

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2016.1478

FIXED POINT RESULTS FOR α -ADMISSIBLE MULTIVALUED F-CONTRACTIONS

G. DURMAZ AND I. ALTUN

Received 25 December, 2014

Abstract. In this study, we give some fixed point results for multivalued mappings using Pompeiu-Hausdorff distance on complete metric space. For this, we consider the α -admissibility of multivalued mappings. Our results are real generalizations of Mizoguchi-Takahashi fixed point theorem. We also provide an example showing this fact. Finally, we obtain some ordered fixed point results for multivalued mappings.

2010 Mathematics Subject Classification: 54H25; 47H10

Keywords: fixed point, multivalued mapping, α -admissible mapping, F-contraction

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space. Denote by P(X), the family of all nonempty subsets of X, CB(X) the family of all nonempty, closed and bounded subsets of X and K(X) the family of all nonempty compact subsets of X. It is well known that H: $CB(X) \times CB(X) \rightarrow \mathbb{R}$ defined by, for every $A, B \in CB(X)$,

$$H(A,B) = \max\left\{\sup_{x \in A} d(x,B), \sup_{y \in B} d(y,A)\right\}$$

is a metric on CB(X), which is called the Pompeiu-Hausdorff metric induced by d, where $d(x, B) = \inf\{d(x, y) : y \in B\}$. We can find detailed information about the Pompeiu-Hausdorff metric in [6, 11]. An element $x \in X$ is said to be a fixed point of a multivalued mapping $T : X \to P(X)$ if $x \in Tx$. Let $T : X \to CB(X)$. Then, we say that T is called multivalued contraction if there exists $L \in [0, 1)$ such that

$$H(Tx, Ty) \le Ld(x, y)$$

for all $x, y \in X$ (see [17]). In 1969, Nadler [17] proved that every multivalued contraction mappings on complete metric spaces has a fixed point.

Inspired by his result, various fixed point theorems concerning multivalued contractions appeared in the last decades. Concerning these, the following theorem was proved by Mizoguchi and Takahashi [15] that is, in fact, a partial answer to a question proposed by Reich [22]:

© 2016 Miskolc University Press

Theorem 1 ([15]). Let (X, d) be a complete metric space and $T : X \to CB(X)$ is a mapping such that

$$H(Tx, Ty) \le k(d(x, y))d(x, y),$$

for all $x, y \in X$, $x \neq y$, where a function $k : (0, \infty) \rightarrow [0, 1)$ satisfies

$$\limsup_{t \to s^+} k(t) < 1 \text{ for all } s \ge 0.$$

Then T has a fixed point in X.

We can find both a simple proof of Theorem 1 and an example showing that it is real generalization of Nadler's in [24]. We can also find a lot of generalizations of Mizoguchi-Takahashi's fixed point theorem in the literature [5, 7, 8].

In 2012, Samet et al [23] introduced the concept of $\alpha - \psi$ -contractive and α admissible mapping and established various fixed point theorems for such mappings on complete metric spaces (See [1, 12, 16, 18]). Asl et al [4] also defined the notion of α -admissible and α_* -admissible for multivalued mappings as follows: Let (X,d) be a metric space, $T: X \to P(X)$ and $\alpha: X \times X \to [0,\infty)$ be a function. We say that T is an α -admissible mapping whenever for each $x \in X$ and $y \in Tx$ with $\alpha(x, y) \ge 1$ implies $\alpha(y, z) \ge 1$ for all $z \in Ty$ and T is an α_* -admissible mapping whenever for each $x \in X$ and $y \in Tx$ with $\alpha(x, y) \ge 1$ implies $\alpha_*(Tx, Ty) \ge 1$, where $\alpha_*(Tx, Ty) = \inf\{\alpha(a, b) : a \in Tx, b \in Ty\}$. It is clear that α_* -admissible mapping is also α -admissible, but the converse may not be true as shown in Example 15 of [13]. This situation also will be mentioned in Example 1. We say that α has (B) property whenever $\{x_n\}$ is a sequence in X such that $\alpha(x_n, x_{n+1}) \ge 1$ for all $n \in \mathbb{N}$ and $x_n \to x$, then $\alpha(x_n, x) \ge 1$ for all $n \in \mathbb{N}$.

