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Abstract. Generalized Finsler space GF), is a differentiable N -dimensional manifold with non-
symmetric basic tensor g;; (x,x) defined by condition (1.2). Using the basic tensor, by (1.4)
a non-symmetric connection P* is defined, and also four kinds of covariant derivative in the
Rund’s sense and five curvature tensors are obtained (Section 1).

In Section 2 two kinds of Ricci coefficients of rotation are defined and their properties are
exposed. Also, integrability conditions of the equation expressing covariant derivatives of the
congruence vector by means of coefficients of rotation, are obtained.

In Section 3 a geodesic mapping of two spaces GFy, and G F, is defined and some it’s prop-
erties are proved.

In Section 4 some invariants of such mappings in relation with the coefficients of rotation are
studied.
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1. INTRODUCTION

The generalized Finsler space (G Fy,) is a differentiable manifold with non-symmetric

basic tensor field g;; (x!,...,xN x1,...,xN) = g;; (x, X), where

gij(x, %) # gji(x.x), (g=det(gij) #0, x =dx/dr). (LD
Based on (1.1), the symmetric and anti-symmetric part of g;; are defined
1 1
gij = E(gij + gji) 8ij = E(gij —&ji)-
Following [18], in our notation, hold
192F2(x, ) 98i;

DD =35m0 0 P ek

=0, (1.2)
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where F(x,x) is a metric function in GFj, having the properties known from the
theory of usual Finsler spaces (Fy). A lot of research papers (see for example
[1-4,6,11,14-19,21,22]) are dedicated to the theory of Finsler spaces and their gen-
eralizations. The discussed structure is a particular case of the Eisenhart-Lagrange
approach which is studied in [12] (Chap. 8).

The lowering and the raising of indices are defined by the tensors g;; and hi/

respectively, where 4%/ satisfy equation
gy h'* =68F. (g=det(gij) #0).

Generalized Cristoffel symbols of the 15 and the 2”9 kind are defined:
1
Yijk = E(gji,k —&jk,it+8&ik,j) F Vikj»
. 4 1 . .
Vi =hPyp.jkc = 5hP(8jp k= &jkp + 8pk.j) # Vij-

where, e.g., gji k = 8gj,~/8xk.
Then we have

p
Vix&ip = Vs.jkh™ gip = Vs.jk87" = vi_jk-
Introducing a tensor C; i like as at space Fy, we have

def 1 1 1 5
Cijk(X,x) = Egij,fck :Egiaffk :Zin;ijk-
We see that C; i is symmetric in relation to each pair of indices. Also, we have

Cie & WP Cpppe = WP Cpp = WP iy (1.3)

With help of coefficients
e = Vik = CipVa k™ # P

one obtains coefficients of a non-symmetric affine connections in the Rund’s sence

(see [17, ]):
PR =y =1 UCigp PE + Crgp Ply— Cirp PLX™ # P (1.4)

p p
ifjk Pkgzr—Vi.jk_(ciijks+Cikajs jkp )X*S#P*
In GF, we denote anti-symmetric and symmetric part for a connection P* respect-
ively:

; . 1 . . 1 . .
@) TH (8 = (P~ PED = SO — Vi) B PR = 5P+ P,

where T;;C’ is the torsion tensor of the connection P;;ci.
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We define four kinds of covariant derivative of a tensor in the space GF,. For
example, for a tensor a } (x,8):

a}lm(x,é) =a§’m+a;~’p5f’ P;,‘;n ; —P;.k,f;a;,,
1

ab . (x.6) =dl,, +al P + Pria? — PXPal (1.5)
2

aj.lm(x,é) =a§-,m+a§’péf’ P;‘;n ; —P,:f.’af,,
3

aj.|m(x,g) = ab,, +al €0+ Pra? — PTPal, (1.6)

where £(x) is an arbitrary tangent vector in the tangent space 7,(x), and aj
da’ y /0xP.
In the work [10] we obtain 10 Ricci type identities in the general case for a tensor

