

LINK BETWEEN HOSOYA INDEX AND FIBONACCI NUMBERS

HACÈNE BELBACHIR AND HAKIM HARIK

Received 09 November, 2014

Abstract. Let G be a graph and Z(G) be its Hosoya index. We show how the Hosoya index can be a good tool to establish some new identities involving Fibonacci numbers. This permits to extend Hillard and Windfeldt work.

2010 Mathematics Subject Classification: 05A19; 05C30; 11B39

Keywords: Fibonacci numbers, matching, Hosoya index, paths

1. INTRODUCTION

We denote by G = (V(G), E(G)) a simple undirected graph, V(G) is the set of its vertices and E(G) is the set of its edges. The order of G is |V(G)| and the size of G is |E(G)|. For a vertex v of G, N(v) is the set of vertices adjacent to v, deg(v) := |N(v)| is the degree of v; Link(v) is the set of edges incident to v. An edge $\{u, v\}$ of G is denoted uv. A path P_n , from a vertex v_1 to a vertex v_n , $n \ge 2$, is a sequence of vertices v_1, \ldots, v_n and edges $v_i v_{i+1}$, for $i = 1, \ldots, n-1$; for simplicity we denote it by $v_1 \cdots v_n$. We extend the definition of P_n to n = 0 and n = 1 by setting P_0 is empty and P_1 is a single vertex, we add the convention that $P_n P_0 = P_0 P_n = P_n$ for all $n \ge 1$.

The graph G - v is obtained from G by removing the vertex v and all edges of G which are incident to v. For an edge e of G, we denote by G - e the graph obtained from G by removing e. The contraction of a graph G, associated to an edge e, is the graph G/e obtained by removing e and identifying the vertices u and v incident to e and replacing them by a single vertex v' where any edges incident to u or v are redirected to v'. We then say that we contract in G the adjacent vertices u, v into the vertex v'.

The well-known Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$, for $n \ge 2$. The Fibonacci numbers are connected to the element of Pascal's triangle using the following identity

$$F_{n+1} = \sum_{k=0}^{n} \binom{n-k}{k}.$$

© 2018 Miskolc University Press

For some results and properties related to Fibonacci numbers, see for instance [1]. Many fields widely applies this sequence, particularly in physics and chemistry [10].

A matching *M* of a graph *G* is a subset of E(G) such that no two edges in *M* share a vertex in *G*. A matching of *G* is also called an independent edge set of *G*. A *k*-matching of a graph *G* is a matching of *G* of cardinal *k*, it is then an independent edge set of *G* of cardinal *k*. We denote by m(G,k) the number of *k*-matchings of *G* with the convention m(G,0) = 1. Note that m(G,1) = |E(G)| and when k > n/2, m(G,k) = 0.

The Hosoya index of a graph G, denoted by Z(G), is an index introduced by Hosoya [9] as follows.

$$Z(G) = \sum_{k=0}^{\lfloor n/2 \rfloor} m(G,k),$$

where n = |V(G)|, $\lfloor n/2 \rfloor$ stands for the integer part of n/2. This index has several applications in molecular chemistry such as boiling point, entropy or heat of vaporization. The literature includes many papers dealing the Hosoya index [2, 3, 6].

2. PRELIMINARY RESULTS

Before proving our main results, we first list the following results. From the definition of the Hosoya index, it is not difficult to deduce the following Lemma.

Lemma 1 ([7]). Let G be a graph, we have (1) If $uv \in E(G)$, then $Z(G) = Z(G-uv) + Z(G - \{u,v\})$. (2) If $v \in V(G)$, then $Z(G) = Z(G-v) + \sum_{w \in N_G(v)} Z(G - \{w,v\})$. (3) If $G_1, G_2, ..., G_t$ are the components of G then $Z(G) = \prod_{k=1}^t Z(G_k)$.

Lemma 1 allows us to compute Z(G) for any graph recursively.

The following theorem gives a relation between Hosoya index and Fibonacci number (see [5], [7]).

Theorem 1. Let P_n be a path on *n* vertices, then $Z(P_n) = F_{n+1}$.

3. MAIN RESULTS

In this section, inspired by [4], we give another proofs of well-known identities (see Lemmas 2 and 3). Our goal is to prove the formula of Lemma 3 via Theorem 1. For this we give a direct proof of Lemma 2. We also establish two new identities, given in Theorems 2 and 3.

The following identity shows the relation between independent edge subsets in $P_{r_1+r_2}$, P_{r_1} and P_{r_2} for r_1 and r_2 two non-negative integers.

