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LINK BETWEEN HOSOYA INDEX AND FIBONACCI NUMBERS
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Abstract. Let G be a graph and Z(G) be its Hosoya index. We show how the Hosoya index can
be a good tool to establish some new identities involving Fibonacci numbers. This permits to
extend Hillard and Windfeldt work.
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1. INTRODUCTION

We denote by G = (V(G), E(G)) a simple undirected graph, V(G) is the set
of its vertices and E(G) is the set of its edges. The order of G is |[V(G)| and the
size of G is |E(G)|. For a vertex v of G, N(v) is the set of vertices adjacent to
v, deg(v) := |N(v)| is the degree of v; Link(v) is the set of edges incident to v.
An edge {u,v} of G is denoted uv. A path P,, from a vertex v to a vertex vy,
n > 2, is a sequence of vertices vq,...,V, and edges v;v; 41, fori =1,...,.n—1;
for simplicity we denote it by vj ---v,. We extend the definition of P, to n = 0 and
n = 1 by setting Py is empty and P; is a single vertex, we add the convention that
P,Py= PyP, = P, foralln > 1.

The graph G — v is obtained from G by removing the vertex v and all edges of G
which are incident to v. For an edge e of G, we denote by G — e the graph obtained
from G by removing e. The contraction of a graph G, associated to an edge e, is
the graph G /e obtained by removing e and identifying the vertices u and v incident
to e and replacing them by a single vertex v’ where any edges incident to u or v are
redirected to v’. We then say that we contract in G the adjacent vertices u, v into the
vertex v’.

The well-known Fibonacci sequence { F}, } is defined as Fop =0, F; = 1, and F;, =
F,_1 + F,—», for n > 2. The Fibonacci numbers are connected to the element of
Pascal’s triangle using the following identity

" (n—k
Fn-i—l:Z k .
k=0
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For some results and properties related to Fibonacci numbers, see for instance [1].
Many fields widely applies this sequence, particularly in physics and chemistry [10].
A matching M of a graph G is a subset of E(G) such that no two edges in M
share a vertex in G. A matching of G is also called an independent edge set of G. A
k-matching of a graph G is a matching of G of cardinal k, it is then an independent
edge set of G of cardinal k. We denote by m (G, k) the number of k-matchings of G
with the convention m (G,0) = 1. Note that m (G, 1) = | E(G)| and when k > n/2,
m(G,k)=0.
The Hosoya index of a graph G, denoted by Z(G), is an index introduced by
Hosoya [9] as follows.
[n/2]
Z(G)= ) m(G.k).
k=0
where n = |V(G)|, |n/2] stands for the integer part of n/2. This index has several
applications in molecular chemistry such as boiling point, entropy or heat of vapor-
ization. The literature includes many papers dealing the Hosoya index [2, 3, 6].

2. PRELIMINARY RESULTS

Before proving our main results, we first list the following results. From the defin-
ition of the Hosoya index, it is not difficult to deduce the following Lemma.

Lemma 1 ([7]). Let G be a graph, we have

(1) Ifuv € E(G), then Z(G) = Z (G —uv)+ Z (G —{u,v}).

(2) Ifv e V(G), then Z(G) = Z(G —v) + X yeng (v) Z(G —{w,v}).

(3) If G1,Ga, ..., G are the components of G then Z (G) = ]—[fc=1 Z(Gy).

Lemma 1 allows us to compute Z(G) for any graph recursively.
The following theorem gives a relation between Hosoya index and Fibonacci num-
ber (see [5], [7]).

Theorem 1. Let P, be a path on n vertices, then Z(Py) = Fy+1.

3. MAIN RESULTS

In this section, inspired by [4], we give another proofs of well-known identities
(see Lemmas 2 and 3). Our goal is to prove the formula of Lemma 3 via Theorem
1. For this we give a direct proof of Lemma 2. We also establish two new identities,
given in Theorems 2 and 3.

The following identity shows the relation between independent edge subsets in
Py, 4+r,, Py, and Py, for r; and ra two non-negative integers.

