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Abstract. In this study, we give some fixed point results for multivalued mappings using Pompeiu-
Hausdorff distance on complete metric space. For this, we consider the ˛-admissibility of mul-
tivalued mappings. Our results are real generalizations of Mizoguchi-Takahashi fixed point the-
orem. We also provide an example showing this fact. Finally, we obtain some ordered fixed point
results for multivalued mappings.
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1. INTRODUCTION AND PRELIMINARIES

Let .X;d/ be a metric space. Denote by P.X/; the family of all nonempty subsets
of X; CB.X/ the family of all nonempty, closed and bounded subsets of X and
K.X/ the family of all nonempty compact subsets of X . It is well known that H W
CB.X/�CB.X/! R defined by, for every A;B 2 CB.X/;

H.A;B/Dmax

(
sup
x2A

d.x;B/; sup
y2B

d.y;A/

)
is a metric on CB.X/, which is called the Pompeiu-Hausdorff metric induced by d ,
where d.x;B/ D inffd.x;y/ W y 2 Bg. We can find detailed information about the
Pompeiu-Hausdorff metric in [6,11]. An element x 2X is said to be a fixed point of
a multivalued mapping T W X ! P.X/ if x 2 T x: Let T W X ! CB.X/: Then, we
say that T is called multivalued contraction if there exists L 2 Œ0;1/ such that

H.T x;Ty/� Ld.x;y/

for all x;y 2 X (see [17]): In 1969, Nadler [17] proved that every multivalued con-
traction mappings on complete metric spaces has a fixed point.

Inspired by his result, various fixed point theorems concerning multivalued con-
tractions appeared in the last decades. Concerning these, the following theorem was
proved by Mizoguchi and Takahashi [15] that is, in fact, a partial answer to a question
proposed by Reich [22]:
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Theorem 1 ([15]). Let .X;d/ be a complete metric space and T WX! CB.X/ is
a mapping such that

H.T x;Ty/� k.d.x;y//d.x;y/;

for all x;y 2X , x ¤ y; where a function k W .0;1/! Œ0;1/ satisfies

limsup
t!sC

k.t/ < 1 for all s � 0:

Then T has a fixed point in X:

We can find both a simple proof of Theorem 1 and an example showing that it is
real generalization of Nadler’s in [24]. We can also find a lot of generalizations of
Mizoguchi-Takahashi’s fixed point theorem in the literature [5, 7, 8].

In 2012, Samet et al [23] introduced the concept of ˛- -contractive and ˛-
admissible mapping and established various fixed point theorems for such mappings
on complete metric spaces (See [1, 12, 16, 18]). Asl et al [4] also defined the no-
tion of ˛-admissible and ˛�-admissible for multivalued mappings as follows: Let
.X;d/ be a metric space, T WX ! P.X/ and ˛ WX �X ! Œ0;1/ be a function. We
say that T is an ˛-admissible mapping whenever for each x 2 X and y 2 T x with
˛.x;y/ � 1 implies ˛.y;´/ � 1 for all ´ 2 Ty and T is an ˛�-admissible mapping
whenever for each x 2 X and y 2 T x with ˛.x;y/ � 1 implies ˛�.T x;Ty/ � 1,
where ˛�.T x;Ty/ D inff˛.a;b/ W a 2 T x;b 2 Tyg. It is clear that ˛�-admissible
mapping is also ˛-admissible, but the converse may not be true as shown in Example
15 of [13]. This situation also will be mentioned in Example 1. We say that ˛ has (B)
property whenever fxng is a sequence in X such that ˛.xn;xnC1/ � 1 for all n 2N
and xn! x, then ˛.xn;x/� 1 for all n 2N.