Lemma 2. Let r_1 , r_2 be two non-negative integers, then

$$Z(P_{r_1+r_2}) = Z(P_{r_1})Z(P_{r_2}) + Z(P_{r_1-1})Z(P_{r_2-1}).$$

742

Proof. Let $v_1 \cdots v_{r_1+r_2}$ be a path $P_{r_1+r_2}$ partitioned into two paths P_{r_1} represented by a sequence of vertices $v_1 \cdots v_{r_1}$ and P_{r_2} represented by a sequence of vertices $v_{r_1+1} \cdots v_{r_1+r_2}$. The vertices v_{r_1} and v_{r_1+1} share the same edge in $P_{r_1+r_2}$. The Hosoya number $Z(P_{r_1+r_2})$ of the path $P_{r_1+r_2}$ represents the number of independent edge subsets between the vertices of $P_{r_1+r_2}$, this index can be written as $Z(P_{r_1+r_2}) = |M| + |M'|$, where:

- *M* is the set of independent edge subsets of $P_{r_1+r_2}$ such that the edge $v_{r_1}v_{r_1+1}$ does not belong to any independent edge subset of *M*, that means all independent edge subsets of *M* are in P_{r_1} and P_{r_2} , so $|M| = Z(P_{r_1})Z(P_{r_2})$.
- M' is the set of independent edge subsets of $P_{r_1+r_2}$ such that the edge $v_{r_1}v_{r_1+1}$ belongs to all independent edge subsets of M', that means the others independent edges of every subset of M' are in P_{r_1-1} and P_{r_2-1} , so $|M| = Z(P_{r_1-1})Z(P_{r_2-1})$.

Lemma 3. Let k, n be two integers such that $1 \le k \le n$. Then

$$F_{n+1} = F_k F_{n-k} + F_{k+1} F_{n-k+1}.$$

Proof. Consider a path $P_n = v_1 \cdots v_n$ on *n* vertices. We set $r_1 := k$, $r_2 := n - k$, and use Theorem 1 and Lemma 2.

We introduce a new identity of Fibonacci numbers which generalize identities of Fibonacci numbers given in [8].

For every integer $s \ge 2$, let Ω_s be the set of $\varepsilon := (\varepsilon_1, \varepsilon_2, ..., \varepsilon_s)$ with $\varepsilon_i \in \{-1, 0, 1\}$ $(1 \le i \le s)$ such that :

- (1) The number of $\varepsilon_i = 0$ is even. Let $2h(\varepsilon)$ this number.
- (2) If $2h(\varepsilon) = 0$, then $\varepsilon_i = 1$ for all *i*.
- (3) If $2h(\varepsilon) \neq 0$, let $L_{\varepsilon} := \{s_1, s_2, \dots, s_{2h(\varepsilon)} : s_1 < s_2 < \dots < s_{2h(\varepsilon)} and \varepsilon_{s_i} = 0 for all i \in \{1, 2, \dots, 2h(\varepsilon)\}\}.$
 - For all $l \in L_{\varepsilon}$, we have :
 - *l* is even $\implies \varepsilon_i = 1$ for all $s_l < i < s_{l+1}$;
 - *l* is odd $\implies \varepsilon_i = -1$ for all $s_l < i < s_{l+1}$;
 - $\varepsilon_i = 1$ for all $i < s_1$ or $i > s_{2h(\varepsilon)}$.

For example,

$$\begin{split} \varOmega_2 &= \{(1,1),(0,0)\},\\ \varOmega_3 &= \{(1,1,1),(1,0,0),(0,0,1),(0,-1,0)\},\\ \varOmega_4 &= \{(1,1,1,1),(0,0,1,1),(1,0,0,1),(1,1,0,0),(0,0,0,0),(0,-1,0,1),\\ &\quad (1,0,-1,0),(0,-1,-1,0)\}. \end{split}$$

• The lines of the following table represent the elements of Ω_5 ,

1	1	1	1	1	0	-1	-1	0	1
0	$ \begin{array}{c} 1 \\ 0 \\ 1 \\ -1 \\ 0 \\ 1 \end{array} $	1	1	1	1	0	-1	-1	0
1	0	0	1	1	0	-1	-1	-1	0
1	1	0	0	1	0	0	0	0	1
1	1	1	0	0	0	0	1	0	0
0	-1	0	1	1	1	0	0	0	0
1	0	-1	0	1	0	-1	0	0	0
1	1	0	-1	0	0	0	0	-1	0