Lemma 2. Let ry, rp be two non-negative integers, then

Z(Pr1+r2) = Z(Prl)Z(Prz)+Z(Pr1—1)Z(Pr2—1)~
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Proof. Let vy ---vy +p,be a path P, 1., partitioned into two paths P,, represen-
ted by a sequence of vertices v;---v,, and P, represented by a sequence of ver-
tices vy, 41+ Ur,+r,. The vertices vy, and vy, 4+1 share the same edge in Py 4,.
The Hosoya number Z ( Py, 4+r,) of the path Py, 1., represents the number of inde-
pendent edge subsets between the vertices of Py, 1,,, this index can be written as
Z (Pry+r,) = |M|+|M'|, where:

e M is the set of independent edge subsets of Py, 1, such that the edge vy, vy +1
does not belong to any independent edge subset of M, that means all inde-
pendent edge subsets of M are in Py, and Py,, so |M| = Z (Py,) Z (Pr,).

e M’ is the set of independent edge subsets of Py, 4, such that the edge
Ur, Ur, +1 belongs to all independent edge subsets of M’, that means the oth-
ers independent edges of every subset of M’ are in P,,—; and Pr,—1, SO
M| =Z(Pr,—1) Z (Pr—1).

g

Lemma 3. Let k,n be two integers such that 1 <k <n. Then
Foy1=FiFpk + Fep1 Fn—k41-

Proof. Consider a path P, = vy---v, on n vertices. We set r{ 1=k, r, :=n—k,
and use Theorem | and Lemma 2. O

We introduce a new identity of Fibonacci numbers which generalize identities of
Fibonacci numbers given in [§8].
For every integer s > 2, let 25 be the set of ¢ := (¢, ,¢,,...,&5) With g; € {—1,0,1}
(1 <i <s) such that:
(1) The number of ¢, = 0 is even. Let 2Ah(¢) this number.
(2) If 2h(e) =0, then g; = 1 for all .
(3) If 2h(e) # 0, let Ly := {51,52,....524() : S1 < 852 < ... < Spp(s) and &s; =
0 forallie{l,2,...,2h(e)}}.
Forall/ € L, we have :
e [iseven = ¢ = 1forall s; <i <s7471;
e [isodd = ¢ =—1foralls; <i <s7471;
e gi = 1foralli <sy0ri> sy

For example,
2, ={(1,1),(0,0)},
93 :{(171’1)7(1’070)’(07()»1)?(()»_170)},
24=1{1,1,1,1),(0,0,1,1),(1,0,0,1),(1,1,0,0),(0,0,0,0), (0,—1,0,1),
(1,0,—1,0),(0,—1,—1,0)}.

e The lines of the following table represent the elements of £2s,
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1 1 1 1 10 -1 -1 1
0o 0 1 I 11 0 -1 -1 0
1 0 o0 11§30 -1 -1 -1 O
1 1 0 0 1}0 O O 1
1 1 1 o040 O 1 OO
o-1r o 11§31 O 0 00O
1 0 -1 0130 -1 O 0
1 1 0 -1 0O O O -1 0

e The lines of the following table represent the elements of 2,

1 1 1 1 1 1fo o o0 o0 1 1
0 0 1 1 1 I1fo o 1 0 0 1
1 0 0 1 1 10 0 1 1 0 O
1 1 0 0 1 Ify1r o 0 0 0 1
1 1 !1 o o 141 0 O 1T O O
1 1 1 1 0o ofy1r 1 o O O O
0 -1 0 1 1 1f0 -1 0 0 0 1
1 0 -1 0 1 140 -1 0 1 0 O
11 0 -1 0 11 0 -1 0 O O
1 1 !1 0 -1 01 0 O O -—-10
0O -1 -1 0 1 1fo o 1 0 -10
1 0 -1 -10 1j0 0 0 -1 0 1
1 1.0 -1 -10)j30 -1 0 O -1 0
o -1 -1 -1o0 10 0 0 -1 -1 0
1 0 -1 -1 -1 0j0 -1 -1 0 O O
o -1 -1 -1 -1 0j0 0 O O O O

Theorem 2. For any positive integers r; (1 <i <s) and any integer s > 2, we
have

s
Fr1+r2+--~+rs+1 = Z l_[ Frl-—i-e,- s (3'1)

(£1,62,...,65)ERs =1

Proof. Let Pr, 4ry+..4r,be a path with rq 4 ry 4 -+ 4 r¢ vertices. We subdivide
Py, +ry4-+r, in consecutive blocs of paths P, with r; vertices (1 <i <), see Fig-
ure 1.