Consider the collection 	 of nondecreasing functions  W Œ0;1/! Œ0;1/ such

that
1P
nD1

 n.t/ <1 for all t > 0, where  n is the n th iterate of  . It is clear that for

each  2 	; we have  .t/ < t for all t > 0 and  .0/D 0. Let T WX ! CB.X/ be a
mapping. Then, we say that T is called multivalued ˛- -contractive whenever

˛.x;y/H.T x;Ty/�  .d..x;y//

for all x;y 2X and T is called multivalued ˛�- -contractive whenever

˛�.T x;Ty/H.T x;Ty/�  .d..x;y//:

The results for these type mappings are given by [4, 16] as follows:

Theorem 2 ([16]). Let .X;d/ be a complete metric space, ˛ W X �X ! Œ0;1/

be a function,  2 	 be a strictly increasing map and T W X ! CB.X/ be an ˛-
admissible and ˛- -contractive multifunction on X . Suppose that there exist x0 2X
and x1 2 T x0 such that ˛.x0;x1/� 1. If T is continuous or ˛ has (B) property, then
T has a fixed point.
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Theorem 3 ([4]). Let .X;d/ be a complete metric space, ˛ W X �X ! Œ0;1/

be a function,  2 	 be a strictly increasing map and T W X ! CB.X/ be an ˛�-
admissible and ˛�- -contractive multifunction on X . Suppose that there exist x0 2
X and x1 2 T x0 such that ˛.x0;x1/ � 1. If ˛ has (B) property, then T has a fixed
point.

Furthermore, some generalizations of Mizoguchi-Takashashi fixed point theorem
using mappings of this type are given by Mınak and Altun [14] as follows:

Theorem 4 ([14]). Let .X;d/ be a metric space and T W X ! CB.X/ be an ˛-
admissible multivalued mapping such that

˛.x;y/H.T x;Ty/� k.d.x;y//d.x;y/

for all x;y 2 X , where k W Œ0;1/! Œ0;1/ satisfies limsup
t!sC

k.t/ < 1 for all s � 0.

Suppose that there exist x0 2 X and x1 2 T x0 such that ˛.x0;x1/ � 1. If T is
continuous or ˛ has (B) property, then T has a fixed point in X:

Theorem 5 ([14]). Let .X;d/ be a metric space and T W X ! CB.X/ be an ˛�-
admissible multivalued mapping such that

˛�.T x;Ty/H.T x;Ty/� k.d.x;y//d.x;y/

for all x;y 2 X , where k W Œ0;1/! Œ0;1/ satisfies limsup
t!sC

k.t/ < 1 for all s � 0.

Suppose that there exist x0 2 X and x1 2 T x0 such that ˛.x0;x1/ � 1. If T is
continuous or ˛ has (B) property, then T has a fixed point in X:

In this paper, by considering the recent technique of Wardowski [25], we give
some generalizations of Mizoguchi-Takahashi fixed point theorem. First, we recall
the Wardowski’s technique. Let F W .0;1/! R be a function. For the sake of
completeness, we will consider the following conditions:

(F1) F is strictly increasing, i.e., for all ˛;ˇ 2 .0;1/ such that ˛ < ˇ; F.˛/ <
F.ˇ/;

(F2) For each sequence f˛ng of positive numbers

lim
n!1

˛n D 0 if and only if lim
n!1

F.˛n/D�1;

(F3) There exists k 2 .0;1/ such that lim˛!0C ˛kF.˛/D 0;

(F4) F.infA/D infF.A/ for all A� .0;1/ with infA > 0.
We denote by F and F�, the set of all functions F satisfying (F1)-(F3) and (F1)-(F4),
respectively. It is clear that F� � F : Some examples of the functions belonging F�
are F1.˛/D ln˛, F2.˛/D ˛C ln˛; F3.˛/D� 1p

˛
and F4.˛/D ln

�
˛2C˛

�
. If we

define F5.˛/ D ln˛ for ˛ � 1 and F5.˛/ D 2˛ for ˛ > 1, then F5 2 F nF�. If F
satisfies (F1), then it satisfies (F4) if and only if it is right continuous.
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By considering the class F , Wardowski [25] introduced the concept of F -
contraction, which is more general than ordinary contraction, as follows: Let .X;d/
be a metric space and T WX!X be a map. If there exist F 2 F and � > 0 such that

�CF.d.T x;Ty//� F.d.x;y//;

for all x;y 2 X with d.T x;Ty/ > 0; then T is called an F -contraction. As a
real generalization of Banach contraction principle, Wardowski proved that every
F -contraction on complete metric space has a unique fixed point. (See [25] for more
detailed information about F -contractions).