• The lines of the following table represent the elements of Ω_6 ,

1	1	1	1	1	1	0	0	0	0	1	1
0	0	1	1	1	1	0	0	1	0	0	1
1	0	0	1	1	1	0	0	1	1	0	0
1	1	0	0	1	1	1	0	0	0	0	1
1	1	1	0	0	1	1	0	0	1	0	0
1	1	1	1	0	0	1	1	0	0	0	0
0	-1	0	1	1	1	0	-1	0	0	0	1
1	0	-1	0	1	1	0	-1	0	1	0	0
1	1	0	-1	0	1	1	0	-1	0	0	0
1	1	1	0	-1	0	1	0	0	0	-1	0
0	-1	-1	0	1	1	0	0	1	0	-1	0
1	0	-1	-1	0	1	0	0	0	-1	0	1
1	1	0	-1	-1	0	0	-1	0	0	-1	0
0	-1	-1	-1	0	1	0	0	0	-1	-1	0
1	0	-1	-1	-1	0	0	-1	-1	0	0	0
0	1	-1	-1	-1	0	0	0	0	0	0	0

Theorem 2. For any positive integers r_i $(1 \le i \le s)$ and any integer $s \ge 2$, we have

$$F_{r_1+r_2+\dots+r_s+1} = \sum_{(\varepsilon_1,\varepsilon_2,\dots,\varepsilon_s)\in\Omega_s} \prod_{i=1}^s F_{r_i+\varepsilon_i},$$
(3.1)

Proof. Let $P_{r_1+r_2+\cdots+r_s}$ be a path with $r_1+r_2+\cdots+r_s$ vertices. We subdivide $P_{r_1+r_2+\cdots+r_s}$ in consecutive blocs of paths P_{r_i} with r_i vertices $(1 \le i \le s)$, see Figure 1.

In one hand side, by Theorem 1, we have $Z(P_{r_1+\dots+r_s}) = F_{r_1+\dots+r_s+1}$. In the

other hand $Z(P_{r_1+r_2+\cdots+r_s})$ is the number of independent edge subsets in $P_{r_1+r_2+\cdots+r_s}$. So, $Z(P_{r_1+r_2+\cdots+r_s}) = \sum_{i=0}^{s-1} |M_k|$ where M_k is the set of independent edge subsets I in $P_{r_1+r_2+\cdots+r_s}$ such that it exists exactly k edges between blocs of paths P_{r_i} $(1 \le i \le s)$ which belong to I.

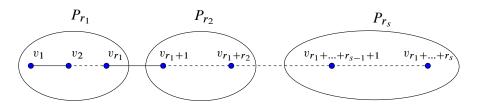


FIGURE 1. Path $P_{r_1+r_2+...+r_s}$ divided in consecutive blocs of paths P_{r_i} with r_i vertices $(1 \le i \le s)$.

 M_0 is the set of independent edge subsets I in $P_{r_1+r_2+\dots+r_s}$ such that doesn't contain any edge between blocs of paths P_{r_i} $(1 \le i \le s)$, so all these independent edge subsets are in blocs P_{r_i} $(1 \le i \le s)$. Hence, $|M_0| = \prod_{i=1}^s F_{r_i+1}$.

 M_1 is the set of independent edge subsets I in $P_{r_1+r_2+\cdots+r_s}$ such that it exists only one edge between blocs of paths P_{r_i} $(1 \le i \le s)$ which belong to I. Let H be a subset of M_1 containing the edge $v_{r_1+\cdots+r_k}v_{r_1+\cdots+r_k+1}$ $(1 \le k \le s-1)$ in all of its independent edge subsets. We contract the adjacent vertices $v_{r_1+\cdots+r_k}, v_{r_1+\cdots+r_k+1}$ in $P_{r_1+\cdots+r_s}$ into one vertex v' and $P_{r_1+\cdots+r_s-1}$ is a new path after contraction composed of consecutive blocs of paths $P_{r_1}, P_{r_2}, \ldots, P_{r_{k-1}}, P_{r_k-1}, v', P_{r_{k+1}-1}, P_{r_{k+2}}, \ldots,$ P_{r_s} . A path $P_{r_1+\cdots+r_s-1}$ does not contain any edge between blocs which belong to independent edge subsets of H, so $|H| = F_{r_1+1} \times F_{r_2+1} \times \cdots \times F_{r_{k-1}+1} \times F_{r_k} \times$ $F_2 \times F_{r_{k+1}} \times F_{r_{k+2}+1} \times \cdots \times F_{r_s+1}$. Thus, $|M_1| = \sum_{(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s) \in \Delta_1} \prod_{i=1}^s F_{r_i+\varepsilon_i}$ where Δ_1 is the set of $(\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_s)$ such that for $1 \le i \le s$, $\varepsilon_i \in \{0, 1\}$ and $\varepsilon_1 \varepsilon_2 \cdots \varepsilon_s$ forms a sequence such that there is only one pair of zeros and this pair is of the form $(\varepsilon_l, \varepsilon_{l+1})$.

