LINK BETWEEN HOSOYA INDEX AND FIBONACCI NUMBERS

HACÈNE BELBACHIR AND HAKIM HARIK

Received 09 November, 2014

Abstract. Let G be a graph and $Z(G)$ be its Hosoya index. We show how the Hosoya index can be a good tool to establish some new identities involving Fibonacci numbers. This permits to extend Hillard and Windfeldt work.

2010 Mathematics Subject Classification: 05A19; 05C30; 11B39

Keywords: Fibonacci numbers, matching, Hosoya index, paths

1. INTRODUCTION

We denote by $G = (V(G), E(G))$ a simple undirected graph, $V(G)$ is the set of its vertices and $E(G)$ is the set of its edges. The order of G is $|V(G)|$ and the size of G is $|E(G)|$. For a vertex v of G, $N(v)$ is the set of vertices adjacent to v, $\deg(v) := |N(v)|$ is the degree of v; $\text{Link}(v)$ is the set of edges incident to v. An edge $\{u, v\}$ of G is denoted uv. A path P_n, from a vertex v_1 to a vertex v_n, $n \geq 2$, is a sequence of vertices v_1, \ldots, v_n and edges $v_i v_{i+1}$, for $i = 1, \ldots, n - 1$; for simplicity we denote it by $v_1 \cdots v_n$. We extend the definition of P_n to $n = 0$ and $n = 1$ by setting P_0 is empty and P_1 is a single vertex, we add the convention that $P_n P_0 = P_0 P_n = P_n$ for all $n \geq 1$.

The graph $G - v$ is obtained from G by removing the vertex v and all edges of G which are incident to v. For an edge e of G, we denote by $G - e$ the graph obtained from G by removing e. The contraction of a graph G, associated to an edge e, is the graph G/e obtained by removing e and identifying the vertices u and v incident to e and replacing them by a single vertex v' where any edges incident to u or v are redirected to v'. We then say that we contract in G the adjacent vertices u, v into the vertex v'.

The well-known Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for $n \geq 2$. The Fibonacci numbers are connected to the element of Pascal’s triangle using the following identity

$$F_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}.$$
For some results and properties related to Fibonacci numbers, see for instance [1]. Many fields widely apply this sequence, particularly in physics and chemistry [10].

A matching M of a graph G is a subset of $E(G)$ such that no two edges in M share a vertex in G. A matching of G is also called an independent edge set of G. A k-matching of a graph G is a matching of G of cardinal k, it is then an independent edge set of G of cardinal k. We denote by $m(G,k)$ the number of k-matchings of G with the convention $m(G,0) = 1$. Note that $m(G,1) = |E(G)|$ and when $k > n/2$, $m(G,k) = 0$.

The Hosoya index of a graph G, denoted by $Z(G)$, is an index introduced by Hosoya [9] as follows.

$$Z(G) = \sum_{k=0}^{\lfloor n/2 \rfloor} m(G,k),$$

where $n = |V(G)|$, $\lfloor n/2 \rfloor$ stands for the integer part of $n/2$. This index has several applications in molecular chemistry such as boiling point, entropy or heat of vaporization. The literature includes many papers dealing the Hosoya index [2,3,6].

2. Preliminary results

Before proving our main results, we first list the following results. From the definition of the Hosoya index, it is not difficult to deduce the following Lemma.

Lemma 1 ([7]). Let G be a graph, we have

(1) If $uv \in E(G)$, then $Z(G) = Z(G - uv) + Z(G - \{u,v\}).$
(2) If $v \in V(G)$, then $Z(G) = Z(G - v) + \sum_{w \in N_G(v)} Z(G - \{w,v\}).$
(3) If $G_1, G_2, ..., G_t$ are the components of G then $Z(G) = \prod_{k=1}^{t} Z(G_k).$

Lemma 1 allows us to compute $Z(G)$ for any graph recursively.

The following theorem gives a relation between Hosoya index and Fibonacci number (see [5], [7]).

Theorem 1. Let P_n be a path on n vertices, then $Z(P_n) = F_{n+1}$.