By combining the ideas of Wardowski’s and Nadler’s, Altun et al [3] introduced
the concept of multivalued F -contractions and obtained a fixed point result for these
type mappings on complete metric spaces. Let .X;d/ be a metric space and T WX!
CB.X/. Then T is said to be a multivalued F -contraction if there exists F 2 F and
� > 0 such that

�CF.H.T x;Ty//� F.d.x;y//; (1.1)

for all x;y 2X with H.T x;Ty/ > 0:

Theorem 6 ([3]). Let .X;d/ be a complete metric space and T WX !K.X/ be a
multivalued F -contraction. Then, T has a fixed point in X:

Note that T x is compact for all x 2X in Theorem 6. By adding the condition (F4)
on F , the compactness condition of T x can be weakened. There are some detailed
information about this situation in [2].

Theorem 7 ([3]). Let .X;d/ be a complete metric space and T WX ! CB.X/ be
a multivalued F -contraction with F 2 F�, then T has a fixed point in X:

On the other hand, taking � as a function of d.x;y/ Olgun at al. [20] proved
the following theorem, which is a generalization of Mizoguchi-Takahashi fixed point
theorem for multivalued contractive mappings. These results are also nonlinear case
of Theorem 7 (resp. Theorem 6).

Theorem 8 ([20]). Let .X;d/ be a complete metric space and T W X ! CB.X/

(resp. K.X/): If there exist F 2F� (resp. F 2F ) and � W .0;1/! .0;1/ such that

liminf
t!sC

�.t/ > 0; for all s � 0; (1.2)

satisfying
�.d.x;y//CF.H.T x;Ty//� F.d.x;y//

for all x;y 2X with H.T x;Ty/ > 0: Then, T has a fixed point in X:

The aim of this paper is to present some new fixed point results for multivalued
F -contractions, by considering the ˛-admissibility and ˛�-admissibility of a multi-
valued mappings on complete metric spaces.
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2. THE RESULTS

Before we give our main results, we recall the following: Let X and Y be two
metric spaces. Then, a multivalued mapping T W X ! P.Y / is said to be upper
semicontinuous (lower semicontinuous) if the inverse image of closed sets (open sets)
is closed (open). A multivalued mapping is continuous if it is upper as well as lower
semicontinuous. T is a closed multivalued mapping if the graph GrT D f.x;y/ W
x 2 X;y 2 T xg is a closed subset of X �Y . If T is closed multivalued mapping,
then it has closed values. If T is upper semicontinuous and closed values, then it
is closed multivalued mapping (see Proposition 2.17 of [10]). A closed multivalued
mapping may not be upper semicontionous. For example, let T W Œ0;1/!P.Œ0;1//

be defined by

T x D

8<: Œ0;x�[f 1
x
g ; x > 0

f0g ; x D 0

;

then T is closed multivalued mapping, but not upper semicontinuous since
T �1.ZC/ D f1

n
W n 2 ZCg[ZC is not closed, where ZC is the set of positive in-

tegers. On the other hand, an upper semi continuous mapping may not be closed
multivaled mapping unless it is closed values. For example, let T W R! P.R/ be
defined by T x D Œ0;1/, then T is upper semicontinuous, but not closed multival-
ued mapping. We can find more important properties of multivalued mappings (even
when X and Y are two topological spaces) in [10, 11].