Consider the collection Ψ of nondecreasing functions $\psi : [0, \infty) \to [0, \infty)$ such that $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for all t > 0, where ψ^n is the *n* th iterate of ψ . It is clear that for each $\psi \in \Psi$, we have $\psi(t) < t$ for all t > 0 and $\psi(0) = 0$. Let $T : X \to CB(X)$ be a mapping. Then, we say that *T* is called multivalued $\alpha \cdot \psi$ -contractive whenever

 $\alpha(x, y)H(Tx, Ty) \le \psi(d((x, y)))$

for all $x, y \in X$ and T is called multivalued $\alpha_* \cdot \psi$ -contractive whenever

$$\alpha_*(Tx, Ty)H(Tx, Ty) \le \psi(d((x, y))).$$

The results for these type mappings are given by [4, 16] as follows:

Theorem 2 ([16]). Let (X, d) be a complete metric space, $\alpha : X \times X \to [0, \infty)$ be a function, $\psi \in \Psi$ be a strictly increasing map and $T : X \to CB(X)$ be an α admissible and α - ψ -contractive multifunction on X. Suppose that there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$. If T is continuous or α has (B) property, then T has a fixed point.

Theorem 3 ([4]). Let (X, d) be a complete metric space, $\alpha : X \times X \to [0, \infty)$ be a function, $\psi \in \Psi$ be a strictly increasing map and $T : X \to CB(X)$ be an α_* admissible and α_* - ψ -contractive multifunction on X. Suppose that there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$. If α has (B) property, then T has a fixed point.

Furthermore, some generalizations of Mizoguchi-Takashashi fixed point theorem using mappings of this type are given by Mınak and Altun [14] as follows:

Theorem 4 ([14]). Let (X, d) be a metric space and $T : X \to CB(X)$ be an α -admissible multivalued mapping such that

$$\alpha(x, y)H(Tx, Ty) \le k(d(x, y))d(x, y)$$

for all $x, y \in X$, where $k : [0, \infty) \to [0, 1)$ satisfies $\limsup_{t \to s^+} k(t) < 1$ for all $s \ge 0$. Suppose that there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$. If T is continuous or α has (B) property, then T has a fixed point in X.

Theorem 5 ([14]). Let (X, d) be a metric space and $T : X \to CB(X)$ be an α_* -admissible multivalued mapping such that

$$\alpha_*(Tx, Ty)H(Tx, Ty) \le k(d(x, y))d(x, y)$$

for all $x, y \in X$, where $k : [0, \infty) \to [0, 1)$ satisfies $\limsup_{t \to s^+} k(t) < 1$ for all $s \ge 0$.

Suppose that there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$. If T is continuous or α has (B) property, then T has a fixed point in X.

In this paper, by considering the recent technique of Wardowski [25], we give some generalizations of Mizoguchi-Takahashi fixed point theorem. First, we recall the Wardowski's technique. Let $F : (0, \infty) \to \mathbb{R}$ be a function. For the sake of completeness, we will consider the following conditions:

- (F1) *F* is strictly increasing, i.e., for all $\alpha, \beta \in (0, \infty)$ such that $\alpha < \beta$, $F(\alpha) < F(\beta)$,
- (F2) For each sequence $\{\alpha_n\}$ of positive numbers

$$\lim_{n \to \infty} \alpha_n = 0 \text{ if and only if } \lim_{n \to \infty} F(\alpha_n) = -\infty,$$

- (F3) There exists $k \in (0, 1)$ such that $\lim_{\alpha \to 0^+} \alpha^k F(\alpha) = 0$,
- (F4) $F(\inf A) = \inf F(A)$ for all $A \subset (0, \infty)$ with $\inf A > 0$.

We denote by \mathcal{F} and \mathcal{F}_* , the set of all functions F satisfying (F1)-(F3) and (F1)-(F4), respectively. It is clear that $\mathcal{F}_* \subset \mathcal{F}$. Some examples of the functions belonging \mathcal{F}_* are $F_1(\alpha) = \ln \alpha$, $F_2(\alpha) = \alpha + \ln \alpha$, $F_3(\alpha) = -\frac{1}{\sqrt{\alpha}}$ and $F_4(\alpha) = \ln (\alpha^2 + \alpha)$. If we define $F_5(\alpha) = \ln \alpha$ for $\alpha \le 1$ and $F_5(\alpha) = 2\alpha$ for $\alpha > 1$, then $F_5 \in \mathcal{F} \setminus \mathcal{F}_*$. If F satisfies (F1), then it satisfies (F4) if and only if it is right continuous.

By considering the class \mathcal{F} , Wardowski [25] introduced the concept of *F*-contraction, which is more general than ordinary contraction, as follows: Let (X, d) be a metric space and $T: X \to X$ be a map. If there exist $F \in \mathcal{F}$ and $\tau > 0$ such that

$$\tau + F(d(Tx, Ty)) \le F(d(x, y)),$$

for all $x, y \in X$ with d(Tx, Ty) > 0, then *T* is called an *F*-contraction. As a real generalization of Banach contraction principle, Wardowski proved that every *F*-contraction on complete metric space has a unique fixed point. (See [25] for more detailed information about *F*-contractions).

