtain the following identity
JS(n+1,k+1;-1)=JS (n,k;1).

Corollary 2. For non-negative integers n, r, the r-Jacobi-Stirling numbers satisfy

n
X+rr+2)"' = ZJSr(”+r»k+r;Z)(X)ksz+2"
k=0

Proof. From the first identity of Corollary 1 and identity (1.8) we obtain

n
Z]Sr (n+r.k+r:2)(X)k z4or
k=0
n

ZO (Z (’:) (r(r+2)) JS(n—i.k:z +2r)) Fezrar

k=0 \i=0

_ ;(’:) (r(r +2)) (ZJS (n—ik;z+2r) (X)k’“z,)

k=0

= ;(’:) (r(r+2) X"
=X+r(r+2)".
O

Remark 3. 1) Since the Jacobi-Stirling number JS (n,k;z) is a polynomial in z
of degree n — k whose leading coefficient is the Stirling number of the second kind
S(n,k), it follows from Corollary 2 that the r-Jacobi-Stirling number
JSy (n+r,k+r;z) is also a polynomial in z of degree n — k with leader coeffi-
cient the r-Stirling number of the second kind S, (n,k).

2) Corollary 2 can also be obtained by replacing x; with (i +r) (i +r 4+ z) and X with
X +r (r + z) in the Newton interpolation formula,

n k k ) k-1
X”=Z ij" 1_[ (xj —x1) H(X—xl-).
k=o\j=0 \i=0,+#) i=0

Theorem 3. For every positive integer n and every real number 7 > —1, the poly-
nomial

n
Py(xir)= Y IS, (n+rk+riz)x*
k=0
has only real simple non-positive zeros, and then, the r-Jacobi-Stirling numbers of
the second kind are strictly log-concave (thus unimodal).
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Proof. For r = 0 the theorem is Theorem 4 given in [6]. For r > 1, since the
coefficient of x” in P, (x)is JS, (n +r,n+r;z) =1, Py is a polynomial of degree
n.Forn =1, Py (x) = 1+ x has a real negative root. Assume P, (x) has only real
negative simple roots, n > 2. Then, from Proposition 2, we get

Pry1(x:r)
n+1
=Y IS (n+1+rk+riz)xk
k=0
n+1
= Z(JSr(n+r,k+r—l;z)—i-(k—i-r)(k-l—r+z)JSr(n+r,k+r;z))xk
k=0

n
=xP, (x;r)+x""D | x!7%D xr+zZJSr(n+r,k+r;z,)xk
k=0
=xP,(x;r)+x""D (xl_ZD (x" T2 P, (x:1))).

and by setting O, (x) = x” P, (x;r), the last identity becomes

Onr1(x) =x(0n(x)+ D (x' 2D (x*Q, (x)))). r=>1

By induction, the polynomial Q,, (x) satisfies all the assumptions of Lemma 2 given
in [6], so Qp+1 (x) has only real negative simple zeros and the root x = 0 with mul-
tiplicity r. This shows that P, 1 (x;r) has only real negative simple zeros. On using
Newton’s inequality [5, p. 52], it follows that the sequence (J S, (n +r,k+r;z),
0 <k < n) is strongly log-concave. O
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