Let .X;d/ be a metric space, T W X ! CB.X/ and ˛ W X �X ! Œ0;1/ be two
mappings. Define a set

T˛ D f.x;y/ W ˛.x;y/� 1 and H.T x;Ty/ > 0g �X �X:

Given F 2 F , we say that T is a multivalued (˛,F )-contraction if there exists a
function � W .0;1/! .0;1/ such that

�.d.x;y//CF.H.T x;Ty//� F.d.x;y// (2.1)

for all .x;y/ 2 T˛. In this case, the function � is called the contractive factor of T .

Theorem 9. Let .X;d/ be a complete metric space and T W X ! K.X/ be an
˛-admissible and multivalued (˛,F )-contraction with contractive factor � . Suppose
that

liminf
t!sC

�.t/ > 0; for all s � 0 (2.2)

and there exist x0 2 X and x1 2 T x0 such that ˛.x0;x1/ � 1: If T is closed multi-
valued mapping or ˛ has (B) property, then T has a fixed point.

Proof. Suppose that T has no fixed point. Then for all x 2 X , d.x;T x/ > 0.
Let x0 and x1 be as mentioned in the hypothesis, then H.T x0;T x1/ > 0 (otherwise
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d.x1;T x1/D 0, this is a contradiction). Therefore .x0;x1/ 2 T˛, thus we can use the
condition (2.1) for x0 and x1. Then considering (F1) we have

F.d.x1;T x1//� F.H.T x0;T x1//� F.d.x1;x0//� �.d.x1;x0//: (2.3)

Since T x1 is compact, there exists x2 2 T x1 such that d.x1;x2/D d.x1;T x1/: From
(2.3),

F.d.x1;x2//� F.H.T x0;T x1//� F.d.x1;x0//� �.d.x1;x0//:

Also, since T is an ˛-admissible mapping ˛.x1;x2/ � 1. Again, since x2 2 T x1,
then H.T x1;T x2/ > 0. Therefore, .x1;x2/ 2 T˛, so we can use (2.1) for x1 and x2.
Then

F.d.x2;T x2//� F.H.T x1;T x2//� F.d.x2;x1//� �.d.x2;x1//:

Since T x2 is compact, there exists x3 2 T x2 such that d.x2;x3/ D d.x2;T x2/:

Therefore, we have

F.d.x2;x3//� F.H.T x1;T x2//� F.d.x2;x1//� �.d.x2;x1//:

By induction, we can find a sequence fxng in X such that xnC1 2 T xn, .xn;xnC1/ 2
T˛ and

F.d.xn;xnC1//� F.d.xn;xn�1//� �.d.xn;xn�1// (2.4)
for all n 2N: Denote an D d.xn;xnC1/ for n 2N0, then an > 0 and from (2.4) fang
is decreasing and hence convergent. We show that limn!1an D 0: From (2.2) there
exists 
 > 0 and n0 2N such that �.an/ > 
 for all n > n0. Therefore, we obtain

F.an/� F.an�1/� �.an�1/

� F.an�2/� �.an�1/� �.an�2/

:::

� F.a0/� �.an�1/� �.an�2/�� � �� �.a0/

� F.a0/� �.an�1/� �.an�2/�� � �� �.an0
/

D F.a0/� Œ�.an�1/C �.an�2/C�� �C �.an0
/�

� F.a0/� .n�n0/
 (2.5)

for all n> n0. Letting n!1 in the above inequlity, we have limn!1F.an/D�1
and by (F2) limn!1an D 0.

Now from (F3) there exists k 2 .0;1/ such that

lim
n!1

aknF.an/D 0: (2.6)

By (2.5) we get for all n > n0

aknF.an/�a
k
nF.a0/� a

k
nŒF .a0/� .n�n0/
��a

k
nF.a0/

D�akn.n�n0/
 � 0:
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Taking into account (2.6), we get from the above inequality

lim
n!1

nakn D 0.