By combining the ideas of Wardowski's and Nadler's, Altun et al [3] introduced the concept of multivalued *F*-contractions and obtained a fixed point result for these type mappings on complete metric spaces. Let (X, d) be a metric space and $T : X \rightarrow CB(X)$. Then *T* is said to be a multivalued *F*-contraction if there exists $F \in \mathcal{F}$ and $\tau > 0$ such that

$$x + F(H(Tx, Ty)) \le F(d(x, y)),$$
 (1.1)

for all $x, y \in X$ with H(Tx, Ty) > 0.

Theorem 6 ([3]). Let (X, d) be a complete metric space and $T : X \to K(X)$ be a multivalued F-contraction. Then, T has a fixed point in X.

Note that Tx is compact for all $x \in X$ in Theorem 6. By adding the condition (F4) on \mathcal{F} , the compactness condition of Tx can be weakened. There are some detailed information about this situation in [2].

Theorem 7 ([3]). Let (X, d) be a complete metric space and $T : X \to CB(X)$ be a multivalued F-contraction with $F \in \mathcal{F}_*$, then T has a fixed point in X.

On the other hand, taking τ as a function of d(x, y) Olgun at al. [20] proved the following theorem, which is a generalization of Mizoguchi-Takahashi fixed point theorem for multivalued contractive mappings. These results are also nonlinear case of Theorem 7 (resp. Theorem 6).

Theorem 8 ([20]). Let (X, d) be a complete metric space and $T : X \to CB(X)$ (resp. K(X)). If there exist $F \in \mathcal{F}_*$ (resp. $F \in \mathcal{F}$) and $\tau : (0, \infty) \to (0, \infty)$ such that

$$\liminf_{t \to s^+} \tau(t) > 0, \text{ for all } s \ge 0, \tag{1.2}$$

satisfying

 $\tau(d(x,y)) + F(H(Tx,Ty)) \le F(d(x,y))$

for all $x, y \in X$ with H(Tx, Ty) > 0. Then, T has a fixed point in X.

The aim of this paper is to present some new fixed point results for multivalued F-contractions, by considering the α -admissibility and α_* -admissibility of a multivalued mappings on complete metric spaces.

2. The results

Before we give our main results, we recall the following: Let X and Y be two metric spaces. Then, a multivalued mapping $T : X \to P(Y)$ is said to be upper semicontinuous (lower semicontinuous) if the inverse image of closed sets (open sets) is closed (open). A multivalued mapping is continuous if it is upper as well as lower semicontinuous. T is a closed multivalued mapping if the graph $GrT = \{(x, y) : x \in X, y \in Tx\}$ is a closed subset of $X \times Y$. If T is closed multivalued mapping, then it has closed values. If T is upper semicontinuous and closed values, then it is closed multivalued mapping (see Proposition 2.17 of [10]). A closed multivalued mapping may not be upper semicontinuous. For example, let $T : [0, \infty) \to P([0, \infty))$ be defined by

$$Tx = \begin{cases} [0,x] \cup \{\frac{1}{x}\} &, x > 0\\ \{0\} &, x = 0 \end{cases},$$

then T is closed multivalued mapping, but not upper semicontinuous since $T^{-1}(\mathbb{Z}^+) = \{\frac{1}{n} : n \in \mathbb{Z}^+\} \cup \mathbb{Z}^+$ is not closed, where \mathbb{Z}^+ is the set of positive integers. On the other hand, an upper semi continuous mapping may not be closed multivaled mapping unless it is closed values. For example, let $T : \mathbb{R} \to P(\mathbb{R})$ be defined by Tx = [0, 1), then T is upper semicontinuous, but not closed multivalued mapping. We can find more important properties of multivalued mappings (even when X and Y are two topological spaces) in [10, 11].

Let (X, d) be a metric space, $T : X \to CB(X)$ and $\alpha : X \times X \to [0, \infty)$ be two mappings. Define a set

$$T_{\alpha} = \{(x, y) : \alpha(x, y) \ge 1 \text{ and } H(Tx, Ty) > 0\} \subset X \times X.$$

Given $F \in \mathcal{F}$, we say that T is a multivalued (α, F) -contraction if there exists a function $\tau : (0, \infty) \to (0, \infty)$ such that

$$\tau(d(x,y)) + F(H(Tx,Ty)) \le F(d(x,y)) \tag{2.1}$$

for all $(x, y) \in T_{\alpha}$. In this case, the function τ is called the contractive factor of T.

Theorem 9. Let (X,d) be a complete metric space and $T : X \to K(X)$ be an α -admissible and multivalued (α, F) -contraction with contractive factor τ . Suppose that

$$\liminf_{t \to s^+} \tau(t) > 0, \text{ for all } s \ge 0 \tag{2.2}$$

and there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$. If T is closed multivalued mapping or α has (B) property, then T has a fixed point.