 M_2 is the set of independent edge subsets I in $P_{r_1+r_2+\cdots+r_s}$ such that it exists exactly two edges between blocs of paths P_{r_i} $(1 \le i \le s)$ which belong to I. As for computing of $|M_1|$ and using the contraction method for the two edges between blocs of paths P_{r_i} $(1 \le i \le s)$, we have $|M_2| = \sum_{(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s) \in \Delta_2} \prod_{i=1}^s F_{r_i+\varepsilon_i}$ where Δ_2 is the set of $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_s) \in \Omega_s$ such that for $1 \le i \le s$, $\varepsilon_i \in \{-1, 0, 1\}$ and $\varepsilon_1 \varepsilon_2 \cdots \varepsilon_s$ forms a sequence such that there is only one pair of zeros $\{\varepsilon_i, \varepsilon_{i+2}\}$ and $\varepsilon_{i+1} = -1$, or only two pairs of zeros $\{\varepsilon_i, \varepsilon_{i+1}\}$, $\{\varepsilon_{i+1+k}, \varepsilon_{i+2+k}\}$ $(1 \le k$ and $i + k + 2 \le s)$ and $\varepsilon_i = 1$ for all $l \in \{1, 2, \dots, i - 1, i + 2, i + 3, \dots, i + k, i + k + 3, \dots, s\}$.

For M_k $(3 \le k \le s-2)$, using the contraction method for k edges between blocs of paths P_{r_i} $(1 \le i \le s)$, we have $|M_k| = \sum_{(\varepsilon_1, \varepsilon_2, ..., \varepsilon_s) \in \Delta_k} \prod_{i=1}^s F_{r_i + \varepsilon_i}$ where $\Delta_k = \{(\varepsilon_1, \varepsilon_2, ..., \varepsilon_s) \in \Omega_s : for all \ s_i \in L_{\varepsilon} (1 \le i \le 2h(\varepsilon)), \sum_{l=1}^{h(\varepsilon)} (s_{2l} - s_{2l-1}) = k\}$ which represents all sequences of Ω_s such that the sum of the difference of the position of each pair of 0 is equal to k.

We finish by M_{s-1} which is the set of matchings I in $P_{r_1+r_2+\cdots+r_s}$ such that it exists exactly s-1 edges between blocs of paths P_{r_i} $(1 \le i \le s)$ which belong to

I. In this case, except the paths P_{r_1} , P_{r_s} that lose one vertex after a contraction all others paths P_{r_i} $(2 \le i \le s - 1)$ lose two vertices after contraction method. Thus, $|M_{s-1}| = F_{r_1} F_{r_s} \prod_{i=2}^{s-1} F_{r_i-1}.$ Note that $\{\Delta_k : 1 \le k \le s-1\}$ is a partition of Ω_s . Hence, the identity (3.1) holds.

The following corollaries are the main results given by [8].

Corollary 1. For any non-negative integers r and t, we have

$$F_{r+t} = F_{r+1}F_t + F_rF_{t-1}.$$
(3.2)

Proof. From Theorem 2 with s = 2 and $\Omega_2 = \{(1,1), (0,0)\}$, we obtain the following identity $F_{r_1+r_2+1} = F_{r_1+1}F_{r_2+1} + F_{r_1}F_{r_2}$. We put $r = r_1$ and $t = r_2 + 1$ and we conclude.