Therefore, there exists n1 2N such that nakn � 1 for all n � n1. Consequently, we
have

an �
1

n
1
k

for all n� n1:

Now, let m;n 2N be such that m> n� n1. Then, we have

d.xm;xn/� d.xm;xm�1/Cd.xm�1;xm�2/C�� �Cd.xnC1;xn/

<

1X
iDn

d.xiC1;xi /�

1X
iDn

1

i
1
k

:

Since the series
1P
iD1

1

i
1
k

is convergent, we have limn!1d.xm;xn/D 0 for allm> n.

Therefore, fxng is a Cauchy sequence in X . Since .X;d/ is a complete metric space,
there exists ´ 2X such that limn!1xn D ´:

If T is closed multivalued mapping, then since .xn;xnC1/! .´;´/, we have ´ 2
T ´, which is a contradiction.

Now assume that ˛ has (B) property. Since limn!1xn D ´ and d.´;T ´/ > 0,
then there exists n0 2N such that d.xnC1;T ´/ > 0 for all n� n0. Therefore, for all
n� n0

H.T xn;T ´/ > 0;

thus .xn;´/ 2 T˛ for all n� n0. From (2.1) and (F1), we have

F.d.xnC1;T ´//� F.H.T xn;T ´//

� F.d.xn;´//� �.d.xn;´//

and so
d.xnC1;T ´/� d.xn;´/

for all n � n0. Passing to limit n!1; we obtain d.´;T ´/D 0, which is a contra-
diction.

Therefore, T has a fixed point in X . �

Remark 1. Example 1 in [2] shows that we can not takeCB.X/ instead ofK.X/ in
Theorem 9. However, we can take CB.X/ instead of K.X/ by adding the condition
(F4) on F .

Theorem 10. Let .X;d/ be a complete metric space and T W X ! CB.X/ be an
˛-admissible and multivalued (˛,F /-contraction with contractive factor � . Suppose
that F 2 F�,

liminf
t!sC

�.t/ > 0; for all s � 0
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and there exist x0 2 X and x1 2 T x0 such that ˛.x0;x1/ � 1: If T is closed multi-
valued mapping or ˛ has (B) property, then T has a fixed point.

Proof. We begin as in the proof of Theorem 9. Considering the condition (F4), we
can write

F.d.x1;T x1//D inf
y2Tx1

F.d.x1;y//:

Thus from

F.d.x1;T x1//� F.H.T x0;T x1//

� F.d.x1;x0//� �.d.x1;x0//

we have

inf
y2Tx1

F.d.x1;y//� F.d.x1;x0//� �.d.x1;x0//

< F.d.x1;x0//�
�.d.x1;x0//

2
:

Therefore, there exists x2 2 T x1 such that

F.d.x1;x2//� F.d.x1;x0//�
�.d.x1;x0//

2
:

The rest of the proof can be completed as in the proof of Theorem 9. �

Remark 2. If we take ˛.x;y/D 1 in Theorem 10, we obtain Theorem 8.

Remark 3. By taking ˛.x;y/D 1 and F.˛/D ln˛ in Theorem 10, we obtain the
famous Mizoguchi-Takahashi’s fixed point theorem with k.t/D exp.��.t//.

Now, we give an example showing that T is ˛-admissible and multivalued (˛,F )-
contraction with contractive factor �; but not multivalued F -contraction. Therefore,
Theorem 9 (resp. Theorem 10) can be applied to this example, but Theorem 8 can
not. Also, We show that Theorems 1, 2, 3, 4 and 5 can not be applied to this example.

