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Abstract. In this paper, we are concerned with the oscillations in forced second order nonlinear
differential equations with nonlinear damping terms. By using clasical variational principle and
averaging technique, new oscillation criteria are established, which revise, improve and extend
some recent results. Furthermore our study answers the comment [16]. Examples are also given
to illustrate the results.
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1. INTRODUCTION

Consider the second-order nonlinear forced differential equation for t � t0 > 0�
r .t/k1

�
x;x0

��0
Cp .t/k2

�
x;x0

�
x0Cq .t/f .x/D e .t/ ; (1.1)

where p;q 2 C .Œt0;1/ ;R/ ; r 2 C 1 .Œt0;1/ ; .0;1//, f;e 2 C .R;R/ ;
k1 2C

1
�
R2;R

�
and k2 2C

�
R2;R

�
:We restrict our attention to solutions of Eq. (1.1)

which exists on Œt0;1/ : As usual, such a solution, x .t/ ; is said to be oscillatory if it
has arbitrarily zeros for all t0 � 0; otherwise, it is called nonoscillatory. Eq. (1.1) is
called oscillatory if all solutions are oscillatory.

In the last decades, there has been an increasing interest in obtaining sufficient
conditions for the oscillation and nonoscillation of solutions for different classes of
second-order nonlinear forced (unforced) differential equations with damping see,
for instance, [1, 3, 5–8, 12–15, 17, 18, 20, 21, 23].

Many results are established for the particular cases of Eq. (1.1) ; for example,
Wong [20] studied the equation for t � t0

x00 .t/Cp .t/x0 .t/Cq .t/f .x .t//D 0: (1.2)

In [15, 21], the authors obtained oscillation criteria for the equation for t � t0�
r .t/x0 .t/

�0
Cp .t/x0 .t/Cq .t/f .x .t//D 0: (1.3)
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Tiryaki and Zafer [17], Mustafa, Rogovchenko and Rogovchenko [12] obtained
several oscillation results for the nonlinear equation for t � t0;�

r .t/ .x .t//x0 .t/
�0
Cp .t/x0 .t/Cq .t/f .x .t//D 0: (1.4)

The general nonlinear differential equation with damping for t � t0�
r .t/k.x .t/ ;x0 .t//x0 .t/

�0
Cp .t/k.x .t/ ;x0 .t//x0 .t/Cq .t/f .x .t//D 0; (1.5)

has been considered recently by Ayanlar and Tiryaki [1] and S. P. Rogovchenko,Yu.
V. Rogovchenko [13].

The more general nonlinear differential equation with damping for t � t0,�
r .t/k1

�
x .t/ ;x0 .t/

��0
Cp .t/k2

�
x .t/ ;x0 .t/

�
x0 .t/Cq .t/f .x .t//D 0 (1.6)

has been first studied by Rogovchenko and Rogovchenko [14], which coincides our
main equation with e .t/D 0. Later, Rogovchenko’s study [14] has been extended by
Tiryaki and Zafer [19]. They obtained several oscillation criteria for solution of Eq.
(1.6) under some relationships between the functions k1and k2.

In 2006, Zhao and Meng [22] obtained some oscillation results for the nonlinear
differential equation Eq. (1.6) They established new oscillation criteria which are
extension and generalization of some known results by using the Riccati technique
and the kernel functions of Philos’ type under the following assumptations

(A1) p .t/� 0 for all t � t0; xf .x/ > 0 for all x ¤ 0I
(A2) vk1 .u;v/� ˇ1jk1 .u;v/ j

˛C1
˛ for some ˇ1 > 0; and all .u;v/ 2 R2I

(A3) vk2 .u;v/f
1
˛ .u/� ˇ2jk1 .u;v/ j

˛C1
˛ for some ˇ2 > 0; and all .u;v/ 2 R2I

(A4) f 0 .x/ exists and f 0.x/

jf .x/j
˛�1
˛

� ˇ3 > 0 for some positive constant ˇ3 and for

all x 2 Rnf0g I
or
(A5) q .t/� 0 for all t � t0; f satisfies f .x/

x
�L for for some positive constant L

and for all x ¤ 0I
(A6) vk1 .u;v/� ˇ4jk1 .u;v/ j

˛C1
˛ u

˛�1
˛ for some positive constant ˇ4 and for all

v 2 Rnf0g and all u 2 RI

(A7) vu
1
˛ k2 .u;v/ � ˇ5jk1 .u;v/ j

˛C1
˛ for some positive constant ˇ5 and for all

.u;v/ 2 R2:
In 2007, Çakmak and Tiryaki [2] shoved that the proof given by Zhao and Meng