3. Main results

In this section, inspired by [4], we give another proofs of well-known identities (see Lemmas 2 and 3). Our goal is to prove the formula of Lemma 3 via Theorem 1. For this we give a direct proof of Lemma 2. We also establish two new identities, given in Theorems 2 and 3.

The following identity shows the relation between independent edge subsets in $P_{r_1+r_2}, P_{r_1}$ and P_{r_2} for r_1 and r_2 two non-negative integers.

Lemma 2. Let r_1, r_2 be two non-negative integers, then

$$Z(P_{r_1+r_2}) = Z(P_{r_1}) Z(P_{r_2}) + Z(P_{r_1-1}) Z(P_{r_2-1}).$$
Proof. Let \(v_1 \cdots v_{r_1+r_2} \) be a path \(P_{r_1+r_2} \) partitioned into two paths \(P_{r_1} \) represented by a sequence of vertices \(v_1 \cdots v_{r_1} \) and \(P_{r_2} \) represented by a sequence of vertices \(v_{r_1+1} \cdots v_{r_1+r_2} \). The vertices \(v_{r_1} \) and \(v_{r_1+1} \) share the same edge in \(P_{r_1+r_2} \). The Hosoya number \(Z(P_{r_1+r_2}) \) of the path \(P_{r_1+r_2} \) represents the number of independent edge subsets between the vertices of \(P_{r_1+r_2} \), this index can be written as
\[
Z(P_{r_1+r_2}) = |M| + |M'|, \text{ where:}
\]

- \(M \) is the set of independent edge subsets of \(P_{r_1+r_2} \) such that the edge \(v_{r_1}v_{r_1+1} \) does not belong to any independent edge subset of \(M \), that means all independent edge subsets of \(M \) are in \(P_{r_1} \) and \(P_{r_2} \), so \(|M| = Z(P_{r_1})Z(P_{r_2}) \).
- \(M' \) is the set of independent edge subsets of \(P_{r_1+r_2} \) such that the edge \(v_{r_1}v_{r_1+1} \) belongs to all independent edge subsets of \(M' \), that means the others independent edges of every subset of \(M' \) are in \(P_{r_1-1} \) and \(P_{r_2-1} \), so \(|M'| = Z(P_{r_1-1})Z(P_{r_2-1}) \).

\[\square \]

Lemma 3. Let \(k, n \) be two integers such that \(1 \leq k \leq n \). Then
\[
F_{n+1} = F_kF_{n-k} + F_{k+1}F_{n-k+1}.
\]

Proof. Consider a path \(P_n = v_1 \cdots v_n \) on \(n \) vertices. We set \(r_1 := k, r_2 := n - k \), and use Theorem 1 and Lemma 2. \(\square \)

We introduce a new identity of Fibonacci numbers which generalize identities of Fibonacci numbers given in [8].

For every integer \(s \geq 2 \), let \(\Omega_s \) be the set of \(\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s) \) with \(\varepsilon_i \in \{-1,0,1\} \) \((1 \leq i \leq s) \) such that:

1. The number of \(\varepsilon_i = 0 \) is even. Let \(2h(\varepsilon) \) this number.
2. If \(2h(\varepsilon) = 0 \), then \(\varepsilon_i = 1 \) for all \(i \).
3. If \(2h(\varepsilon) \neq 0 \), let \(L_{\varepsilon} := \{s_1, s_2, \ldots, s_{2h(\varepsilon)} : s_1 < s_2 < \ldots < s_{2h(\varepsilon)} \text{ and } \varepsilon_{s_i} = 0 \text{ for all } i \in \{1, 2, \ldots, 2h(\varepsilon)\}\} \).

For all \(\varepsilon \in L_{\varepsilon} \), we have:

- \(l \) is even \(\iff \varepsilon_i = 1 \) for all \(s_l < i < s_{l+1} \);
- \(l \) is odd \(\iff \varepsilon_i = -1 \) for all \(s_l < i < s_{l+1} \);
- \(\varepsilon_i = 1 \) for all \(i < s_1 \) or \(i > s_{2h(\varepsilon)} \).

