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Abstract. Let f:IN — N be a multiplicative arithmetic function such that for all primes p and
positive integers «, f(p%) < p® and f(p)|f(p*). Suppose also that any prime that divides
f(p%) also divides pf(p). Define f(0) =0, and let H(n) = mliﬁmoo f™(n), where f™ denotes

th

the m'" iterate of f'. We prove that the function H is completely multiplicative.
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1. INTRODUCTION

The study of iterated arithmetic functions, especially functions related to the Euler
totient function @, has burgeoned over the past century. In 1943, H. Shapiro’s monu-
mental work on a function C(n), which counts the number of iterations of ¢ needed
for n to reach 2, paved the way for subsequent number-theoretic research [5]. In this
paper, we study a problem concerning the limiting behavior of iterations of functions
related to the Euler totient function.

Throughout this paper, we let N, Ng, and [P denote the set of positive integers, the
set of nonnegative integers, and the set of prime numbers, respectively. We will let
f:Ng — Ng be a multiplicative arithmetic function which has the following proper-
ties for all primes p and positive integers «.

L f(p*) < p“.
IL f(p)If(p*%).

III. If ¢ is prime and ¢| f (p%), then ¢|pf(p).
IV. £(0)=0.

First, note that property IV does not effectively restrict the choice of f. Indeed, we
may let f be any multiplicative arithmetic function that satisfies properties I, II, and
IIT and then simply define f(0) = 0. One class of arithmetic functions which satisfy
I, II, and III are the Schemmel totient functions. For each positive integer r, the
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Schemmel totient function S; is a multiplicative arithmetic function which satisfies
0, if p<r;
Sr (pa) = a—1 .
p* (p—r), itp>r
for all primes p and positive integers o [4]. These interesting generalizations of the
Euler totient function have applications in the study of magic squares [3, page 184]
and in the enumeration of cliques in certain graphs [1].

Because f is multiplicative, properties I and IT of f are equivalent to the following
properties, which we will later reference.
A. For all integers n > 1, f(n) <n.
B. If p is a prime divisor of a positive integer n, then f(p)| f(n).

Let fO(n) =n and fk*t1(n) = f(f¥(n)) for all nonnegative integers k and n.
Observe that, for any n € N, f"(n) € {0,1}. Furthermore, f"(n) = lim f™(n),
m—00

so we will define H(n) = 1i_r>n f™(n). The author has shown that the function
m-—00

H:N — {0, 1} is completely multiplicative for the case in which f is a Schemmel
totient function [2]. Our purpose is to prove that H is completely multiplicative for
any choice of a multiplicative arithmetic function f that satisfies properties I, II, III,
and IV. To help do so, we define the following sets.

P={peP:H(p)=1}

Q={qeP:H(q) =0}
S={mneNgtnVqgeQ}

We define T to be the unique set of positive integers defined by the following criteria:

e leT.

e If pis prime, then p € T if and only if f(p) € T.

e If x is composite, then x € T if and only if there exist x1,x, € T such that

X1,X2 > 1 and x1x2 = x.

Note that 7 is a set of positive integers; in particular, 0 € T. We may now establish

a couple of lemmas that should make the proof of the desired theorem relatively
painless.

Lemma 1. Let k € N. If all the prime divisors of k are in T, then all the positive
divisors of k (including k) are in T. Conversely, if k € T, then every positive divisor
of k is an element of T .

Proof. First, suppose that all the prime divisors of k are in 7', and let d be a

r
positive divisor of k. Then all the prime divisors of d are in T. Let d = l_[ p:-xi
i=1
be the canonical prime factorization of d. As p; € T, the third defining criterion of
T tells us that p% € T. Then, by the same token, pf € T. Eventually, we find that
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Pyt €T. As p{'. p» € T, we have p{' p, € T. Repeatedly using the third criterion,
we can keep multiplying by primes until we find that d € T'. This completes the first
part of the proof. Now we will prove that if k € T, then every positive divisor of
k is an element of T. The proof is trivial if k is prime, so suppose k is composite.
We will induct on £2(k), the number of prime divisors (counting multiplicities) of
k. If £2(k) = 2, then, by the third defining criterion of 7', the prime divisors of k
must be elements of 7. Therefore, if £2(k) = 2, we are done. Now, suppose the
result holds whenever £2(k) < h, where & > 1 is an integer. Consider the case in
which (k) = h + 1. By the third defining criterion of 7', we can write k = k1k»,
where 1 <kj,ky <k and ky,k, € T. By the induction hypothesis, all of the positive
divisors of k; and all of the positive divisors of k» are in 7. Therefore, all of the
prime divisors of k are in 7. By the first part of the proof, we conclude that all of the
positive divisors of k are in 7. U

Lemma 2. The sets S and T are equal.