[22] are inaccurate when x .t/ < 0 for t � t0; because if we take x .t/ < 0 then by
assumptations (A1) and (A5) f .x/ becomes negative, therefore (A3), (A6) and (A7)
are not satisfied. Thus, although, Zhao and Meng’s study [22] is very interesting and
well-organized, there are some important mistakes. Therefore, Çakmak and Tiryaki
[2] suggested to change the conditions (A3), (A6) and (A7) by replacing with (A3a),
(A6a) and (A7a) such that

(A3a) vk2 .u;v/ jf .u/ j
1
˛ �ˇ2jk1 .u;v/ j

˛C1
˛ for some ˇ2>0; and all .u;v/2R2I
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(A6a) vk1 .u;v/� ˇ4jk1 .u;v/ j
˛C1
˛ juj

˛�1
˛ for some positive constant ˇ4; and for

all v 2 Rnf0g and all u 2 RI

(A7a) vjuj
1
˛ k2 .u;v/� ˇ5jk1 .u;v/ j

˛C1
˛ for some positive constant ˇ5 and for all

.u;v/ 2 R2:
In 2008, Huang and Meng [9], take into considerations of Çakmak and Tiryaki’s

paper [2] and obtained some oscillation results for the nonlinear equation Eq. (1.6)
under the same assumptations (A1)-(A7) in Zhao and Meng’s paper [21] but replace
the conditions (A3), (A6) and (A7) with (A3a), (A6a) and (A7a).

In 2011, Shang and Qin [16] showed that if Huang and Meng’s conditions are
taken into consideration there exists restriction on f and k1 due to (A4) f .u/ and

k1becomes f .u/�
�
ˇ3
˛

�˛
juj˛ and jk1 .u;v/ j D ˇ�˛1 jvj

˛ by the assumptation (A2)

and by the choice of vk1 .u;v/D ˇ1jk1 .u;v/ j
˛C1
˛ . Then they showed that if (A3a)

holds and letting f .u/D
�
ˇ3
˛

�˛
juj˛�1u; k1 .u;v/Djvj

˛�1v;we obtain vk2 .u;v/�

ˇ2ˇ
�1
3 jvj

˛C1
˛ juj�1. On the other hand k2 become discontinuous at u D 0; which

leads to contradiction by the assumptation of k2: Additionally, in their Example 5.2
in [9], the outhors considered the equation�

r .t/k1
�
x;x0

��0
Cp .t/k2

�
x;x0

�
x0Cq .t/f .x/D 0;

with

k1 .u;v/D jvj
p�1v and k2 .u;v/D

jvjp�1v

u
�
1Cu2

� 1
p

:

But Shang and Qin [16] also showed that

vk2 .u;v/D
jvjp�1v2

u
�
1Cu2

� 1
p

is discontinuous at uD 0 and

k1 .u;v/D jvj
p�1v

is not continuously differentiable at v D 0: Therefore, oscillatory solutions of the
given equation in Example 5.2 in [9] does not exist. Thus it seems that the conditions
(A3a), (A6a) and (A7a) still need reconsideration.

Since the conditions of [9] used in the proofs, the recent papers [11] and [10] also
need revisement. Motivated by this fact, in this paper, first we will investigate the
oscillatory behavior of second-order nonlinear forced differential equation Eq. (1.1)
by revising the conditions (A3a), (A6a) and (A7a) to overcome the difficulties that
we mentioned above. Secondly, we define a new form of the functional Atisi .hI t / as
A
ti
si .hI˛C1/: By this way we overcome the problems of the singularity of the func-

tional Atisi .hI t / at the points si ; ti .i D 1;2/ and the problems of the inapplicability of
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the functional Atisi .hI t / for some ˛ as mentioned in Theorem 2.1 in [20], again The-
orem 2.1 in [2] and theorem 1.2 in [15] and so forth. Finally we give some illustrated
examples.