Example 1. Consider the complete metric space .X;d/ where X D f0;1;2; � � � g
and d WX �X ! Œ0;1/ is given by

d.x;y/D

8<: 0 ; x D y

xCy ; x ¤ y

:

Define T WX ! CB.X/ by

T x D

8<: fxg ; x 2 f0;1g

f0;x�1g ; x � 2

and ˛ WX �X ! Œ0;1/ by

˛.x;y/D

�
3 ; otherwise
0 ; .x;y/ 2 f.0;1/; .1;0/g

:
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Then it is clear that T is an ˛-admissible.
Now, we claim that T is a multivalued (˛,F /-contraction with contractive factor

�.t/D 1 and F.˛/D ˛C ln˛. To see this have to show that

1CF.H.T x;Ty//� F.d.x;y//

for all .x;y/ 2 T˛ or equivalently

H.T x;Ty/

d.x;y/
eH.Tx;Ty/�d.x;y/ � e�1 (2.7)

for all .x;y/ 2 T˛: Note that

T˛ D f.x;y/ 2X �X W ˛.x;y/� 1 and H.T x;Ty/ > 1g

D f.x;y/ 2X �X W .x;y/ … f.0;1/; .1;0/g and x ¤ yg:

Thus, without loss of generality, we may assume x > y for all .x;y/ 2 T˛ in the
following cases:

Case 1. Let y D 0 and x � 2. Then H.T x;Ty/D x�1 and d.x;y/D x; and so
we have

H.T x;Ty/

d.x;y/
eH.Tx;Ty/�d.x;y/ �

x�1

x
e�1 � e�1:

Case 2. Let y D 1 and x D 2: Then H.T x;Ty/D 1 and d.x;y/D 3; and so we
have

H.T x;Ty/

d.x;y/
eH.Tx;Ty/�d.x;y/ �

1

3
e�2 � e�1:

Case 3. Let y D 1 and x > 2: Then H.T x;Ty/D x and d.x;y/D xC1; and so
we have

H.T x;Ty/

d.x;y/
eH.Tx;Ty/�d.x;y/ �

x

xC1
e�1 � e�1:

Case 4. Let x > y � 2 ThenH.T x;Ty/D xCy�2 and d.x;y/D xCy; and so
we have

H.T x;Ty/

d.x;y/
eH.Tx;Ty/�d.x;y/ D

xCy�2

xCy
e�2 � e�2 � e�1:

This shows that T is an multivalued (˛,F /-contraction with contractive factor � .
For x0 D 1 and x1 2 T x0 D f1g ; we have ˛.x0;x1/D ˛.1;1/D 3� 1.
Finally, since �d is discrete topology, T is upper semi continuous and hence closed
multivalued mapping. By Theorem 9 (or Theorem 10), T has a fixed point in X:

On the other hand, since H.T 0;T1/ D 1 D d.0;1/, then for all F 2 F and � W
.0;1/! .0;1/ satisfying inequality (1.2), we have

�.d.0;1//CF.H.T 0;T1// > F.d.0;1//:

Therefore, Theorem 8 can not be applied to this example. Accordingly, T is not
multivalued F -contraction and multivalued contraction.
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Note that ˛ has not (B) property. Indeed, considering the sequence fxng D
f1;2;3;0;0;0; � � � g in X , then ˛.xn;xnC1/ � 1 for all n 2 N and xn ! 0, but
˛.x1;0/D ˛.1;0/D 0� 1:

Despite ˛.1;2/ � 1; but ˛�.T1;T 2/ D 0, then T is not an ˛�-admissible. Thus,
Theorems 3 and 5 can not be applied to this example.

Also, since H.T 0;T 2/D 1; d.0;2/D 2 and ˛.0;2/D 3; then for all  2 	 and
k W Œ0;1/! Œ0;1/ satisfies limsup

t!sC

k.t/ < 1 for all s � 0, we have

˛.0;2/H.T 0;T1/D 3 > 2k.d.0;2//D k.d.0;2//d.0;2/;

and
3D ˛.0;2/H.T 0;T1/—  .d.0;2// < 2:

Thus, Theorems 2 and 4 can not be applied to this example.

Since ˛�-admissible mapping is also ˛-admissible, we can obtain following corol-
lary.

Corollary 1. Let .X;d/ be a complete metric space and T W X ! K.X/ be an
˛�-admissible and multivalued (˛,F )-contraction with contractive factor � . Suppose
that

liminf
t!sC

�.t/ > 0; for all s � 0

and there exist x0 2 X and x1 2 T x0 such that ˛.x0;x1/ � 1: If T is closed multi-
valued mapping or ˛ has (B) property, then T has a fixed point.