Proof. First, note that 1 € SN T. Let m > 1 be an integer such that, for all k €
{1,2,...,m—1}, either ke SNT or k ¢ SUT. We will show that m € S if and
only if m € T. First, we must show that if k € {1,2,...,m—1}, then k € § if and
only if f(k) € S. Suppose, by way of contradiction, that f(k) € S and k & S. As
k &S, we have that k > 1 and k ¢ T. Lemma 1 then guarantees that there exists
a prime ¢ such that glk and ¢ € T. As g € T, the second defining criterion of T
implies that f(q) € T. As f(k) € S, f(k) # 0. By property B of f, f(q)|f(k),
so f(q) # 0. Therefore, f(q) € {1,2,...,m—1}, and f(q) ¢ T. By the induction
hypothesis, f(q) & S. Therefore, there exists some gg € Q such that go| f(¢). Thus,
qol f(q)| f (k), which contradicts the assumption that f(k) € S.

Conversely, suppose that f(k) € S and k € S. The fact that f(k) € S implies that
k > 1, and the fact that k € S implies (by the induction hypothesis) that k € T. By
Lemma 1, all prime divisors of k are elements of 7. The second criterion defining T
then implies that f(p) € T for all prime divisors p of k. Using Lemma 1 again, we
conclude that, for any prime divisor p of k, all prime divisors of f(p) are in 7. By
property III of f, all prime divisors of f(k) are elements of 7. Therefore, Lemma
| guarantees that f(k) € T. From property A of f and the fact that 0 & T', we see
that f(k) € {1,2,...,m —1}. The induction hypothesis then implies that f(k) € S,
which is a contradiction. Thus, we have established that if k € {1,2,...,m — 1}, then
k € Sifandonlyif f(k) e S.

We are now ready to establish that m € § if and only if m € T. Assume, first, that
m is prime. By the second criterion defining 7, m € T if and only if f(m) € T. By the
induction hypothesis and property A of f, f(m) € T if and only if f(m) € S. From
the preceding argument, we see that f(m) € S if and only if fZ(m) € S. Similarly,
f?(m) e S if and only if £3(m) € S. Continuing this pattern, we eventually find that
m € T if and only if f™(m) € S. Observe that f(m) = H(m) and that 0 € S and
1€ S. Hence, m € T if and only if H(m) = 1. Because m is prime, H(m) = 1 if and
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only if m &€ Q. Finally, it follows from the definition of S that m ¢ Q if and only if
m € S. This completes the proof of the case in which m is prime.

Assume, now, that m is composite. By Lemma 1, m € T if and only if all the
prime divisors of m are in 7. Because m is composite, all the prime divisors of m are
elements of {1,2,...,m — 1}. Therefore, by the induction hypothesis, all the prime
divisors of m are in T if and only if all the prime divisors of m are in S. It should be
clear from the definition of S that all the prime divisors of m are in S if and only if
m € S. Hence,m € T ifand only if m € S. O

We may now use the sets S and 7 interchangeably. In addition, part of the above
proof gives rise to the following corollary.

Corollary 1. Let k,r € N. Then f"(k) € S ifand only ifk € S.

Proof. The proof follows from the argument in the above proof that f(k) € S if
and only if kK € § whenever k € {1,2,...,m—1}. As we now know that we can make
m as large as we need, it follows that f(k) € S if and only if kK € S. Repeating this
argument, we see that f2(k) € S if and only if f(k) € S. The proof then follows
from repeated application of the same argument. U

Corollary 2. For any positive integer k, H(k) = 1 ifand only ifk € S.

Proof. Tt is clear that H(k) = 1 if and only if H(k) € S. Therefore, the proof
follows immediately from setting » = k in Corollary 1. g

Notice that Corollary 2, Lemma 2, and the defining criteria of 7 provide a simple
recursive means of constructing the set of positive integers x that satisfy H(x) = 1.
We also have the following theorem.

Theorem 1. The function H: N — {0, 1} is completely multiplicative.

Proof. Corollary 2 tells us that H is the characteristic function of the set S of
positive integers that are not divisible by primes in Q. If x, y € N, then it is clear that
xy € Sifandonly if x € § and y € S. The proof follows immediately. O
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