2. MAIN RESULTS

Firstly we introduce the general mean and some well known properties that will
be used in the proofs of our results.

Let

D.si ; ti /D
˚
u 2 C 1Œsi ; ti � W u.t/¤ 0 for t 2 .si ; ti / , u.si /D u.ti /D 0

	
; (2.1)

for i D 1;2: We define the functional Atisi .�In/ for H 2D.si ; ti / and n� 0 such as;

Atisi .hIn/D

tiZ
si

jH .t/ jnh.t/dt , si � t � ti , i D 1;2; (2.2)

where h 2 C .Œt0;1/; Œ0;1// : It is easily seen that the linear functional Atisi .�In/
satisfies the conditions

(1) Atisi .hIn/D A
ti
si .jH j

khIn�k/;for i D 1;2 and k 2 RI

(2) Atisi .h
0In/� �A

ti
si .njH

0hjIn�1/; for i D 1;2:
In this section, we shall make use of the following conditions:
.B1/ f .x/ is differentiable and xf .x/ > 0 for all x ¤ 0;
.B2/ vk1 .u;v/� ˇ1 jk1 .u;v/j

.˛C1/=˛ ; for some ˛ > 0; ˇ1 >0 and for all .u;v/2
R2:

.B3/ uvk2 .u;v/� 0 for all .u;v/ 2 R2;

.B4/ f
0 .x/ exists and

f 0 .x/

jf .x/ j
˛�1
˛

� ˇ2 > 0 for some positive constant ˇ2 and for

all x 2 Rnf0g,

.B5/
f .x/

x
�Kjxj�1 for some K > 0;  � 1 and for all x ¤ 0;

.B6/ vk1 .u;v/� ˇ3 jk1 .u;v/j
.˛C1/=˛

juj.˛�1/=˛ ; for some ˛ > 0; ˇ3 > 0 and for
all u 2 R, v ¤ 0:

Theorem 1. Suppose the conditions .B1/� .B4/ holds and for any T � t0, there
exists T � s1 < t1 � s2 < t2 such that

e .t/� 0 for t 2 Œs1; t1�, e .t/� 0 for t 2 Œs2; t2� and p .t/ > 0 on Œs1; t1�[ Œs2; t2�:
(2.3)

Let D.si ; ti / and Atisi .�In/ are defined by (2.1) and (2.2) respectively. If there exists
H 2D.si ; ti / and a nonnegative constant n such that

Atisi .qInC˛C1/ > A
ti
si
.ır

ˇ̌
H 0
ˇ̌˛C1
In/; (2.4)
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for i D 1;2; then Eq. (1.1) is oscillatory. Where ı D
�

˛
ˇ1ˇ2

�˛ �
nC˛C1
˛C1

�˛C1
:

Proof. On the contrary, suppose that Eq. (1.1) has a nonoscillatory solution x .t/ :
Then x .t/ eventually must have one sign, i.e. x .t/ ¤ 0 on ŒT0;1/ for some large
T0 � t0: By the assumptions, there exists s1; t1; s2 and t2 such that T0 � s1 < t1 �
s2 < t2 and (2.3) holds. Define

w.t/D
r .t/k1 .x .t/ ;x

0 .t//

f .x .t//
; t 2 Œs1; t1�[ Œs2; t2�: (2.5)

Then differentiating (2.5) and using Eq. (1.1) we obtain

w0 .t/D�q .t/�
p .t/k2 .x .t/ ;x

0 .t//f .x .t//x0 .t/

f 2 .x .t//

�
r .t/k1 .x .t/ ;x

0 .t//x0 .t/f 0 .x .t//

f 2 .x .t//
C

e .t/

f .x .t//
:

By using assumptions .B1/� .B4/ we obtain for t 2 Œs1; t1�[ Œs2; t2�

w0 .t/� �q .t/�
ˇ1ˇ2

r1=˛ .t/
jw.t/j.˛C1/=˛C

e .t/

f .x .t//
: (2.6)

On the intervals Œs1; t1� (if x .t/ > 0) or Œs2; t2� (if x .t/ < 0); w .t/ satisfies

w0 .t/� �q .t/�a.t/ jw.t/j.˛C1/=˛ ; (2.7)

where a.t/D ˇ1ˇ2r�1=˛ .t/.
Now first we assume that x .t/ > 0 on ŒT0;1/ for some large T0 � t0: Multiplying
jH .t/ jnC˛C1 throughout Eq.(2.7) and integrating from si to ti for i D 1; we obtain

At1s1.qInC˛C1/� A
t1
s1
..nC˛C1/ jH j˛

ˇ̌
H 0
ˇ̌
jwj�a jH j˛C1 jwj.˛C1/=˛ In/;

(2.8)
where D.si ; ti / is given by hypotheses. Setting

F .v/ WD .nC˛C1/ jH j˛
ˇ̌
H 0
ˇ̌
v�ajH j˛C1v.˛C1/=˛; v > 0,

we have F 0 .v�/D 0 and F 00 .v�/ < 0; where v� D
�
˛.nC˛C1/
˛C1

1
a
j
H 0

H
j

�˛
; which im-

plies that F .v/ obtains its maximum at v�: So we have

F .v/� F
�
v�
�
D

�˛
a

�˛�nC˛C1
˛C1

�˛C1 ˇ̌
H 0
ˇ̌˛C1

: (2.9)

Then we get, by using (2.9) in (2.8)

Atisi .qInC˛C1/� A
ti
si
.ır

ˇ̌
H 0
ˇ̌˛C1
In/; (2.10)

which contradicts to (2.4) for i D 1.

If x .t/ < 0 on ŒT0;1/ for some large T0 � t0; we get the inequality (2.6) again,
which implies that (2.7) holds on the interval Œs2; t2�: Applying operator Atisi .�In/ for
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i D 2 as mentioned above to (2.7) this time, we get the same contradiction to (2.4)
for i D 2. Thus the proof is complete. �

Lemma 1. [4]If A and B are non-negative constants and m;n 2 R such that
1

m
C
1

n
D 1, then

1

m
AC

1

n
B � A1=mB1=n:

Theorem 2. Suppose the conditions .B1/; .B3/; .B5/, .B6/ holds and for any
T � t0, there exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds and q.t/� 0
on Œs1; t1�[ Œs2; t2�. If there exists aH 2D.si ; ti / and a nonnegative constant n such
that

Atisi .QInC˛C1/ > A
ti
si
.ı1r jH

0
j
˛C1
In/; (2.11)

for i D 1;2; where

Q.t/D  . �1/.1�/= ŒKq .t/�1= je .t/j.�1/ ; ı1 D

�
˛

ˇ3

�˛�nC˛C1
˛C1

�˛C1
;

with the convention 00 D 1: Then Eq. (1.1) is oscillatory.

Proof. On the contrary, suppose that Eq. (1.1) has a nonoscillatory solution x .t/ :
Then x .t/ eventually must have one sign. First we assume that x .t/ > 0 on ŒT0;1/
for some large T0 � t0: Define

� .t/D
r .t/k1 .x .t/ ;x

0 .t//

x .t/
; t 2 Œs1; t1�[ Œs2; t2�: (2.12)

Then differentiating (2.12) and using Eq. (1.1) we obtain

� 0 .t/D�
q .t/f .x .t//

x .t/
�
p .t/k2 .x .t/ ;x

0 .t//x .t/

x2 .t/

�
r .t/k1 .x .t/ ;x

0 .t//x0 .t/

x2 .t/
C
e .t/

x .t/
:

By using .B1/ ; .B2/ ; .B3/ ; .B6/ and Eq. (2.3) we obtain for t 2 Œs1; t1�[ Œs2; t2�;