For example,
\[
\Omega_2 = \{(1,1),(0,0)\}, \quad \Omega_3 = \{(1,1,1),(1,0,0),(0,0,1),(0,0,0)\}, \quad \Omega_4 = \{(1,1,1,1),(0,0,1,1),(1,0,0,1),(1,1,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0),(0,0,0,0)\}.
\]

- The lines of the following table represent the elements of \(\Omega_5 \),
The lines of the following table represent the elements of Ω_6.

1 1 1 1 1 1	0 0 0 0 0 1
0 0 1 1 1 1	0 0 1 0 0 0
1 0 0 1 1 1	0 0 1 0 0 0
1 1 0 0 1 1	0 0 1 0 0 0
1 1 1 0 0 1	0 0 1 0 0 0
0 1 0 1 1 1	0 0 0 0 0 0
1 0 1 0 1 1	0 0 0 0 0 0
1 1 0 1 0 1	0 0 0 0 0 0
1 1 1 0 1 0	0 0 0 0 0 0
0 1 0 1 0 1	0 0 1 0 0 0
1 0 1 0 1 0	0 0 1 0 0 0
1 1 0 1 0 1	0 0 1 0 0 0
0 0 1 0 1 0	0 0 1 0 0 0
1 0 0 1 0 1	0 0 1 0 0 0
1 1 1 1 0 1	0 0 1 0 0 0
0 1 0 1 1 0	0 0 1 0 0 0
1 0 1 0 1 1	0 0 1 0 0 0
0 0 1 0 1 1	0 0 1 0 0 0
1 0 0 1 0 1	0 0 1 0 0 0
1 1 1 1 0 1	0 0 1 0 0 0
0 1 0 1 0 1	0 0 1 0 0 0
1 0 1 0 1 0	0 0 1 0 0 0
0 0 1 0 1 0	0 0 1 0 0 0
1 0 0 1 0 1	0 0 1 0 0 0
1 1 1 1 0 1	0 0 1 0 0 0
0 1 0 1 0 1	0 0 1 0 0 0
1 0 1 0 1 0	0 0 1 0 0 0
0 0 1 0 1 0	0 0 1 0 0 0
1 0 0 1 0 1	0 0 1 0 0 0
1 1 1 1 0 1	0 0 1 0 0 0
0 1 0 1 0 1	0 0 1 0 0 0
1 0 1 0 1 0	0 0 1 0 0 0
0 0 1 0 1 0	0 0 1 0 0 0
1 0 0 1 0 1	0 0 1 0 0 0
1 1 1 1 0 1	0 0 1 0 0 0

Theorem 2. For any positive integers r_i ($1 \leq i \leq s$) and any integer $s \geq 2$, we have

$$F_{r_1+r_2+\cdots+r_s+1} = \sum_{(\epsilon_1, \epsilon_2, \ldots, \epsilon_s) \in \Omega_s} \prod_{i=1}^{s} F_{r_i+\epsilon_i}. \quad (3.1)$$

Proof. Let $P_{r_1+r_2+\cdots+r_s}$ be a path with $r_1 + r_2 + \cdots + r_s$ vertices. We subdivide $P_{r_1+r_2+\cdots+r_s}$ in consecutive blocs of paths P_{r_i} with r_i vertices ($1 \leq i \leq s$), see Figure 1.

In one hand side, by Theorem 1, we have $Z(P_{r_1+r_2+\cdots+r_s}) = F_{r_1+r_2+\cdots+r_s+1}$. In the other hand $Z(P_{r_1+r_2+\cdots+r_s})$ is the number of independent edge subsets in $P_{r_1+r_2+\cdots+r_s}$. So, $Z(P_{r_1+r_2+\cdots+r_s}) = \sum_{k=0}^{s-1} |M_k|$ where M_k is the set of independent edge subsets I in $P_{r_1+r_2+\cdots+r_s}$ such that it exists exactly k edges between blocs of paths P_{r_i} ($1 \leq i \leq s$) which belong to I.
\(M_0 \) is the set of independent edge subsets \(I \) in \(P_{r_1+r_2+\ldots+r_s} \) such that doesn’t contain any edge between blocks of paths \(P_{r_i} (1 \leq i \leq s) \), so all these independent edge subsets are in blocks \(P_{r_i} (1 \leq i \leq s) \). Hence, \(|M_0| = \prod_{i=1}^{s} F_{r_i+1} \).