In one hand side, by Theorem 1, we have Z(Py, t..4r,) = Fr 4.qr,+1. In the
other hand Z( Py, 4r,+..+r,) is the number of independent edge subsets in
Pritrototry- SO, Z(Prytrytotry) = 3 5o | My | where My is the set of independ-
ent edge subsets / in Py, 4r,4..4r, such that it exists exactly k edges between blocs
of paths P, (1 <i <) which belongto /.
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Prl Prz

FIGURE 1. Path Py 4,4 4, divided in consecutive blocs of paths
Py, with r; vertices (1 <i <s).

My is the set of independent edge subsets / in Py, 4p,4..4r, such that doesn’t
contain any edge between blocs of paths P, (1 <i <), so all these independent
edge subsets are in blocs Py, (1 <i <s). Hence, |Myp| = ]_[f=1 Frit1.

M is the set of independent edge subsets I in Py, y,,+..4r, such that it exists
only one edge between blocs of paths P, (1 <i <s) which belongto /. Let H be a
subset of M containing the edge vy, 4.4 Vry4tri+1 (1 <k <s5—1) in all of its
independent edge subsets. We contract the adjacent vertices vy 4...4r , Upj 4try+1
in Py, 4.4, into one vertex v’ and Py, 4.4 r,—1 1s a new path after contraction com-

. /7
posed of consecutive blocs of paths Py, Pr,,..., Pr_\, Pri—1,V , Pri =1, Pri s, -

Pr,. A path Py 4..4r,—1 does not contain any edge between blocs which belong to
independent edge subsets of H, so |H| = Fp, 41 X Fryq1 X - X Fpp 411 X Fyp X
F> x Frk—H X Frk+2+1 Koo X Frs+1‘ Thus, |M1| = 2(81,82,...,85)€A1 Hf=l Fri+8i
where A is the set of (g,,¢,,...,&5) such thatfor 1 <i <s,¢; €{0,1} and e1&2---&;
forms a sequence such that there is only one pair of zeros and this pair is of the form
(1. 6141)-

M, is the set of independent edge subsets I in Py 4p,4..4r, such that it exists
exactly two edges between blocs of paths P, (1 <i <) which belong to /. As for
computing of | M1 | and using the contraction method for the two edges between blocs
of paths Py, (1 <i <s), we have [M,| = 2(81,82,---,83)€A2 [T52; Fr,+¢; Where Ay
is the set of (g,,¢,,...,65) € £2g such thatfor 1 <i <s,& € {—1,0,1} and e162---&;
forms a sequence such that there is only one pair of zeros {¢;,¢,,,} and ¢, ,, = —1,
or only two pairs of zeros {si,siH} , {8i+1+k,8i+2+k} (1<kandi+k+2<s)and
g, =1foralll e{1,2,....i —=1,i +2,i +3,....i+k,i+k+3, .. s}

For M}, (3 <k <s—2), using the contraction method for k edges between blocs
of paths Pr, (1 <i <), we have [Mg| =3 (| .. c)en, [1i=; Fr,+¢; where

A = {6,850 m85) € st for all s; € Le(1 <1 < 2(e)). ¥ (521 —s21-1) =
k} which represents all sequences of §2; such that the sum of the difference of the
position of each pair of 0 is equal to k.

We finish by M_; which is the set of matchings I in Py, 4,,+..+r, such that it
exists exactly s — 1 edges between blocs of paths Py, (1 <i <s) which belong to

’
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I. In this case, except the paths P;,, P, that lose one vertex after a contraction all

others paths P, (2 <i <s—1) lose two vertices after contraction method. Thus,
|Ms—1| = Fr Fy, st;; Fri—1.

Note that {Ay : 1 <k <s— 1} is a partition of £25. Hence, the identity (3.1) holds.

0

The following corollaries are the main results given by [8].