� 0 .t/� �q .t/K jx .t/j�1�
ˇ3

r1=a .t/
j� .t/j.˛C1/=˛C

e .t/

x .t/
: (2.13)

On the interval Œs1; t1�; inequality (2.13) implies that � .t/ satisfies

q .t/K jx .t/j�1Cj
e .t/

x .t/
j � �� 0 .t/�

ˇ3

r1=a .t/
j� .t/j.˛C1/=˛ : (2.14)
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For  > 1; by setting mD ; nD =. �1/ ; AD Kq .t/ jx .t/j�1,

B D

�


 �1

�
j
e.t/
x.t/
j and using Lemma 1, we obtain

q .t/K jx .t/j�1Cj
e .t/

x .t/
j �Q.t/ : (2.15)

Hence, on the interval Œs1; t1�; � .t/ satisfies

� 0 .t/� �Q.t/�
ˇ3

r1=a .t/
j� .t/j.˛C1/=˛ : (2.16)

Note that the inequality holds for  D 1 also with the convention 00 D 1.
Applying operator Atisi .�In/ for i D 1; to (2.15) we obtain a contradiction to (2.11),
this part of the proof is similar to Theorem 1 and hence omitted.
If x .t/ < 0 on ŒT0;1/ for some large T0 � t0; it is easy to see that (2.16) holds for
t 2 Œs2; t2�: Then applying operator Atisi .�In/ for i D 2, we still obtain contradiction.
Thus the proof is complete. �

Now we will give some other oscillation criteria for (1.1) through some new aver-
aging functions G .t;s/ 2 C .D1;R/ ; which satisfy:
(i) G .t; t/D 0; G .t; s/ > 0 for t > s;
(ii) G has partial derivatives @G=@t and @G=@s on D1 such that

@G

@t
D g1 .t; s/

p
G .t;s/;

@G

@s
D�g2 .t; s/

p
G .t;s/

where D1 D f.t; s/ W t0 � s � t <1g and g1;g2 2 Lloc
�
D1;RC

�
:

Theorem 3. Suppose the conditions .B1/� .B4/ holds and for any T � t0, there
exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds. If there exist some "i 2
.si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii) and a positive function � 2C 1

�
Œt0;1/;RC

�
such that

1

G˛C1 ."i ; si /

"iZ
si

�
G˛C1 .�;si /q .�/� .�/� ı2G

˛C1
1 .�;si /r .�/� .�/

�
d�

C
1

G˛C1 .ti ; "i /

tiZ
"i

�
G˛C1 .ti ; �/q .�/� .�/� ı2G

˛C1
2 .ti ; �/r .�/� .�/

�
d� (2.17)

> 0

for i D 1;2 where

ı2 D
˛˛

ˇ˛1ˇ
˛
2 .˛C1/

˛C1
;
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G1 .t; s/D

ˇ̌̌̌
.˛C1/g1 .t; s/

p
G .t;s/CG .t;s/

�0 .s/

� .s/

ˇ̌̌̌
;

G2 .t; s/D

ˇ̌̌̌
.˛C1/g2 .t; s/

p
G .t;s/�G .t;s/

�0 .s/

� .s/

ˇ̌̌̌
:

Then Eq. (1.1) is oscillatory.

Proof. On the contrary, suppose that Eq. (1.1) has a nonoscillatory solution x .t/ :
Then x .t/¤ 0 on ŒT;1/ for some sufficiently large T � t0: Define

w1 .t/D �.t/
r .t/k1 .x .t/ ;x

0 .t//

f .x .t//
; t 2 Œs1; t1�[ Œs2; t2�: (2.18)

Differentiating (2.18) , using conditions .B1/� .B4/ and Eq. (1.1) we obtain for
t 2 Œs1; t1�[ Œs2; t2�

w01 .t/�

�q .t/� .t/C
�0 .t/

� .t/
w1 .t/�ˇ1ˇ2r

�1=˛ .t/��1=˛ .t/ jw1 .t/j
.˛C1/=˛

C
e .t/

f .x .t//
� .t/ :