P

atl o 2 (x,§) and three curvature tensors of G Fy:
11<’jm,, = P]%n—PJ’;’erPj;ﬁP;,;—P*PP*Z +PJ’;‘;’S5*S ;fs.gj;;, (1.7)
R n = P~ Pilm Pl P~ BT P+ PLDES — PIDER, (L9
13<’Jm,, Pin—Pulm+ PP — PP Pyl + PiR(Py — P
+P;5s§>;s iy PE. (1.9)

The magnitudes K. t = 1,2,3 are tensors and we call them curvature tensors of

. Jmn’
the first, the second and the third kind respectively.

In the work [9] we use the third and the fourth kind of covariant derivative (1.4),
and in that manner one gets 10 new Ricci type identities. In these identities appear the

same quantities FItZ’Jm a1 =1,2,3; Al =1,..., 15, but in different distribution.

jmn’

Only in the last case appears a new curvature tensor (of the fourth kind) E :

_Kl al +KP i

ajgmin_a}inlm 4 pmn®j jnm%p >
where
I4{lJm” = P;;?l’l n— P:Jlm + P*Pp*l - P*pP*l + Pjﬁ:?fs " P:jl,)s ,m
+P*p(P*l *l (1.10)

Denoting by semicolon (;) the covariant derivative with respect to the symmetric
connection P/’.“,é, then using (1.3) we have

K i = Kimn+ Tiin = Tinen + Ty Ton =T T (1.11)
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Igljmn - ijn"i_Tr:;';n_Tnﬂ}l;m_{_ij T;};_Tnj Trlnp’ (1.12)
~ ~l . . * . * . .

Isojmn = Kjmn+ T;;zn - Tn7;m + Tjrran? - TnjpTll’m +Toin Tjﬂ;’ (1.13)
Flgl]mn = %;mn + Tjtvlz,n - Tn*ji;m + Y}ZTJZ - T:]PT;& - Tn::g T;Z’ (1.14)

where K, , is the curvature tensor formed by symmetric connection P]’.“]i

72 _ p*xi _ px*i *P pxi _ p*P p*i *[ gkS _ pxl gxS
ijn_Pjﬂ,n le,m+ijPﬁ PjnPM+ij,& n le,& m:

In the work [7] we find five linearly independent curvature tensors ? yeees E where

~

Il(,...,fl;(/ given by equations (1.7-1.10), (1.11-1.14), and

Kin =K jn + T Ton + T, Ty (1.15)

5 jmn jm~ pn pm>

~ 1 . . . . .
i _ I p*l *P p*i *P pxi _ p*P p*i
Igjmn_z(ij,n Pjn,m+ijPpn+ijPnp Pjn Pmp

_ p*D pHi *P £S5 p*DP gs
Pyj Ppm+ Pjp 5§n =Py 58m):

(1.16)

where jm denotes symmetrization by indices j and m.
Applying two kinds of covariant differentiation (1.5), we get

pm®¥j jm™p
mp mj

i i i ep xi D *p i
aj|m(x,§)—aj,m+aj,p§’m+P at —P:*fa
1
2

=d}y +a) 50+ (P;‘ii T;,’,,)a;’ - (Pj,f; + Tjnf)a;,

_ i xi P _m*p i
=4im + Tpm@j —Tjmap.

mp mj

2. RICCI COEFFICIENTS OF ROTATION IN A GENERALIZED FINSLER SPACE

On Ricci coefficients of rotation in R, the reader can find e.g. in [20], §54. On
that matter in GR,, is written in [8]. On Ricci coefficients of rotation in F}, see [13].