Proof. Suppose that T has no fixed point. Then for all $x \in X$, d(x, Tx) > 0. Let x_0 and x_1 be as mentioned in the hypothesis, then $H(Tx_0, Tx_1) > 0$ (otherwise

 $d(x_1, Tx_1) = 0$, this is a contradiction). Therefore $(x_0, x_1) \in T_{\alpha}$, thus we can use the condition (2.1) for x_0 and x_1 . Then considering (F1) we have

$$F(d(x_1, Tx_1)) \le F(H(Tx_0, Tx_1)) \le F(d(x_1, x_0)) - \tau(d(x_1, x_0)).$$
(2.3)

Since Tx_1 is compact, there exists $x_2 \in Tx_1$ such that $d(x_1, x_2) = d(x_1, Tx_1)$. From (2.3),

$$F(d(x_1, x_2)) \le F(H(Tx_0, Tx_1)) \le F(d(x_1, x_0)) - \tau(d(x_1, x_0)).$$

Also, since T is an α -admissible mapping $\alpha(x_1, x_2) \ge 1$. Again, since $x_2 \in Tx_1$, then $H(Tx_1, Tx_2) > 0$. Therefore, $(x_1, x_2) \in T_{\alpha}$, so we can use (2.1) for x_1 and x_2 . Then

$$F(d(x_2, Tx_2)) \le F(H(Tx_1, Tx_2)) \le F(d(x_2, x_1)) - \tau(d(x_2, x_1)).$$

Since Tx_2 is compact, there exists $x_3 \in Tx_2$ such that $d(x_2, x_3) = d(x_2, Tx_2)$. Therefore, we have

$$F(d(x_2, x_3)) \le F(H(Tx_1, Tx_2)) \le F(d(x_2, x_1)) - \tau(d(x_2, x_1)).$$

By induction, we can find a sequence $\{x_n\}$ in X such that $x_{n+1} \in Tx_n$, $(x_n, x_{n+1}) \in T_{\alpha}$ and

$$F(d(x_n, x_{n+1})) \le F(d(x_n, x_{n-1})) - \tau(d(x_n, x_{n-1}))$$
(2.4)

for all $n \in \mathbb{N}$. Denote $a_n = d(x_n, x_{n+1})$ for $n \in \mathbb{N}_0$, then $a_n > 0$ and from (2.4) $\{a_n\}$ is decreasing and hence convergent. We show that $\lim_{n\to\infty} a_n = 0$. From (2.2) there exists $\gamma > 0$ and $n_0 \in \mathbb{N}$ such that $\tau(a_n) > \gamma$ for all $n > n_0$. Therefore, we obtain

$$F(a_{n}) \leq F(a_{n-1}) - \tau(a_{n-1})$$

$$\leq F(a_{n-2}) - \tau(a_{n-1}) - \tau(a_{n-2})$$

$$\vdots$$

$$\leq F(a_{0}) - \tau(a_{n-1}) - \tau(a_{n-2}) - \dots - \tau(a_{0})$$

$$\leq F(a_{0}) - \tau(a_{n-1}) - \tau(a_{n-2}) - \dots - \tau(a_{n_{0}})$$

$$= F(a_{0}) - [\tau(a_{n-1}) + \tau(a_{n-2}) + \dots + \tau(a_{n_{0}})]$$

$$\leq F(a_{0}) - (n - n_{0})\gamma$$
(2.5)

for all $n > n_0$. Letting $n \to \infty$ in the above inequility, we have $\lim_{n\to\infty} F(a_n) = -\infty$ and by (F2) $\lim_{n\to\infty} a_n = 0$.

Now from (F3) there exists $k \in (0, 1)$ such that

$$\lim_{n \to \infty} a_n^k F(a_n) = 0.$$
(2.6)

By (2.5) we get for all $n > n_0$

$$a_n^k F(a_n) - a_n^k F(a_0) \le a_n^k [F(a_0) - (n - n_0)\gamma] - a_n^k F(a_0)$$

= $-a_n^k (n - n_0)\gamma \le 0.$

Taking into account (2.6), we get from the above inequality

$$\lim_{n \to \infty} n a_n^k = 0.$$

Therefore, there exists $n_1 \in \mathbb{N}$ such that $na_n^k \leq 1$ for all $n \geq n_1$. Consequently, we have

$$a_n \leq \frac{1}{n^{\frac{1}{k}}}$$
 for all $n \geq n_1$.

Now, let $m, n \in \mathbb{N}$ be such that $m > n \ge n_1$. Then, we have

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + d(x_{m-1}, x_{m-2}) + \dots + d(x_{n+1}, x_n)$$

$$< \sum_{i=n}^{\infty} d(x_{i+1}, x_i) \le \sum_{i=n}^{\infty} \frac{1}{i^{\frac{1}{k}}}.$$

Since the series $\sum_{i=1}^{\infty} \frac{1}{i^{\frac{1}{k}}}$ is convergent, we have $\lim_{n\to\infty} d(x_m, x_n) = 0$ for all m > n. Therefore, $\{x_n\}$ is a Cauchy sequence in X. Since (X, d) is a complete metric space, there exists $z \in X$ such that $\lim_{n\to\infty} x_n = z$.