This implies that on the intervals Œs1; t1� (if x .t/ > 0) or Œs2; t2� (if x .t/ < 0); w1 .t/
satisfies the inequality

w01 .t/� �q .t/� .t/C
�0 .t/

� .t/
w1 .t/�ˇ1ˇ2r

�1=˛ .t/��1=˛ .t/ jw1 .t/j
.˛C1/=˛ :

(2.19)

On the one hand, multiplying (2.19) withG˛C1 .t; s/ and integrating (with t replaced
by s) over Œ"i ; t / for t 2 Œ"i ; ti / and i D 1;2 we haveZ t

"i

G˛C1 .t; s/q .s/� .s/ds �G˛C1 .t;"i /w1 ."i /

C

Z t

"i

�
G˛ .t; s/G2 .t; s/ jw1 .s/j

�
ds

�

Z t

"i

h
ˇ1ˇ2r

�1=˛ .t/��1=˛ .t/G˛C1 .t; s/ jw1 .t/j
.˛C1/=˛

i
ds: (2.20)

For a given t and s; set

F .v/DG˛G2v�ˇ1ˇ1r
�1=˛��1=˛G˛C1v.˛C1/=˛; v > 0:

F yields its maximum at the point v� D
�

˛
˛C1

G2
ˇ1ˇ1Gr�1=˛��1=˛

�˛
and

F .v/� Fmax D F
�
v�
�
D ı2G2r�: (2.21)
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Then, by using (2.21) and letting t ! t�i in (2.20), we getZ ti

"i

G˛C1 .ti ; s/q .s/� .s/ds

�G˛C1 .ti ; "i /w1 ."i /C ı2

Z ti

"i

G˛C12 .ti ; s/r .s/� .s/ds: (2.22)

On the other hand, multiplying (2.19) with G˛C1 .s; t/, then integrating (with t re-
placed by s) over Œt; "i / for t 2 Œti ; "i /, i D 1;2 and using similar calculations with
the proof of (2.21) we getZ "i

t

G˛C1 .s; si /q .s/� .s/ds �

�G˛C1 ."i ; si /w1 ."i /C ı2

Z "i

t

G˛C11 .s; si /r .s/� .s/ds: (2.23)

Letting t ! sCi in (2.23), it follows thatZ "i

si

G˛C1 .s; si /q .s/� .s/ds

� �G˛C1 ."i ; si /w1 ."i /C ı2

Z "i

si

G˛C11 .s; si /r .s/� .s/ds: (2.24)

Finally, dividing (2.22) and (2.24) by G˛C1 .ti ; "i / and G˛C1 ."i ; si / respectively,
and then adding them, we have the desired contradiction with (2.17). Thus the proof
is complete. �

Corollary 1. Suppose the conditions .B1/� .B4/ holds and for any T � t0, there
exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds. If there exist some "i 2
.si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii) and a positive function � 2C 1

�
Œt0;1/;RC

�
such that

"iZ
si

�
G˛C1 .�;si /q .�/� .�/� ı2G

˛C1
1 .�;si /r .�/� .�/

�
d� > 0; (2.25)

tiZ
"i

�
G˛C1 .ti ; �/q .�/� .�/� ı2G

˛C1
2 .ti ; �/r .�/� .�/

�
d� > 0; (2.26)

for i D 1;2: Then Eq. (1.1) is oscillatory.

Theorem 4. Suppose the conditions .B1/; .B3/; .B5/, .B6/ holds and for any
T � t0, there exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds and q.t/� 0
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on Œs1; t1�[ Œs2; t2�. If there exist some "i 2 .si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii)
and a positive function � 2 C 1

�
Œt0;1/;RC

�
such that

1

G˛C1 ."i ; si /

"iZ
si

�
G˛C1 .�;si /Q.�/� .�/� ı3G

˛C1
1 .�;si /r .�/� .�/

�
d�

C
1

G˛C1 .ti ; "i /

tiZ
"i

�
G˛C1 .ti ; �/Q.�/� .�/� ı3G

˛C1
2 .ti ; �/r .�/� .�/

�
d� (2.27)

> 0

for i D 1;2 where

ı3 D
˛˛

ˇ˛3 .˛C1/
˛C1

;

and H1; H2, Q are defined in previous theorems. Then Eq. (1.1) is oscillatory.