2.1. Congruence of curves and orthogonal ennuple

Definition 1. A congruence of curves in a GF}, is such a family of curves that
though each point of GF,, passes one curve of the family. N mutually orthogonal
congruences of curves constitute an orthogonal ennuple. Instead of congruences

of curves we shall sometimes speak about congruences of the corresponding tangent
vectors.
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If Ay, (h =1,...,N) are unit tangent vectors of congruences of curves of an
orthogonal ennuple, then in virtue of the previous definition
8j (40 Aley = e@dnks ey = 1, @.1)
or .
E(k))tl(h))t(k)i = Onk> (2.2)

where 8 are Kronecker symbols. (of course, we do not suppose summation w.r.t.
(k) in (2.1), (2.2) and in similar formulas later on.) The next theorem expresses the
basic properties of orthogonal ennuples.

Theorem 1. For the unit tangent vectors Ay, (h = 1,...,N) of congruences of
curves of an orthogonal ennuple the relations

N N

a) Y ewrmiry =5 b)Y ewhrwirr; = gij
k=1 k=1

)Y et Muyr ey = 8
k=1

(2.3)

are valid.
Proof. In the determinant det(/\ik)), whose value is 1, we can regard e)A (k)

as cofactor of the element ’\ék)' Developing the determinant either by rows or by

columns (2.3a) follows.
Further, we have

Y ety = &1 Y et it = g8 = (2.3b).
k k

The equation (2.3¢) can be obtained in the same manner. O
2.2. Definition and basic properties of the coefficient of rotation

Using the two kinds of covariant derivative (1.5) of a vector in a GF},, we can
define two kinds of coefficients of rotation, as two systems of invariants (for 6 = 1,2).

Definition 2. The invariants
Y (hiem) (X, D%y Y XA oy = My | PwiAy, 0=1.2. (2.4)
are said to be coefficients of rotation of the given orthogonal ennuple.
From (1.5, 1.6) it is evidently that
Kyl =M Aai =2l Awi = Awily =Awil
4 2 3 2 3 1 4 1

and it is easy to prove that there exist two kinds of coefficients of rotation in the
non-symmetric case.
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Theorem 2. Both kinds of coefficients of rotation are antisymmetric in their first
two indices, i.e.

g(hkm) = _g(khm) = Ig(hkm) =0. (2.5)
Proof. By covariant differentation we get from (2.2) the relation
e(k) (A (n) 1A wr+ Awraij) =0
from where, transvecting by )L{m),
i Vi i Y _ —
ety (A | A0y A A @i 1A m) =) €00 k) Y hm) =0

that is
Ig(hkm) + g(khm) =0=(2.5).

O
Theorem 3. If
Yihkem) = Awyizi Moy Moy (2.6)
are coefficients of rotation in the associated Finsler space F, (see [13]), then
Y (hkem) = Ynsem) + (= HoTy A(h)pxl(k)xgm), 6=12, (2.7)

Yhim) = (Il’(hkm) + g(hkm))/l
Ig(hkh) =Y (hkh) lg(hhk) =Y (hhk) 1g(hkk) =Ymkry, 0=12. (23)

Proof. In virtue of (2.4) and
A ln = Aisn + (—I)OT?,i)kp, 0=1,2,
0

we have

Y htem) = (ayisj + (1) T”Mh)p)*(k)*(m) o, &7 =12

In virtue of (2.7) for two indices there follows (2.8) because for example (for & = m)
is
b4 x 9]
T Ao Ao o = T i iy o iy = T zpk(h) WMy

= p. uk(h) (k)k(h)

where T’; i = T*s gsp - Here we applied the fact that T* . 1s antisymmetric in all

pairs of indices. U
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2.3. Expression of the derivative of the vectors of a congruence by the coefficients
of rotation

Theorem 4. In GF,, the relation

N
Armil = Y e(k)é(m)%(hkm)*(k)i*(m)j’
7]

kom=1 2.9)

N
b) Ay ;= Y e(k)é(m)%(hkmﬂ’(k)*(m)j
o k.m=1

are valid.