If T is closed multivalued mapping, then since $(x_n, x_{n+1}) \rightarrow (z, z)$, we have $z \in Tz$, which is a contradiction.

Now assume that α has (B) property. Since $\lim_{n\to\infty} x_n = z$ and d(z, Tz) > 0, then there exists $n_0 \in \mathbb{N}$ such that $d(x_{n+1}, Tz) > 0$ for all $n \ge n_0$. Therefore, for all $n \ge n_0$

$$H(Tx_n, Tz) > 0,$$

thus $(x_n, z) \in T_{\alpha}$ for all $n \ge n_0$. From (2.1) and (F1), we have

$$F(d(x_{n+1}, Tz)) \le F(H(Tx_n, Tz))$$
$$\le F(d(x_n, z)) - \tau(d(x_n, z))$$

and so

$$d(x_{n+1}, Tz) \le d(x_n, z)$$

for all $n \ge n_0$. Passing to limit $n \to \infty$, we obtain d(z, Tz) = 0, which is a contradiction.

Therefore, T has a fixed point in X.

Remark 1. Example 1 in [2] shows that we can not take CB(X) instead of K(X) in Theorem 9. However, we can take CB(X) instead of K(X) by adding the condition (F4) on F.

Theorem 10. Let (X, d) be a complete metric space and $T : X \to CB(X)$ be an α -admissible and multivalued (α, F) -contraction with contractive factor τ . Suppose that $F \in \mathcal{F}_*$,

$$\liminf_{t \to s^+} \tau(t) > 0, \text{ for all } s \ge 0$$

and there exist $x_0 \in X$ and $x_1 \in Tx_0$ such that $\alpha(x_0, x_1) \ge 1$. If T is closed multivalued mapping or α has (B) property, then T has a fixed point.

Proof. We begin as in the proof of Theorem 9. Considering the condition (F4), we can write

$$F(d(x_1, Tx_1)) = \inf_{y \in Tx_1} F(d(x_1, y)).$$

Thus from

$$F(d(x_1, Tx_1)) \le F(H(Tx_0, Tx_1)) \\ \le F(d(x_1, x_0)) - \tau(d(x_1, x_0))$$

we have

$$\inf_{y \in Tx_1} F(d(x_1, y)) \le F(d(x_1, x_0)) - \tau(d(x_1, x_0))$$

< $F(d(x_1, x_0)) - \frac{\tau(d(x_1, x_0))}{2}.$

Therefore, there exists $x_2 \in Tx_1$ such that

$$F(d(x_1, x_2)) \le F(d(x_1, x_0)) - \frac{\tau(d(x_1, x_0))}{2}.$$

The rest of the proof can be completed as in the proof of Theorem 9.

Remark 2. If we take $\alpha(x, y) = 1$ in Theorem 10, we obtain Theorem 8.

Remark 3. By taking $\alpha(x, y) = 1$ and $F(\alpha) = \ln \alpha$ in Theorem 10, we obtain the famous Mizoguchi-Takahashi's fixed point theorem with $k(t) = \exp(-\tau(t))$.

Now, we give an example showing that *T* is α -admissible and multivalued (α , *F*)-contraction with contractive factor τ , but not multivalued *F*-contraction. Therefore, Theorem 9 (resp. Theorem 10) can be applied to this example, but Theorem 8 can not. Also, We show that Theorems 1, 2, 3, 4 and 5 can not be applied to this example.

Example 1. Consider the complete metric space (X, d) where $X = \{0, 1, 2, \dots\}$ and $d : X \times X \to [0, \infty)$ is given by

$$d(x, y) = \begin{cases} 0 & , x = y \\ x + y & , x \neq y \end{cases}$$

Define $T: X \to CB(X)$ by

$$Tx = \begin{cases} \{x\} & , \ x \in \{0, 1\} \\ \\ \{0, x - 1\} & , \ x \ge 2 \end{cases}$$

and $\alpha: X \times X \to [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} 3 & , & \text{otherwise} \\ 0 & , & (x, y) \in \{(0, 1), (1, 0)\} \end{cases}$$

194

Then it is clear that *T* is an α -admissible.

