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NONEXISTENCE OF 2� .v;k;1/ DESIGNS ADMITTING
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Abstract. One of the outstanding problems in combinatorial design theory is concerning the
existence of 2� .v;k;1/ designs. In particular, the existence of 2� .v;k;1/ designs admitting
an interesting group of automorphisms is of great interest. Thirty years ago, a six-person team
classified 2� .v;k;1/ designs which have flag-transitive automorphism groups. Since then the
effort has been to classify those 2� .v;k;1/ designs which are block-transitive but not flag-
transitive. This paper is a contribution to this program and we prove there is nonexistence of 2�
.v;k;1/ designs admitting a point-primitive block-transitive but not flag-transitive automorphism
group G with socle E8.q/.
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1. INTRODUCTION

This paper is part of a project to classify groups and 2� .v;k;1/ designs where the
group acts transitively on the blocks of the design. A 2�.v;k;1/ design D D .P ;B/

is a pair consisting of a finite set P of points and a collection B of k�subsets of
P , called blocks, such that any 2-subsets of P is contained in exactly one block.
Traditionally one defined v DW jP j and b DW jBj. We will always assume that 2 <
k < v.

One of the outstanding problems in combinatorial design theory is concerning the
existence of 2� .v;k;1/ designs. In particular, the existence of 2� .v;k;1/ designs
admitting an interesting group of automorphisms is of great interest. Thirty years
ago, a six-person team [2] classified the pairs .D ;G/where D is a 2�.v;k;1/ design
and G is a flag-transitive automorphism group of D , with the exception of those in
which G is a one-dimensional affine group. Since then the effort has been to classify
those 2� .v;k;1/ designs which are block-transitive but not flag-transitive. These
fall naturally into two classes, those where the action on points is primitive and those
where the action on points is imprimitive. The primitive ones are now subdivided,
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according to the O’Nan-Scotte theorem and some further work by Camina, into the
socles which are either elementary abelian or non-abelian simple. As a result of [6]
it is known that the second only occur finitely times for a given line size. This paper
contributes to the program for determining the pairs .D ;G/ in which D has a point-
primitive block-transitive subgroup, G, of automorphisms. From the assumption that
G is transitive on the set B of blocks, it follows that G is also transitive on the point
set P . This is a consequence of the theorem of Block in [1].

The classification of block-transitive 2� .v;3;1/ designs was completed about
thirty years ago (see [4]). In [3] Camina and Siemons classified 2� .v;4;1/ designs
with a block-transitive, solvable group of automorphisms. Li classified 2� .v;4;1/
designs admitting a block-transitive, unsolvable group of automorphisms (see [11]).
Tong and Li classified 2� .v;5;1/ designs with a block-transitive, solvable group of
automorphisms in [19]. Liu classified 2� .v;k;1/ (where k D 6;7;8;9;10) designs
with a block-transitive, solvable group of automorphisms in [16]. Ding [8] considered
2� .v;k;1/ designs admitting block-transitive automorphism groups in AGL.1;q/
and prove the existence of 2� .v;6;1/ designs which have block-transitive but not
flag-transitive automorphism groups in AGL.1;q/ (see [7]). Dai and Zhao consider
2� .v;13;1/ designs with point-primitive block-transitive unsolvable group of auto-
morphisms whose socle is S´.22nC1/ in [5]. Recently, there have been a number
contributions to this classification (see [13, 14]). Here we focus on the existence
problem of 2� .v;k;1/ (k � 2793) designs with a point-primitive block-transitive
automorphism group of almost simple type and prove the following theorem:

Theorem 1. Suppose that E8.q/ E G � Aut.E8.q// for q > 5. Then there is
nonexistence of 2� .v;k;1/ (k � 2793) design D admitting a point-primitive block-
transitive but not flag-transitive automorphism group G.

We introduce some notation below. Let X and Y be arbitrary finite groups. The
expression X �Y denotes an extension of X by Y and X W Y denotes the split exten-
sion. If Y is a subgroup of X , then the symbol jX W Y j denotes the index of Y in
X . Let D be a 2� .v;k;1/ design and G be an automorphism group of D . If B is
a block, then GB denotes the setwise stabilizer of B in G and G.B/ is the pointwise
stabilizer of B in G. In addition, GB denotes the permutation group induced by the
action of GB on the points of B . Then GB Š GB=G.B/. We will write ˛ to be a
point of D and G˛ to be the stabilizer of ˛ under the action of G. Other notation for
group structure is standard.

The paper is organized as follows. Section 2 describes several preliminary results
concerning the groupE8.q/ and 2� .v;k;1/ designs. Section 3 gives the proof of the
theorem.
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2. PRELIMINARY RESULTS

Suppose that G is a block-transitive automorphism group of a 2� .v;k;1/ design.
It is well-known that:

v D r.k�1/C1I (2.1)
v.v�1/D bk.k�1/: (2.2)

Then we have r D .v� 1/=.k� 1/. We can show that b � v and so k � r . If k D r
then v D k2�kC1; if r � kC1, then v � k2.