Proof. a) Multiplying the relation (2.4) by e(x)em)A (k) pA(m)q and summing with
respect to m, k get

> eeem Y (hiem) A k) pAamg = > A 1 Moy oy ) em)A ) pA (m)g
k.m

k.m
= /\(h)iéj {Z e A pry ) {Ze(m)’x(m)q)‘fm)}
k m

= A 68 =7 .
(2.30) (h)l(|9J p°q (h)p(Lq

g

Theorem 5. The covariant derivatives of vectors Ay and Aih) in the direction of

the vector )L(p) can be expressed by the coefficients of rotation as linear combination
of the vectors of the ennuple as follows:

a) A(wy | oy = 2e®Y tkpyhaoi D) Ay Ay = D€ km ey
k ¢ k
(2.10)

Proof. Transvecting the equation (2.9) by k{p), we obtain

a) A(wi | 4y = D0 Y tkpyh@rihem A ()

k.m

= Ze(k)1g<hkp)?\(k)i5mp = Ze(kﬂgmkp)?\(k)i = (2.10).
k,m k

2.4. Integrability conditions of the equation (2.9)

The relation (2.9) is a partial differential equation with respect to the unknown
functions A z);. Now we are going to examine its integrability condition.
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In [10] we have obtained 10 Ricci-type identities in GFy,. In three of these iden-
tities appear the curvature tensors Il( , K, I3< , and in the others appear the quantities
2

%1/, ... ;;1; which have the form and the role of the curvature tensors, but they are

not tensors. In [5] we obtained combined Ricci-type identities, in which appear ”de-
rived” curvature tensors Il( o 18( *.In [7] is proved that only five are independent

among the mentioned curvature tensors, for example ? , g E , E , g while the oth-
ers are linear combinations of these five tensors and K. We shall use further those
of the Ricci-type identities in which appear the above tensors (the tensor ?* is linear
combination of fI;(/, fI;(J’ while the tensor g* does not appear in identities which we
need.)

Theorem 6. In GF, the first two integrability conditions (60 = 1,2) of equations
(2.9) are

- , o .
(=Kijrdas +2(=1) T?i/\(h)iél)s)/\l(p))tfq)kzt) = Y tpar,j +Y (hoa.56)A(s)

N
= apn, + Y ap0 DA g + D ew Y koY koo =Y akoY oy 1D
k=1

+ )g(hpk)[g(kqt) - g(ktq)]}, 0=1,2
where ?,Flg are given by (1.7).

Proof. Applying the Ricci-type identities from [10], we have
Ao jr =i rj = —K s +2(_1)0T>‘j"ik(h)iés’ =12,
By repeated differentiation of (2.9) one can form the difference on the left side of this
equation, and then (2.11) easily follows. U
Theorem 7. The third integrability condition of the equation (2.9) in GF, is
- E%M(h)sl’{p)l{q)% = Y twpg),j +Y tpe)i&; )

N

~ Y pry.j + Y tpn)s§)A(g + kX—:I el k)Y kpy =Y k)Y (kpgy - (212)

Y 0oy ¥ (kar) =Y o) ¥ e

where g is given by (1.9).
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Proof. Applying the corresponding identity from [10] we get
Awyifj1r —Awilr; =~ K dms:
12 21 3
Further, we use (2.9) to form the difference on the left side.

Theorem 8. The fourth integrability condition of the equation (2.9) is
Iflsjrkfh)A(P)iA(q)AZt) = (I{(hpq),j + };(hpq)&ffv))‘ft)
N

=Y poy T Y tpni&)A gy + D e Y tk)Y tepoy + Y tpio)Y ey 2-13)
k=1
—Y tinyY teray — Y oot ¥ e
¥ k)Y tpg) =Y (o ¥ k)

where FIE is given by (1.10).

Proof. Using by equations (1.10) we see that

i i _ i K
Ay e = A = Ksirkiny:
374 43

and the use of (2.9) yields the integrability condition (2.13).