\(M_1 \) is the set of independent edge subsets \(I \) in \(P_{r_1+r_2+\ldots+r_s} \) such that it exists only one edge between blocs of paths \(P_{r_i} (1 \leq i \leq s) \) which belong to \(I \). Let \(H \) be a subset of \(M_1 \) containing the edge \(v_{r_1+\ldots+r_k}v_{r_1+\ldots+r_k+1} (1 \leq k \leq s-1) \) in all of its independent edge subsets. We contract the adjacent vertices \(v_{r_1+\ldots+r_k},v_{r_1+\ldots+r_k+1} \) in \(P_{r_1+\ldots+r_s} \) into one vertex \(v' \) and \(P_{r_1+\ldots+r_s-1} \) is a new path after contraction composed of consecutive blocks of paths \(P_{r_1},P_{r_2},\ldots,P_{r_{k-1}},P_{r_k-1},v',P_{r_{k+1}-1},P_{r_{k+2}} \ldots,P_{r_s} \). A path \(P_{r_1+\ldots+r_s-1} \) does not contain any edge between blocks which belong to independent edge subsets of \(H \), so \(|H| = F_{r_1+1} \times F_{r_2+1} \times \cdots \times F_{r_{k-1}+1} \times F_{r_k} \times F_2 \times F_{r_{k+1}} \times F_{r_{k+2}+1} \times \cdots \times F_{r_s+1} \). Thus, \(|M_1| = \sum_{(e_1,e_2,\ldots,e_s)\in \Delta_1} \prod_{i=1}^{s} F_{r_i+e_i} \) where \(\Delta_1 \) is the set of \((e_1,e_2,\ldots,e_s)\) such that for \(1 \leq i \leq s \), either \(e_i \in \{0,1\} \) and \(e_1e_2\cdots e_s \) forms a sequence such that there is only one pair of zeros and this pair is of the form \((e_1,e_{i+1})\).

\(M_2 \) is the set of independent edge subsets \(I \) in \(P_{r_1+r_2+\ldots+r_s} \) such that it exists exactly two edges between blocs of paths \(P_{r_i} (1 \leq i \leq s) \) which belong to \(I \). As for computing of \(|M_1| \) and using the contraction method for the two edges between blocs of paths \(P_{r_i} (1 \leq i \leq s) \), we have \(|M_2| = \sum_{(e_1,e_2,\ldots,e_s)\in \Delta_2} \prod_{i=1}^{s} F_{r_i+e_i} \) where \(\Delta_2 \) is the set of \((e_1,e_2,\ldots,e_s)\) in \(\Omega_s \) such that for \(1 \leq i \leq s \), either \(e_i \in \{-1,0,1\} \) and \(e_1e_2\cdots e_s \) forms a sequence such that there is only one pair of zeros \((e_1,e_{i+1})\) and \(e_i + e_{i+1} = -1 \), or only two pairs of zeros \(\{e_i,e_{i+1}\}, \{e_{i+1+k},e_{i+2+k}\} \) \((1 \leq k \leq i+k+2 \leq s) \) and \(e_i = 1 \) for all \(i \in \{1,2,\ldots,i-1,i+2,i+3,\ldots,i+k,i+k+3,\ldots,s\} \).

For \(M_k \) \((3 \leq k \leq s-2) \), using the contraction method for \(k \) edges between blocs of paths \(P_{r_i} (1 \leq i \leq s) \), we have \(|M_k| = \sum_{(e_1,e_2,\ldots,e_s)\in \Delta_k} \prod_{i=1}^{s} F_{r_i+e_i} \) where \(\Delta_k = \{(e_1,e_2,\ldots,e_s) \in \Omega_s : \text{for all } s_l \in L_r (1 \leq i \leq 2h(s)) \text{, } \sum_{l=1}^{h(s)} (s_{2l} - s_{2l-1}) = k \} \) which represents all sequences of \(\Omega_s \) such that the sum of the difference of the position of each pair of \(0 \) is equal to \(k \).