Corollary 2. For any non-negative integers u, v and w, we have

$$F_{u+v+w} = F_{u+1}F_{v+1}F_{w+1} + F_uF_vF_w - F_{u-1}F_{v-1}F_{w-1}.$$

Proof. From Theorem 2 with s = 3 and $\Omega_3 = \{(1, 1, 1), (1, 0, 0), (0, 0, 1), (0, -1, 0)\},\$ we obtain the following identity $F_{r_1+r_2+r_3+1} = F_{r_1+1}F_{r_2+1}F_{r_3+1} + F_{r_1+1}F_{r_2}F_{r_3} + F_{r_1}F_{r_2}F_{r_3+1} + F_{r_1}F_{r_2-1}F_{r_3}$. We put $u = r_1$, $v = r_2$ and $w = r_3 + 1$ and using $F_t = F_{t+1} - F_{t-1}$, we have :

$$\begin{split} F_{u+v+w} &= F_{u+1}F_{v+1}F_w + F_{u+1}F_vF_{w-1} + F_uF_vF_w + F_uF_{v-1}F_{w-1} \\ &= F_{u+1}F_{v+1}\left(F_{w+1} - F_{w-1}\right) + F_{u+1}F_vF_{w-1} + F_uF_vF_w \\ &+ \left(F_{u+1} - F_{u-1}\right)F_{v-1}F_{w-1} \\ &= F_{u+1}F_{v+1}F_{w+1} - F_{u+1}F_{v+1}F_{w-1} + F_{u+1}F_vF_{w-1} + F_uF_vF_w \\ &+ F_{u+1}F_{v-1}F_{w-1} - F_{u-1}F_{v-1}F_{w-1} \\ &= F_{u+1}F_{v+1}F_{w+1} + F_uF_vF_w - F_{u-1}F_{v-1}F_{w-1} + F_{u+1}F_{v-1}F_{w-1} \\ &+ F_{u+1}F_vF_{w-1} - F_{u+1}F_{v+1}F_{w-1} \\ &= F_{u+1}F_{v+1}F_{w+1} + F_uF_vF_w - F_{u-1}F_{v-1}F_{w-1} \\ &+ F_{u+1}\left(F_{v-1} + F_v - F_{v+1}\right)F_{w-1} \\ &= F_{u+1}F_{v+1}F_{w+1} + F_uF_vF_w - F_{u-1}F_{v-1}F_{w-1}. \end{split}$$

Corollary 3. For any non-negative integers a, b, c and d, we have

$$F_{a+b+c+d+1} = F_{a+1}F_{b+1}F_{c+1}F_{d+1} + F_aF_bF_cF_d + F_{a+1}F_bF_cF_{d+1} + F_{a+1}F_{b+1} + F_cF_d + F_aF_{b-1}F_cF_{d+1} + F_aF_bF_{c+1}F_{d+1} + F_{a+1}F_bF_{c-1}F_d + F_aF_{b-1}F_{c-1}F_d.$$

746

Proof. From Theorem 2, with s = 4 and $\Omega_4 = \{(1, 1, 1, 1), (0, 0, 1, 1), (1, 0, 0, 1), (1, 0,$ (1, 1, 0, 0), (0, 0, 0, 0), (0, -1, 0, 1), (1, 0, -1, 0), (0, -1, -1, 0), we obtain the identity.

The following theorem is another identity of Fibonacci number which gives an equivalent of Theorem 2.

Theorem 3. Let $s \ge 2$ be an integer. For any non-negative integer r_i $(1 \le i \le s)$, we have

$$F_{\sum_{i=1}^{s} r_i+1} = F_{\sum_{i=1}^{s-1} r_i+1} F_{r_s+1} + \sum_{i=0}^{s-2} \left[\left(\prod_{j=1}^{i} F_{r_{s-j}-1} \right) F_{\sum_{j=1}^{s-i-2} r_j+1} F_{r_{s-i-1}} F_{r_s} \right].$$

Proof. As mentioned in Theorem 2, $F_{\sum_{i=1}^{s} r_i+1} = \sum_{(\varepsilon_1, \varepsilon_2, ..., \varepsilon_s) \in \Omega_s} \prod_{i=1}^{s} F_{r_i+\varepsilon_i}$. Then $F_{\sum_{i=1}^{s} r_i+1} = c_1 + c_0$ where c_1 corresponds to the case $\varepsilon_s = 1$ and c_0 to the case $\varepsilon_s = 0$. That means to count $F_{\sum_{i=1}^{s} r_i+1}$ we have two cases. Case 1. $\varepsilon_s = 1$. Then for all s-uplet $(\varepsilon_1, \varepsilon_2, ..., \varepsilon_s)$ we obtain

$$c_1 = F_{r_s+1}\left(\sum_{(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_{s-1})\in\Omega_{s-1}}\prod_{i=1}^{s-1}F_{r_i+\varepsilon_i}\right),$$