We use a result of W. Fang and H. Li [9]. Define the following constants:

b1 D .b;v/; b2 D .b;v�1/; k1 D .k;v/; and k2 D .k;v�1/:

Using the basic equalities 2.1 and 2.2, we get the Fang-Li Equations:

k D k1k2; b D b1b2; r D b2k2; and v D b1k1:

We shall state a number of basic results which will be used repeatedly throughout
the paper. Liebeck and Saxl have determined the maximal subgroups of Soc.G/D
E8.q/ in [15].

Lemma 1 ([15]). Suppose that T D E8.q/EG � Aut.T /. Let M be a maximal
subgroup of G not containing T . Then one of the following holds

(1) jM j< q110jG W T j;
(2) M \T is a parabolic group;
(3) M \ T is isomorphic to .SL2.q/ ıE7.q//:d , D8.q/:d , or E8.q

1
2 / with q

square, where d D .2;q�1/.

Lemma 2 ([18]). Let G D T W hxi and act block-transitively on a 2� .v;k;1/
design D D .P ;B/, where x 2Out.T /. Then T acts transitively on P .

Lemma 3 ([17]). Let G be a solvable block-transitive automorphism group of a
2� .v;k;1/ design. If G is point-primitive, then

(1) there exists a prime number p and a positive integer n such that v D pn;
(2) if there exists a p-primitive prime divisor e of pn� 1, such that ejjGj, then

either G � A�L.1;pn/ or kjv.

Lemma 4 ([10]). Let D be a 2� .v;k;1/ design admitting a block-transitive and
point-primitive but not flag-transitive automorphism group G. Assume that T D
Soc.G/ and T˛ D T \G˛ where ˛ 2P . Then the following hold:

(1) v
´
< .k2k�k2C1/jG W T j, where ´ is the size of a T˛�orbit in P n f˛g;

(2) if .v�1;q/D 1, then there exists a T˛-orbit with size y in P n f˛g such that
yjjT˛jp0 .

Lemma 5. Let D be a 2�.v;k;1/ design admitting a block-transitive automorph-
ism group G. Assume that T D Soc.G/ and T˛ D T \G˛ where ˛ 2P . Then

(1) v D k2.k�1/b2C1;



998 SHANGZHAO LI

(2) b2jjT˛jv0 jG W T j and v � 1Ck.k�1/jT˛jv0 jG W T j;
(3) If G is not flag-transitive and non-solvable, then jT j

jT˛ j2
�
k.k�1/C1

2
jG W T j.

Proof. (1) Since k.k � 1/b D v.v � 1/ and k D k1k2;b D b1b2;v D b1k1, we
obtain k2.k�1/b2 D v�1 and hence v D 1Ck2.k�1/b2.

(2) Since rv D bk, it follows that r jG W G˛j D kjG W GB j, where ˛ 2 P ;B 2B.
Recall that kD k1k2; r D b2k2. It is clear that b2jGB j D k1jG˛j:Note that .b2;k1/D
1 and hence b2 divides jG˛j. Since .b2;v/ D 1, then b2jjG˛jv0 . Since G is block-
transitive, by Lemma 2, T is point-transitive. We conclude that v D jG W G˛j D jT W
T˛j. Hence jG˛j D jT˛jjG W T j and so b2jjT˛jv0 jG W T j. Together with (1), it deduces
that v � 1Ck2.k�1/jT˛jv0 jG W T j and hence v � 1Ck.k�1/jT˛jv0 jG W T j.

(3) Let B be a block of D . Since G is non-solvable, the following possibility for
the structure of GB , the rank and subdegree of G does not occur:

Type of GB Rank of G Subdegree of G

h1i 1Ck2.k�1/ 1,

k2.k�1/‚ …„ ƒ
b2;b2; � � � ;b2

Otherwise, jGB j is odd, whence jGj is odd and so G is solvable, which contradicts
the fact that G is non-solvable. Then by the proof of Proposition 3.1 in [10] the
conclusion holds. �

Lemma 6 ([12]). Suppose that D is a 2� .v;k;1/ design and G is an almost
simple group acting on D block-transitively. Let G˛ be the stabilizer in G of a point
˛ of D and suppose the socle T of G is a simple group of Lie type. If the intersection
of G˛ and T is a parabolic subgroup of T , then G acts on D flag-transitively.

3. PROOF OF THEOREM 1

Suppose that there exists a 2� .v;k;1/ (k � 2793) design D satisfying the condi-
tions of the Main Theorem. We will derive contradictions to prove the Main Theorem.

Since T DE8.q/EG �Aut.E8.q//, thenGD T W hxi and jOut.T /j D a, where
x 2Out.T /. Let o.x/Dm. Then we obtain thatmja and jGj D q120.q30�1/.q24�
1/.q20�1/.q18�1/.q14�1/.q12�1/.q8�1/.q2�1/m. SinceG is point-primitive,
G˛ is the maximal subgroup of G for any ˛ 2 P . Then M DG˛ satisfies one of the
three cases in Lemma 1. If G˛ \T is a parabolic subgroup of T , then by Lemma 6
we see that G is flag-transitive, which is a contradiction. Therefore, the case (2) in
Lemma 1 does not occur and it suffices to consider the following two cases.