Now, we claim that T is a multivalued (α, F) -contraction with contractive factor $\tau(t) = 1$ and $F(\alpha) = \alpha + \ln \alpha$. To see this have to show that

$$1 + F(H(Tx, Ty)) \le F(d(x, y))$$

for all $(x, y) \in T_{\alpha}$ or equivalently

$$\frac{H(Tx, Ty)}{d(x, y)} e^{H(Tx, Ty) - d(x, y)} \le e^{-1}$$
(2.7)

for all $(x, y) \in T_{\alpha}$. Note that

$$T_{\alpha} = \{(x, y) \in X \times X : \alpha(x, y) \ge 1 \text{ and } H(Tx, Ty) > 1\} \\ = \{(x, y) \in X \times X : (x, y) \notin \{(0, 1), (1, 0)\} \text{ and } x \ne y\}.$$

Thus, without loss of generality, we may assume x > y for all $(x, y) \in T_{\alpha}$ in the following cases:

Case 1. Let y = 0 and $x \ge 2$. Then H(Tx, Ty) = x - 1 and d(x, y) = x, and so we have

$$\frac{H(Tx,Ty)}{d(x,y)}e^{H(Tx,Ty)-d(x,y)} \le \frac{x-1}{x}e^{-1} \le e^{-1}.$$

Case 2. Let y = 1 and x = 2. Then H(Tx, Ty) = 1 and d(x, y) = 3, and so we have

$$\frac{H(Tx,Ty)}{d(x,y)}e^{H(Tx,Ty)-d(x,y)} \le \frac{1}{3}e^{-2} \le e^{-1}.$$

Case 3. Let y = 1 and x > 2. Then H(Tx, Ty) = x and d(x, y) = x + 1, and so we have

$$\frac{H(Tx,Ty)}{d(x,y)}e^{H(Tx,Ty)-d(x,y)} \le \frac{x}{x+1}e^{-1} \le e^{-1}.$$

Case 4. Let $x > y \ge 2$ Then H(Tx, Ty) = x + y - 2 and d(x, y) = x + y, and so we have

$$\frac{H(Tx,Ty)}{d(x,y)}e^{H(Tx,Ty)-d(x,y)} = \frac{x+y-2}{x+y}e^{-2} \le e^{-2} \le e^{-1}.$$

This shows that *T* is an multivalued (α, F) -contraction with contractive factor τ . For $x_0 = 1$ and $x_1 \in Tx_0 = \{1\}$, we have $\alpha(x_0, x_1) = \alpha(1, 1) = 3 \ge 1$. Finally, since τ_d is discrete topology, *T* is upper semi continuous and hence closed multivalued mapping. By Theorem 9 (or Theorem 10), *T* has a fixed point in *X*.

On the other hand, since H(T0, T1) = 1 = d(0, 1), then for all $F \in \mathcal{F}$ and $\tau : (0, \infty) \to (0, \infty)$ satisfying inequality (1.2), we have

$$\tau(d(0,1)) + F(H(T0,T1)) > F(d(0,1)).$$

Therefore, Theorem 8 can not be applied to this example. Accordingly, T is not multivalued F-contraction and multivalued contraction.

Note that α has not (B) property. Indeed, considering the sequence $\{x_n\} = \{1,2,3,0,0,0,\cdots\}$ in X, then $\alpha(x_n,x_{n+1}) \ge 1$ for all $n \in N$ and $x_n \to 0$, but $\alpha(x_1,0) = \alpha(1,0) = 0 \not\ge 1$.

Despite $\alpha(1,2) \ge 1$, but $\alpha_*(T1,T2) = 0$, then T is not an α_* -admissible. Thus, Theorems 3 and 5 can not be applied to this example.

Also, since H(T0, T2) = 1, d(0, 2) = 2 and $\alpha(0, 2) = 3$, then for all $\psi \in \Psi$ and $k : [0, \infty) \rightarrow [0, 1)$ satisfies $\limsup k(t) < 1$ for all $s \ge 0$, we have

$$\alpha(0,2)H(T0,T1) = 3 > 2k(d(0,2)) = k(d(0,2))d(0,2),$$

and

$$3 = \alpha(0,2)H(T0,T1) \leq \psi(d(0,2)) < 2$$

Thus, Theorems 2 and 4 can not be applied to this example.

 $t \rightarrow s^+$

Since α_* -admissible mapping is also α -admissible, we can obtain following corollary.

Corollary 1. Let (X,d) be a complete metric space and $T : X \to K(X)$ be an α_* -admissible and multivalued (α, F) -contraction with contractive factor τ . Suppose that

$$\liminf_{t \to s^+} \tau(t) > 0, \text{ for all } s \ge 0$$

and there exist $x_0 \in X$ and $x_1 \in T x_0$ such that $\alpha(x_0, x_1) \ge 1$. If T is closed multivalued mapping or α has (B) property, then T has a fixed point.