Proof. On the contrary, suppose that Eq. (1.1) has a nonoscillatory solution x .t/ :
Then x .t/¤ 0 on ŒT;1/ for some sufficiently large T � t0: Define

�1 .t/D �.t/
r .t/k1 .x .t/ ;x

0 .t//

x .t/
; t 2 Œs1; t1�[ Œs2; t2�: (2.28)

Differentiating (2.28) , using conditions.B1/; .B3/; .B5/, .B6/ and Eq. (1.1) we
obtain

�.t/

�
Kq .t/ jx .t/j�1C

ˇ̌̌̌
e .t/

x .t/

ˇ̌̌̌�
�

�� 01 .t/C
�0 .t/

� .t/
�1 .t/�ˇ3r

�1=˛ .t/��1=˛ .t/ j�1 .t/j
.˛C1/=˛

for t 2 Œs1; t1� or t 2 Œs2; t2�: By choosing mD ; nD =. �1/ ;
AD Kq .t/ jx .t/j�1 and B D =. �1/ je .t/=x .t/j in the Lemma 1 we get

�.t/Q.t/� �� 01 .t/C
�0 .t/

� .t/
�1 .t/�ˇ3r

�1=˛ .t/��1=˛ .t/ j�1 .t/j
.˛C1/=˛ (2.29)

for t 2 Œs1; t1� or t 2 Œs2; t2� and for  > 1: Note that the inequality (2.29) holds
trivially for  D 1.
The rest of the proof is similar with the previous theorem, hence omitted. �

Corollary 2. Suppose the conditions .B1/; .B3/; .B5/, .B6/ holds and for any
T � t0, there exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds and q.t/� 0
on Œs1; t1�[ Œs2; t2�. If there exist some "i 2 .si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii)
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and a positive function � 2 C 1
�
Œt0;1/;RC

�
such that

"iZ
si

�
G˛C1 .�;si /Q.�/� .�/� ı3G

˛C1
1 .�;si /r .�/� .�/

�
d� > 0; (2.30)

tiZ
"i

�
G˛C1 .ti ; �/Q.�/� .�/� ı3G

˛C1
2 .ti ; �/r .�/� .�/

�
d� > 0; (2.31)

for i D 1;2: Then Eq. (1.1) is oscillatory.

Now we consider the more general equation�
r .t/k1

�
x;x0

��0
Cp .t/

�
Ak2

�
x;x0

�
x0CBk3

�
x;x0

��
Cq .t/f .x/D e .t/ (2.32)

for t � t0 > 0; where A, B are nonnegative constants and, k3 2 C
�
R2;R

�
with

uk3 .u;v/� 0 for all .u;v/ 2 R2: By using same substitutions with the proofs above,
it is easy to proof following results. Since all the possible proofs differ from the
previous proofs with only the term uk3.u;v/, we rely on nonnegatitivity of this term.

Theorem 5. Suppose the conditions .B1/� .B4/ holds and for any T � t0, there
exists T � s1 < t1 � s2 < t2 such that (2.3) holds. Let D.si ; ti / and Atisi .�In/ are
defined by (2.1) and (2.2) respectively. If there exists H 2 D.si ; ti / and a nonneg-
ative constant n such that the inequality (2.4) holds for i D 1;2; then Eq. (2.32) is
oscillatory.

Theorem 6. Suppose the conditions .B1/; .B3/; .B5/, .B6/ holds and for any T �
t0, there exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds and q.t/� 0 on
Œs1; t1�[ Œs2; t2�. LetD.si ; ti / andAtisi .�In/ are defined by (2.1) and (2.2) respectively.
If there exists H 2 D.si ; ti / and a nonnegative constant n such that the inequality
(2.11) holds for i D 1;2 with the convention 00 D 1: Then Eq. (2.32) is oscillatory.