Theorem 9. The fifth integrability condition of the equation (2.9) is

K55k @i ipro = C trla).s T Y tola)s€)) A )

=Y ply.s + Y tpla)sE) Ay + e Y k)Y tpny +Y oY kaoy
k

~Y k)Y tep) — Y (k)Y hepay + Y k) Y epry + Y hpiy ¥

Y (e Y (kpa) =Y k)Y kep) + ¥ (k) ¥ tepr) + Y thpio) Y gy
—Y (k)Y epg) — ¥ (k)Y

koY kpa) =Y o) tepa)-

where [qt] we denoted symmetrization without division by indices q and t and 12( ’;} -
Is(lsjr given by (1.16).

Proof. We use that Ricci-type identity in which the curvature g* appears. From
corresponding identities in [5] we have

i i i i _ ATk S
e = Aair 7 A = Ao 1 = 2K s an-

and then use (2.9).



1034 SVETISLAV M. MINCIC, MICA S. STANKOVIC, AND MILAN LJ. ZLATANOVIC

3. GEODESIC MAPPINGS

Definition 3. Geodesic in GF} is given by

d?x’ - dx _dx/ dx¥

—+ P (x,—)———=0. 3.1

ds? P ds) ds ds G-
Consider two N -dimensional spaces of non-symmetrical affine connection: G Fj,

and G F,. So, if connection coefficients of these spaces are respectively P’;’k and

F"]‘."k, we suppose that in general the symmetry with respect to indices j,k is not in
force. —

One says that reciprocal one valued mapping f : GF, — GF, is geodesic, if
geodesics of the space GF, pass to geodesics of the space G F;,. We can consider
these spaces in the common by this mapping system of local coordinates, i.e. for
f M—>M wehaLeM(xl,...,x”,fcl,...,fc’lz M(_xx) andM(xl,...,x”,xl,...,
x™xL ,x") = M (x,x), where M € GFy, M € G F . In the corresponding points
M(x,x) and M (x,x) we can put

P* = P* +Diy, (i,j.k=1,...,N), (3.2)
where D j () is the deformation tensor of the connection P* of GF; according to
the mapping f : GF, — G F .

Definition 4. The curve . .

[:x"=x'(t)
is geodesic of GF}, if and only if is:
X4 P PR = p()k (1), (3.3)
where p(¢) is an invariant and ¢ an arbitrary parameter.

Iff:l— [, then in _the common by the mapping f* coordinates X o=xlitis
X' =dx'/dt = x', and [ is geodesic in G F, too, from where we get

4P PR =5()E (1) (3.4)
Subtracting (3.3) and (3.4), we obtain
5 kI i cDq _ (= .7

(P g — Pp)XP X% = (p(t) — p(1))X" (1),
and, because of (3.2): . _

D, XPx9 =2y (1)x' (1), (3.5)
where () = (p(t) — p(¢))/2. Denoting by D; o D; « the symmetric and antisym-

metric part of D;. & respectively, we get
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and (3.5) reduces to

D! Px1 =2y ()X (1). (3.6)

As in the case of a symmetric connection (see for ex. [4]) one concludes that
V() = vp(x (0).....x"(0). X' (0),.... X" () AP (0),
and from (3.6):
Dy P %1 =29, kP = Y iPX98Y + Y P18, = (YpSy + Yg8ly) iP5,
wherefrom
DL" = 8’]- Vi + 835 (3.7

Denoting also

i el i

ik =&k = -

by substitution in (3.2) we obtain

Pro= P+ 850 + 85y + £y (3.8)
and the deformation tensor is
Diy =8y + 830 + & (3.9)

So, the condition (3.8) is necessary that the mapping f be geodesic. It is easily to
prove that this condition is sufficient too, and we have

_Theorem 10. A necessary and sufficient condition that the mapping f : GFp, —
G F, be geodesic is the deformation tensor D]’. ¢ Jrom (3.2) at the mapping f to has
the form (3.9), where Y (x, X) is a covariant vector, and § j’ (X, X) an antisymmetric
tensor.