Recently, there have been so many interesting developments in fixed point theory in metric spaces endowed with a partial order. The first result in this direction for single valued maps was given by Ran and Reurings [21], where they extended the Banach contraction principle in partially ordered sets with some application to a matrix equation. Later, many important results have been obtained for both single and multivalued mappings on metric spaces endowed with a partial order (see for example [14, 19]). By [12], we know that the fixed point results for α -admissible mappings are closely related to fixed point theory on partially ordered metric spaces. Following, we will present a fixed point result for multivalued mappings on metric spaces endowed with a partial order. In 2004, Feng and Liu [9] defined relations between two sets. Let X be a nonempty set and \leq be a partial order on X. Let A, B be two nonempty subsets of X, the relations between A and B are defined as follows:

(a) $A \prec_1 B$: if for every $a \in A$, there exists $b \in B$ such that $a \preceq b$,

(b) $A \prec_2 B$: if for every $b \in B$, there exists $a \in A$ such that $a \leq b$,

(c) $A \prec B$: if $A \prec_1 B$ and $A \prec_2 B$.

 \prec_1 and \prec_2 are different relations between A and B. For example, let $X = \mathbb{R}$, $A = [\frac{1}{2}, 1]$, B = [0, 1], \preceq be usual order on X, then $A \prec_1 B$ but $A \not\prec_2 B$; if A = [0, 1], $B = [0, \frac{1}{2}]$, then $A \prec_2 B$ while $A \not\prec_1 B$. \prec_1 , \prec_2 and \prec are reflexive and transitive, but are not antisymmetric. For instance, let $X = \mathbb{R}$, A = [0, 3], $B = [0, 1] \cup [2, 3]$, \preceq

197

be usual order on X, then $A \prec B$ and $B \prec A$, but $A \neq B$. Hence, they are not partial orders. Note that if A is a nonempty subset of X with $A \prec_1 A$, then A is singleton. (see [9]).

Corollary 2. Let (X, \leq) be a partially ordered set and suppose that there exist a metric d in X such that (X, d) is complete metric space. Let $T : X \to CB(X)$ (resp. K(X)) be a closed multivalued mapping such that

$$\tau(d(x,y)) + F(H(Tx,Ty)) \le F(d(x,y))$$

for all $(x, y) \in T_{\preceq}$, where $\tau : (0, \infty) \to (0, \infty)$ be a function satisfying

$$\liminf_{t \to s^+} \tau(t) > 0, \text{ for all } s \ge 0$$

and $T_{\leq} = \{(x, y) \in X \times X : x \leq y \text{ and } H(Tx, Ty) > 0\}$. Assume that for each $x \in X$ and $y \in Tx$ with $x \leq y$, we have $y \leq z$ for all $z \in Ty$ and there exist $x_0 \in X$, $x_1 \in Tx_0$ such that $\{x_0\} \prec_1 Tx_0$, then T has a fixed point.

Proof. Define a mapping $\alpha : X \times X \to [0, \infty)$ by

$$\alpha(x, y) = \begin{cases} 1 & , x \leq y \\ 0 & , \text{ otherwise} \end{cases}$$

Then $T_{\leq} = T_{\alpha}$. That is, T is (α, F) -contraction with contractive factor τ . Also, since $\{x_0\} \prec_1 Tx_0$, then there exists $x_1 \in Tx_0$ such that $x_0 \leq x_1$ and so $\alpha(x_0, x_1) \geq 1$. Now let $x \in X$ and $y \in Tx$ with $\alpha(x, y) \geq 1$, then $x \leq y$ and so by the hypotheses we have $y \leq z$ for all $z \in Ty$. Therefore, $\alpha(y, z) \geq 1$ for all $z \in Ty$. This shows that T is α -admissible. Therefore, from Theorem 10 (resp. Theorem 9), T has a fixed point in X.

Remark 4. We can give similar result using \prec_2 instead of \prec_1 .

ACKNOWLEDGEMENT

The authors would like to thank the referees for their helpful advice which led them to present this paper.

REFERENCES

- [1] M. U. Ali and T. Kamran, "On $(\alpha^* \cdot \psi)$ -contractive multivalued mappings," *Fixed Point Theory Appl.*, vol. 2013, no. 137, 2013.
- [2] I. Altun, G. Durmaz, G. Mınak, and S. Romaguera, "Multivalued almost F-contractions on complete metric spaces," *Filomat*, in press, doi: 10.2298/FIL1602441A.
- [3] I. Altun, G. Minak, and H. Dağ, "Multivalued F-contractions on complete metric space," J. Nonlinear Convex Anal., vol. 16, no. 4, pp. 659–666, 2015.
- [4] J. H. Asl, S. Rezapour, and N. Shahzad, "On fixed points of α-ψ-contractive multifunctions," *Fixed Point Theory Appl.*, vol. 2012, p. 6 pages, 2012, doi: 10.1186/1687-1812-2012-212.
- [5] M. Berinde and V. Berinde, "On a general class of multi-valued weakly Picard mappings," J. Math. Anal. Appl., vol. 326, no. 38, pp. 772–782, 2007, doi: 10.1016/j.jmaa.2006.03.016.