Case 3.1: jG˛j< q110jG W T j:
Since G is block-transitive, by Lemma 2, T is point-transitive. Hence jG˛j D

jT˛jjG W T j and so jT˛j < q110. Then v D jT W T˛j is not a prime power and by
Lemma 3 we have that G is non-solvable. Note that m D jG W T j. It follows by
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Lemma 5 (3) that

jT j �
k.k�1/C1

2
jT˛j

2
jG W T j �

7798057

2
q220m:

This gives,

jT j

q220
D
.q2�1/.q8�1/.q12�1/.q14�1/.q18�1/.q20�1/.q24�1/.q30�1/

q100

<
7798057

2
m:

Since

.q2�1/.q8�1/.q12�1/.q14�1/.q18�1/.q20�1/.q24�1/.q30�1/ >
7

10
q128;

it implies that
7

10
q8 <

7798057

2
m:

Recall that mja, q D pa, p � 2. We can conclude therefore that

7

10
�28a �

7

10
�p8a D

7

10
q8 <

7798057

2
a; (3.1)

which forces a � 2. We calculate to obtain all possibilities for the values of p and
a satisfying the inequality 3.1: (1) a D 1, p � 5, a prime; (2) a D 2, p D 2. This
contradicts q > 5.

Case 3.2: G˛\T is case (3) in Lemma 1.
Now we consider three cases.
Subcase 3.2.1: T˛ D .SL2.q/ıE7.q//:d where d D .2;q�1/.
We observe that

jT˛j D q
64.q18�1/.q14�1/.q12�1/.q10�1/.q8�1/.q6�1/.q2�1/2

and

v D
q56.q30�1/.q24�1/.q20�1/

.q10�1/.q6�1/.q2�1/
:

Hence

jT˛jv0 � .q2�1/8.q12Cq6C1/.1Cq2Cq4Cq6Cq8Cq10Cq12/ <
7

5
q40:

Since

v D
q56.q30�1/.q24�1/.q20�1/

.q10�1/.q6�1/.q2�1/
>
1

50
q112;

we can appeal to Lemma 5 (2) to observe that

1

50
q112 < v � 1Ck.k�1/jT˛jv0 jG W T j< 1C7798056 �

7

5
�q40a:
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This implies the following inequality
1

50
�272a �

1

50
�q72 <

1

240a
C7798056 �

7

5
�a <

4

5
�224a;

which is impossible.
Subcase 3.2.2: T˛ DD8.q/:d , where d D .2;q�1/.
We calculate that

jT˛j D
dq56.q8�1/

Q7
iD1.q

2i �1/

d1

and

v D
d1q

64.q30�1/.q24�1/.q20�1/.q18�1/

d.q10�1/.q8�1/.q6�1/.q4�1/
;

where d1 D .4;q8�1/. Since .v�1;q/D 1, by Lemma 4 (2), there exists in P nf˛g

a T˛�orbit of size y such that yjjT˛jp0 . Hence

y � jT˛jp0 � 2.q8�1/

7Y
iD1

.q2i �1/:

Thus
v

y
�

d1q
64.q30�1/.q24�1/.q20�1/.q18�1/

2d.q14�1/.q12�1/.q10�1/2.q8�1/3.q6�1/2.q4�1/2.q2�1/

>

1
10
�q108

4 � 15
2
�q44

D
1

300
q64:

Note that k2 � k. We now apply Lemma 4 (1) to conclude that
1

300
�264a �

1

300
q64 <

v

y
< .k.k�1/C1/jG W T j � 7798057a <

19

20
�223a;

which is a contradiction.
Subcase 3.2.3: T˛ DE8.q

1
2 /.

We obtain that

jT˛j D q
60.q15�1/.q12�1/.q10�1/.q9�1/.q7�1/.q6�1/.q4�1/.q�1/

and

v D q60.q15C1/.q12C1/.q10C1/.q9C1/.q7C1/.q6C1/.q4C1/.qC1/:

Then it deduces that

jT˛jv0 � .q�1/8.q2CqC1/4.q6Cq3C1/.1CqCq2Cq3Cq4/2

� .1CqCq2Cq3Cq4Cq5Cq6/.1�qCq3�q4Cq5�q7Cq8/ < 48q44:

Since

vD q60.q15C1/.q12C1/.q10C1/.q9C1/.q7C1/.q6C1/.q4C1/.qC1/ > q124;
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by Lemma 5 (2) this implies that

q124 < v � 1Ck.k�1/jT˛jv0 jG W T j< 1C7798056 �48 �q44 �a:

This leads to the following result

280a � q80 <
1

244a
C7798056 �48a <

4

5
�229a;

which gives a contradiction.
This completes the proof of Theorem 1. �
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