so for $\varepsilon_s = 1$ we have $c_1 = F_{\sum_{i=1}^{s-1} r_i + 1} F_{r_s + 1}$. Case 2. $\varepsilon_s = 0$. Let $\varepsilon_{s-i-1} = 0$ with *i* the smallest integer $k, 0 \le k \le s-2$, such that $\varepsilon_{s-k-1} = 0$. So for $1 \le j \le i$ we have $\varepsilon_{s-j} = -1$. Hence,

$$c_{0} = \sum_{i=0}^{s-2} \left[\left(\prod_{j=1}^{i} F_{r_{s-j-1}} \right) F_{r_{s-i-1}} F_{r_{s}} \sum_{\substack{(\varepsilon_{1}, \varepsilon_{2}, \dots, \varepsilon_{s-i-2}) \in \Omega_{s-i-2} \\ (\varepsilon_{1}, \varepsilon_{2}, \dots, \varepsilon_{s-i-2}) \in \Omega_{s-i-2}}} \prod_{j=1}^{s-i-2} F_{r_{j}+\varepsilon_{j}} \right]$$
$$= \sum_{i=0}^{s-2} \left[\left(\prod_{j=1}^{i} F_{r_{s-j}-1} \right) F_{\sum_{j=1}^{s-i-2} r_{j}+1} F_{r_{s-i-1}} F_{r_{s}} \right].$$

As an immediate consequence of Theorem 3 we have :

Corollary 4. For any non-negative integers s and r, we have

$$F_{sr+1} = F_{r+1}F_{(s-1)r+1} + F_r^2 \sum_{i=0}^{s-2} F_{r-1}^i F_{(s-i-2)r+1}.$$

Proof. Use Theorem 3 with $r_1 = r_2 = \cdots = r_s = r$.

HACÈNE BELBACHIR AND HAKIM HARIK

ACKNOWLEDGEMENT

The authors wish to express their grateful thanks to the anonymous referee for her/his comments and suggestions towards revising this paper.

References

- [1] H. Belbachir and F. Bencherif, "Linear recurrent sequences and powers of a square matrix," *Integers*, vol. 6, pp. A12, 17, 2006.
- [2] J. A. Bondy and U. S. R. Murty, "Graph theory with applications," North-Holland, 1976.
- [3] O. Chan, I. Gutman, T. K. Lam, and R. Merris, "Algebraic connections between topological indices," J. Chem. Inform. Comput. Sci., vol. 38, pp. 62–65, 1998.
- [4] H. Deng, "The largest Hosoya index of (n, n + 1)-graphs," Comput. Math. Appl., vol. 56, no. 10, pp. 2499–2506, 2008, doi: 10.1016/j.camwa.2008.05.020.
- [5] I. Gutman, "Acyclic systems with extremal Hückel π-electron energy," *Theoret. Chim. Acta*, vol. 45, no. 1, pp. 79–87, 1977, doi: 10.1007/BF00552542.
- [6] I. Gutman and S. J. Cyvin, "Hosoya index of fused molecules," MATCH Commun. Math. Comput. Chem., no. 23, pp. 89–94, 1988.
- [7] I. Gutman and O. E. Polansky, *Mathematical concepts in organic chemistry*. Springer-Verlag, Berlin, 1986. doi: 10.1007/978-3-642-70982-1.
- [8] C. J. Hillar and T. Windfeldt, "Fibonacci identities and graph colorings," *Fibonacci Quart.*, vol. 46/47, no. 3, pp. 220–224, 2008/09.
- [9] H. Hosoya, "Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons," *Bull. Chem. Soc. Jap.*, vol. 44, no. 9, pp. 2332– 2339, 1971.
- [10] T. Koshy, Fibonacci and Lucas numbers with applications, ser. Pure and Applied Mathematics (New York). Wiley-Interscience, New York, 2001. doi: 10.1002/9781118033067.

Authors' addresses

Hacène Belbachir

USTHB, Faculty of Mathematics, RECITS Laboratory, DG-RSDT, Po. Box 32, El Alia, 16111, Algiers, Algeria

E-mail address: hbelbachir@usthb.dz or hacenebelbachir@gmail.com

Hakim Harik

USTHB, Faculty of Mathematics, RECITS Laboratory, DG-RSDT, Po. Box 32, El Alia, 16111, Algiers, Algeria

Current address: CERIST, 5 Rue des frères Aissou, Ben Aknoun, Algiers, Algeria *E-mail address*: hhakim@mail.cerist.dz, harik_hakim@yahoo.fr