Theorem 7. Suppose the conditions .B1/� .B4/ holds and for any T � t0, there
exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds. If there exist some "i 2
.si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii) and a positive function � 2C 1

�
Œt0;1/;RC

�
such that the inequality (2.17) holds for i D 1;2: Then Eq. (2.32) is oscillatory.

Theorem 8. Suppose the conditions .B1/; .B3/; .B5/, .B6/ holds and for any
T � t0, there exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds and q.t/� 0
on Œs1; t1�[ Œs2; t2�. If there exist some "i 2 .si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii)
and a positive function � 2 C 1

�
Œt0;1/;RC

�
such that the inequality (2.27) holds for

i D 1;2: Then Eq. (2.32) is oscillatory.

Corollary 3. Suppose the conditions .B1/� .B4/ holds and for any T � t0, there
exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds. If there exist some "i 2
.si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii) and a positive function � 2C 1

�
Œt0;1/;RC

�



376 SÜLEYMAN ÖĞREKÇI, ADIL MISIR, AND AYDIN TIRYAKI

such that the inequalities (2.25) and (2.26) holds for i D 1;2: Then Eq. (2.32) is
oscillatory.

Corollary 4. Suppose the conditions .B1/; .B3/; .B5/, .B6/ holds and for any
T � t0, there exists T � s1 < t1 � s2 < t2 such that condition (2.3) holds and q.t/� 0
on Œs1; t1�[ Œs2; t2�. If there exist some "i 2 .si ; ti /, i D 1;2; G .t; s/ satisfying (i)-(ii)
and a positive function � 2 C 1

�
Œt0;1/;RC

�
such that the inequalities (2.30) and

(2.31) holds for i D 1;2: Then Eq. (2.32) is oscillatory.

Remark 1. If the hypotheses on the function e .t/ in condition (2.3) is replaced by
the following condition

e .t/� 0 for t 2 Œs1; t1� and e .t/� 0 for t 2 Œs2; t2�

we will find the condition of the all above theorems and corollaries are valid as well.

Example 1. Consider the equation�
t3�C1x0 .t/

�0
Cp .t/x .t/

�
x0 .t/

�2
CMt3�x .t/D sin t , (2.33)

where t � t0 > 1, M > 0; � > 0 and p .t/ > 0 is any function: It is easy to verify that
the conditions .B1/� .B3/ hold for the functions

k1 .u;v/D v; k2 .u;v/D uv; f .u/D u

for ˛ D ˇ1 D 1:
Moreover let H .t/D t�� sin t and s1 D k�; t1 D .kC1/�;s2 D .kC1/�; t2 D

.kC2/�: Then we have

Atisi .qI3/D

tiZ
si

jH .t/ j3q .t/dt DM

tiZ
si

sin6 tdt D
5M

16
� , for i D 1:2:

On the other hand,

At1s1.ır jH
0
j
˛C1
I1/D At2s2.ır jH

0
j
˛C1
I1/�

9

4

2�Z
�

�
�2t�1C4t �4�sin5 t cos t

�
dt

D
27

2
�2C

9

4
�2 ln2

So, the inequality (2.4) hold for M > 9
10�

�
6�2C�2c ln2

�
: Thus Eq. (2.33) is oscil-

latory if M > 9
10�

�
6�2C�2 ln2

�
by Theorem 1.

Example 2. Consider the equation�
t3�C1

x0 .t/

1C Œx0 .t/�2

�0
C
p .t/x .t/ .x0 .t//

2

1C Œx0 .t/�2
CNt3�x .t/.cosx.t/C2/D sin t ,

(2.34)
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where t � t0 > 1, N > 0, � > 0 and p .t/ > 0 is any function:Where

k1 .u;v/D
v

1Cv2
;k2 .u;v/D

uv

1Cv2
and f .u/D u.cosuC2/ :

It is easy to verify that the conditions .B1/; .B3/ ; .B5/ and .B6/ hold for for ˛ D
ˇ3 DK D  D 1: It is easy to check that Q D q for K D  D 1. Thus, by a similar
calculating we can show that if M > 9

10�

�
6�2C�2 ln2

�
then Eq. (2.34) is oscillat-

ory by Theorem 2.
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