We finish by \(M_{s-1} \) which is the set of matchings \(I \) in \(P_{r_1+r_2+\ldots+r_s} \) such that it exists exactly \(s-1 \) edges between blocs of paths \(P_{r_i} (1 \leq i \leq s) \) which belong to
In this case, except the paths P_{r_1}, P_{r_2} that lose one vertex after a contraction all others paths P_{r_i} ($2 \leq i \leq s - 1$) lose two vertices after contraction method. Thus, $|M_{s-1}| = F_{r_1} F_{r_2} \prod_{i=2}^{s-1} F_{r_i} - 1$.

Note that $\{\Delta_k : 1 \leq k \leq s - 1\}$ is a partition of Ω_s. Hence, the identity (3.1) holds.

The following corollaries are the main results given by [8].

Corollary 1. For any non-negative integers r and t, we have

$$F_{r+t} = F_{r+1} F_t + F_r F_{t-1}. \quad (3.2)$$

Proof. From Theorem 2 with $s = 2$ and $\Omega_2 = \{(1, 1), (0, 0)\}$, we obtain the following identity $F_{r_1+r_2+1} = F_{r_1+1} F_{r_2+1} + F_{r_1} F_{r_2}$. We put $r = r_1$ and $t = r_2 + 1$ and we conclude.

Corollary 2. For any non-negative integers u, v and w, we have

$$F_{u+v+w} = F_{u+1} F_{v+1} F_{w+1} + F_u F_v F_w - F_{u-1} F_{v-1} F_{w-1}.$$

Proof. From Theorem 2 with $s = 3$ and $\Omega_3 = \{(1, 1, 1), (1, 0, 0), (0, 0, 1), (0, -1, 0)\}$, we obtain the following identity $F_{r_1+r_2+r_3+1} = F_{r_1+1} F_{r_2+1} F_{r_3+1} + F_{r_1+1} F_{r_2} F_{r_3} + F_{r_1} F_{r_2} F_{r_3+1} + F_{r_1} F_{r_2+1} F_{r_3}$. We put $u = r_1$, $v = r_2$ and $w = r_3 + 1$ and using $F_t = F_{t+1} - F_{t-1}$, we have:

$$F_{u+v+w} = F_{u+1} F_{v+1} F_w + F_{u+1} F_v F_{w+1} + F_u F_v F_w + F_u F_{v-1} F_{w+1}$$
$$= F_{u+1} F_{v+1} (F_w + 1) + F_{u+1} F_{v+1} F_{w-1} + F_u F_v F_w + F_u F_{v-1} F_{w-1}$$
$$= F_{u+1} F_{v+1} F_w + F_{u+1} F_v F_{w+1} + F_u F_v F_w + F_u F_{v-1} F_{w-1}$$
$$= F_{u+1} F_{v+1} (F_w + 1) + F_u F_v F_w - F_{u-1} F_{v-1} F_{w-1} + F_{u+1} F_{v-1} F_{w-1}$$
$$= F_{u+1} F_{v+1} (F_w + 1) + F_u F_v F_w - F_{u-1} F_{v-1} F_{w-1}$$
$$= F_{u+1} F_{v+1} (F_w + 1) + F_u F_v F_w - F_{u-1} F_{v-1} F_{w-1}$$
$$= F_{u+1} F_{v+1} (F_w + 1) + F_u F_v F_w - F_{u-1} F_{v-1} F_{w-1}.$$

Corollary 3. For any non-negative integers a, b, c and d, we have

$$F_{a+b+c+d+1} = F_{a+1} F_{b+1} F_{c+1} F_{d+1} + F_a F_b F_c F_d + F_{a+1} F_b F_c F_{d+1} + F_{a+1} F_b F_c F_{d+1}$$
$$+ F_b F_c F_d + F_a F_{b-1} F_c F_{d+1} + F_a F_b F_{c+1} F_{d+1}$$
$$+ F_{a+1} F_b F_{c+1} F_{d} + F_a F_{b-1} F_{c+1} F_{d+1}.$$
Proof. From Theorem 2, with \(s = 4 \) and \(\Omega_4 = \{(1, 1, 1, 1), (0, 0, 1, 1), (1, 0, 0, 1), (1, 1, 0, 0), (0, 0, 0, 0), (0, -1, 0, 1), (1, 0, -1, 0), (0, -1, -1, 0)\} \), we obtain the identity.