Corollary 1. For any non-negative integers r and t, we have
Fryt = Fry1Fr + Fr Fr—g. (3.2)
Proof. From Theorem 2 with s = 2 and £2, = {(1,1),(0,0)}, we obtain the fol-

lowing identity Fy 4py41 = Fri4+1Fr1+ Fr Fry. Weputr =rpand t =rp 41
and we conclude. ]

Corollary 2. For any non-negative integers u, v and w, we have
Futviw = Fut1 Foy1 Fo+1 + Fu Fy Fy — Fy—1 Fy—1 Fy—1.

Proof. From Theorem 2 withs =3 and 23 ={(1,1,1),(1,0,0),(0,0,1), (0,—1,0)},
we obtain the following identity Fy| 47y 4+r3+1 = Fry 41 Frat1 Frys41+ Fry 41 Fpy Fry +
FriFryFrsg1+ Fr Fryo1Fry. Weput u =71, v =r2 and w = r3 + 1 and using
Fy = Fy41— F;—1, we have :

Futvtw = Fur1Foy1Fy + Fyuy1 FoFy—1 + Fy Fy Fy + Fy Fy—1 Fy—
= Fut1Fy+1 (Fw+1— Fw—1) + Fut1 Fy Fy—1 + Fu Fy Fy
+(Fu+1 _Fu—l)Fv—le—l
= Fur1 Fop1Fuotr — Furi1 For1 Fo—r + Fup1 FoFy—1 + Fu Fy Fy
+Fu+1Fv—1Fw—1_Fu—va—le—l
= Fut1For1Fw+1 + FuFyFy — Fy—1 Fy—1 Fy—1 + Fyy1 Fy—1 Fyy—1
+Fu+1Fvo—1_Fu+1Fv+1Fw—1
= Fut1Fov1Fw+1 + FuFyFy — Fy—1 Fy—1 Fy—1
+ Fu+1 (Fv—l +Fv_Fv+1)Fw—1
= Fut1For1Fw+1 + FuFyFy — Fy—1 Fy—1 Fy—1.

Corollary 3. For any non-negative integers a, b, ¢ and d, we have
Fatbtctd+1
=Far1Fpr1Fer1Farr+FaFpFeFg+ Fap1 FpFeFgyy + Far1Fpi
+tFcFg+ FaFp 1 FeFgp1+ FaFpFev1Fgqq
tFar1FpFe—1Fg+ FaFp_1Fe1 Fy.
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Proof. From Theorem 2, with s = 4 and £24 = {(1,1,1,1),(0,0,1,1),(1,0,0,1),
(1,1,0,0),(0,0,0,0) ,(0,—1,0,1),(1,0,—1,0), (0,—1,—1,0)}, we obtain the
identity. O

The following theorem is another identity of Fibonacci number which gives an
equivalent of Theorem 2.

Theorem 3. Let s > 2 be an integer. For any non-negative integer r; (1 <i <s),
we have

s—2 i
i=0| \j=1
. . s
Proof. As mentioned in Theorem 2, Fy~s_ .44 = D (er.ennes)es2 L Li=1 Fri+e;-
Then Fz.s ril =C1 + co where ¢ corresponds to the case ¢, =1 and ¢ to the
H
case &, = 0. That means to count Fy~s_ . . ; we have two cases.
H
Case 1. &g = 1. Then for all s-uplet (¢, ,¢,,...,&5) we obtain

s—1
c1 = Fro+1 Z 1_[ Frite; |

(e1,6250.,65—1)€EQRs—1 I=1
so for g = 1 we have ¢1 = le;:l r,»+1F’s+1'
Case 2. g5 = 0. Let e5—;—; = 0 with i the smallest integer k, 0 < k <s—2, such

thateg_g_; = 0. Sofor 1 < j <i we have g5 ; = —1. Hence,
s—2 [ i s—i—2
co = l_[ Frs_j_l Frs_,-_l Frs Z 1_[ Frj+£_,-
i=0[ \/j=1 (81,62500s85——2)€ESR5—j—2 =1
s—2 [ i
= l_[ Fro_ -1 FZj;il_zrj+1Frs—i—l Fr,
i=0 j=1
g
As an immediate consequence of Theorem 3 we have :
Corollary 4. For any non-negative integers s and r, we have
s—2
) .
Fyri1 = Fri1Ftyre1 + F2 Y Fl Flomimayra1-
i=0

Proof. Use Theorem 3 withry =rp =+ =rg=r. 0
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