Recently, there have been so many interesting developments in fixed point theory
in metric spaces endowed with a partial order. The first result in this direction for
single valued maps was given by Ran and Reurings [21], where they extended the
Banach contraction principle in partially ordered sets with some application to a mat-
rix equation. Later, many important results have been obtained for both single and
multivalued mappings on metric spaces endowed with a partial order (see for example
[14, 19]). By [12], we know that the fixed point results for ˛-admissible mappings
are closely related to fixed point theory on partially ordered metric spaces. Follow-
ing, we will present a fixed point result for multivalued mappings on metric spaces
endowed with a partial order. In 2004, Feng and Liu [9] defined relations between
two sets. Let X be a nonempty set and � be a partial order on X . Let A;B be two
nonempty subsets of X , the relations between A and B are defined as follows:

(a) A�1 B W if for every a 2 A, there exists b 2 B such that a � b;
(b) A�2 B W if for every b 2 B , there exists a 2 A such that a � b;
(c) A� B W if A�1 B and A�2 B:

�1 and �2 are different relations between A and B . For example, let X D R, AD
Œ1
2
;1�, B D Œ0;1�, � be usual order on X , then A �1 B but A ˜2 B; if A D Œ0;1�,

B D Œ0; 1
2
�, then A �2 B while A ˜1 B . �1, �2and � are reflexive and transitive,

but are not antisymmetric. For instance, let X D R, AD Œ0;3�, B D Œ0;1�[ Œ2;3�, �
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be usual order on X , then A� B and B � A, but A¤ B . Hence, they are not partial
orders. Note that if A is a nonempty subset of X with A �1 A, then A is singleton.
(see [9]).

Corollary 2. Let .X;�/ be a partially ordered set and suppose that there exist a
metric d in X such that .X;d/ is complete metric space. Let T W X ! CB.X/(resp.
K.X/) be a closed multivalued mapping such that

�.d.x;y//CF.H.T x;Ty//� F.d.x;y//

for all .x;y/ 2 T�, where � W .0;1/! .0;1/ be a function satisfying

liminf
t!sC

�.t/ > 0; for all s � 0

and T� D f.x;y/ 2X �X W x � y and H.T x;Ty/ > 0g. Assume that for each x 2
X and y 2 T x with x � y, we have y � ´ for all ´ 2 Ty and there exist x0 2 X ,
x1 2 T x0 such that fx0g �1 T x0, then T has a fixed point.

Proof. Define a mapping ˛ WX �X ! Œ0;1/ by

˛.x;y/D

8<: 1 ; x � y

0 ; otherwise
.

Then T� D T˛. That is, T is (˛,F /-contraction with contractive factor �: Also, since
fx0g �1 T x0, then there exists x1 2 T x0 such that x0 � x1 and so ˛.x0;x1/ � 1.
Now let x 2X and y 2 T x with ˛.x;y/� 1, then x � y and so by the hypotheses we
have y � ´ for all ´ 2 Ty. Therefore, ˛.y;´/ � 1 for all ´ 2 Ty. This shows that T
is ˛-admissible. Therefore, from Theorem 10 (resp. Theorem 9), T has a fixed point
in X: �

Remark 4. We can give similar result using �2 instead of �1.

ACKNOWLEDGEMENT

The authors would like to thank the referees for their helpful advice which led
them to present this paper.

REFERENCES

[1] M. U. Ali and T. Kamran, “On (˛�- )-contractive multivalued mappings,” Fixed Point Theory
Appl., vol. 2013, no. 137, 2013.

[2] I. Altun, G. Durmaz, G. Mınak, and S. Romaguera, “Multivalued almost F -contractions on com-
plete metric spaces,” Filomat, in press, doi: 10.2298/FIL1602441A.
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