- [6] V. Berinde and M. Păcurar, "The role of the Pompeiu-Hausdorff metric in fixed point theory," *Creat. Math. Inform.*, vol. 22, no. 2, pp. 35–42, 2013.
- [7] L. B. Ćirić, "Multi-valued nonlinear contraction mappings," *Nonlinear Anal.*, vol. 71, pp. 2716–2723, 2009, doi: 10.1016/j.na.2009.01.116.
- [8] W.-S. Du, "Some new results and generalizations in metric fixed point theory," *Nonlinear Anal.*, vol. 73, pp. 1439–1446, 2010, doi: 10.1016/j.na.2010.05.007.
- [9] Y. Feng and S. Liu, "Fixed point theorems for multi-valued increasing operators in partially ordered spaces," *Soochow J. Math.*, vol. 30, no. 4, pp. 461–469, 2004.
- [10] S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, 1st ed. Dordrecht: Kluwer Academic Publishers, 1997.
- [11] V. I. Istrățescu, Fixed Point Theory: An Introduction, 1st ed. The Netherlands: Springer, 1981.
- [12] E. Karapınar and B. Samet, "Generalized α-ψ-contractive type mappings and related fixed point theorems with applications," *Abstr. Appl. Anal.*, vol. 2012, no. 793486, p. 17 pages, 2012, doi: 10.1155/2012/793486.
- [13] G. Mınak, O. Acar, and I. Altun, "Multivalued pseudo-Picard operators and fixed point results," J. Funct. Spaces Appl., vol. 2013, no. 827458, 2013, doi: 10.1155/2013/827458.
- [14] G. Minak and I. Altun, "Some new generalizations of Mizoguchi-Takahashi type fixed point theorem," J. Inequal. Appl., vol. 2013, no. 493, 2013, doi: 10.1186/1029-242X-2013-493.
- [15] N. Mizoguchi and W. Takahashi, "Fixed point theorems for multivalued mappings on complete metric spaces," J. Math. Anal. Appl., vol. 141, pp. 177–188, 1989, doi: 10.1016/0022-247X(89)90214-X.
- [16] B. Mohammadi, S. Rezapour, and N. Shahzad, "Some results on fixed points of α - ψ -Ćirić generalized multifunctions," *Fixed Point Theory Appl.*, vol. 24, p. 10 pages, 2013, doi: 10.1186/1687-1812-2013-24.
- [17] S. B. Nadler, "Multi-valued contraction mappings," Pacific J. Math., vol. 30, pp. 475–488, 1969.
- [18] H. Nawab, E. Karapınar, P. Salimi, and F. Akbar, "α-admissible mappings and related fixed point theorems," J. Inequal. Appl., vol. 114, p. 11 pages, 2013, doi: 10.1186/1029-242X-2013-114.
- [19] J. J. Nieto and R. Rodriguez-Lopez, "Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations," *Order*, vol. 22, pp. 223–239, 2005, doi: 10.1007/s11083-005-9018-5.
- [20] M. Olgun, G. Minak, and I. Altun, "A new approach to Mizoguchi-Takahashi type fixed point theorem," J. Nonlinear Convex Anal., in press.
- [21] A. Ran and M. C. B. Reurings, "A fixed point theorem in partially ordered sets and some applications to matrix equations," *Proc. Amer. Math. Soc.*, vol. 132, no. 5, pp. 1435–1443, 2003.
- [22] S. Reich, "Fixed points of contractive functions," *Boll. Un. Mat. Ital.*, vol. 4, no. 5, pp. 26–42, 1972.
- [23] B. Samet, C. Vetro, and P. Vetro, "Fixed point theorems for α-ψ-contractive type mappings," *Nonlinear Anal.*, vol. 75, pp. 2154–2165, 2012, doi: 10.1016/j.na.2011.10.014.
- [24] T. Suzuki, "Mizoguchi-Takahashi's fixed point theorem is a real generalization of Nadler's," J. Math. Anal. Appl., vol. 340, pp. 752–755, 2008.
- [25] D. Wardowski, "Fixed points of a new type of contractive mappings in complete metric spaces," *Fixed Point Theory Appl.*, vol. 2012, no. 94, p. 6 pages, 2012.

Authors' addresses

G. Durmaz

Department of Mathematics, Faculty of Science, Çankırı Karatekin University, 18100 Çankırı, Turkey

E-mail address: gncmatematik@hotmail.com

I. Altun

Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Department of Mathematics, Faculty of Science and Arts, Kirikkale University, 71450 Yahsihan, Kirikkale, Turkey

E-mail address: ishakaltun@yahoo.com