The following theorem is another identity of Fibonacci number which gives an equivalent of Theorem 2.

Theorem 3. Let \(s \geq 2 \) be an integer. For any non-negative integer \(r_i \) \((1 \leq i \leq s)\), we have

\[
F_{\sum_{i=1}^s r_i + 1} = F_{\sum_{i=1}^s r_i} F_{r_s + 1} + \sum_{i=0}^{s-2} \left(\prod_{j=1}^{i} F_{r_{s-j} - 1} \right) F_{\sum_{j=i+1}^{s-2} r_j + 1} F_{r_s - i - 1} F_{r_s} .
\]

Proof. As mentioned in Theorem 2, \(F_{\sum_{i=1}^s r_i + 1} = \sum_{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s) \in \Omega_s} \prod_{i=1}^s F_{r_i + \varepsilon_i} \). Then \(F_{\sum_{i=1}^s r_i + 1} = c_1 + c_0 \) where \(c_1 \) corresponds to the case \(\varepsilon_s = 1 \) and \(c_0 \) to the case \(\varepsilon_s = 0 \). That means to count \(F_{\sum_{i=1}^s r_i + 1} \) we have two cases.

Case 1. \(\varepsilon_s = 1 \). Then for all s-uplet \((\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s)\) we obtain

\[
c_1 = F_{r_s + 1} \left(\sum_{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{s-1}) \in \Omega_{s-1}} \prod_{i=1}^{s-1} F_{r_i + \varepsilon_i} \right).
\]

so for \(\varepsilon_s = 1 \) we have \(c_1 = F_{\sum_{i=1}^{s-1} r_i + 1} F_{r_s + 1} \).

Case 2. \(\varepsilon_s = 0 \). Let \(\varepsilon_{s-i-1} = 0 \) with \(i \) the smallest integer \(k \), \(0 \leq k \leq s-2 \), such that \(\varepsilon_{s-k-1} = 0 \). So for \(1 \leq j \leq i \) we have \(\varepsilon_{s-j} = -1 \). Hence,

\[
c_0 = \sum_{i=0}^{s-2} \left[\left(\prod_{j=1}^{i} F_{r_{s-j} - 1} \right) F_{r_{s-i} - 1} F_{r_s} \sum_{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_{s-i-2}) \in \Omega_{s-i-2}} \prod_{j=1}^{s-i-2} F_{r_j + \varepsilon_j} \right] .
\]

As an immediate consequence of Theorem 3 we have:

Corollary 4. For any non-negative integers \(s \) and \(r \), we have

\[
F_{sr + 1} = F_{r + 1} F_{(s-1)r + 1} + \sum_{i=0}^{s-2} F_{r+1} F_{s-i-1} F_{(s-i-2)r + 1} .
\]

Proof. Use Theorem 3 with \(r_1 = r_2 = \cdots = r_s = r \).
Acknowledgement

The authors wish to express their grateful thanks to the anonymous referee for her/his comments and suggestions towards revising this paper.

References

Authors’ addresses

Hacène Belbachir
USTHB, Faculty of Mathematics, RECITS Laboratory, DG-RSDT, Po. Box 32, El Alia, 16111, Algiers, Algeria
E-mail address: hbelsbachir@usthb.dz or hacenebelbachir@gmail.com

Hakim Harik
USTHB, Faculty of Mathematics, RECITS Laboratory, DG-RSDT, Po. Box 32, El Alia, 16111, Algiers, Algeria
Current address: CERIST, 5 Rue des frères Aïssou, Ben Aknoun, Algiers, Algeria
E-mail address: hhakim@mail.cerist.dz, harik_hakim@yahoo.fr