For k = i, we obtain from (3.7):
Dy =85y + 81y = ¥y + Ny,
wherefrom

1 V4
Vi = —N+1Dl£’ (3.10)

which, by substitution in (3.8), gives

— - 1 - . - i .
PY = P% + N—H(S;Dfl(x,x) +8’,€Dip(x,x)) - D;zc(x,x), (3.11)

where D ; ¢ (X) is the deformation tensor.
On the base of above explained, we get
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Theorem 11. Let a space GFy, be given, i.e. on a differentiable manifold My let
be defined non-symmetric connection coefficients P *i (X, %). If on My is given a

tensor D/i‘k (x,X) too and we determine P*’ (x,x) accordlng to (3.11), then on My,
will be defined a space G F ,, with connecnon coefficients P’;.’k, and then GF, and

G F,, have common geodesics. We obtain the same result (on the base of (3.8) by
choice of a vector Vi (x,X) and antisymmetric tensor EJ’.k (x,x)= D;‘k (x, X).
%

The question forces itself: Is it possible a geodesic mapping of a space GF, with
a non-symmetric affine connection on to a space F', with a symmetric affine connec-
tion? It is easy to see that the next theorem is valid:

Theorem 12. A necessary and sufficient condition that a mapping f : GF, — F,
of a non-symmetric affine connection space G Fy, onto a symmetric affine connection
space F, be geodesic, is

Dl (x,%) = =P (x, %),
4 4
where D'. k(x X), P (x X), are antisymmetric parts of the deformation tensor and

connecnon coeﬁiczents of the G Fy, respectively.

Remark 1. 1t is easy to check that a set of geodesic mappings of a space GFj
makes a group.

4. SOME PROJECTIVE INVARIANTS OF GEODESIC MAPPINGS

Putting D into (3.1 1) in accordance with (3.2) we get

D *i D *i z *p l _ %I p*i 1 *p z
Denoting
The =Pl - N+1(Sl Pio 48 PI) =T (4.1)

we see that

i _ aqi

Tk =Ty (4.2)
The magnitudes ';’k we call generalized Thomas’s projective parameters at the

mapping f : GF, — G F,. Accordingly, these magnitudes are invariant at a geodesic
mapping. Starting from (4.1, 4.2), one obtains (3.11), and we conclude that the next
theorem is valid:

_Theorem 13. A necessary and sufficient condition that a mapping f : GFy —
G F,, be geodesic is that generalized Thomas’s projective parameters (4.1) are in-
variant, that is (4.2) to be valid.
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Theorem 14. If Aéh)(x) and A )i (x) are the contravariant, respectively covari-
ant components of an orthogonal ennuple, then the following geometric entities are
invariant under the geodesic mapping:

o . 1
g/g(;((x,x) = kl(h)é(x) — ml{h)(x) Ze(h))‘(h)q‘s(qpk(h)ék)’ 6=1,2, 4.3)
h

and
A p q —
Jg(*k(x,x) _Ze(h)k(h)pk(h)elk_DkJ’ f=1,2, 4.4)
h
where (p...k) denotes symmetrization by respect of indices p and k.
Proof. If we denote by Al(h) ‘ T 0 = 1,2 the covariant derivative wrt the connection

P* in sense of (1), we have

A’ = AL AP P
I 4.5)
2
Using (3.8, 4.1) we have
Aih)@_ éh)lk = Ay Vi + 84 ¥p +6)
1 4.6)

o ’V(a)ﬁk (h)(gka +80, Yk + &)
2

Multiplying (4.6) by A(z); and summing with respect to indices / and using ortho-
gonality condition, we have

ZE(h)Mh)p(kfh)@ (h)| ) =N+ D

! L 4.7)
Ze(h)l(h)p(k(h”; (h)|k) (N + Dy

h 2

Eliminating the ¥ from (4.6) and (4.7) we get

. 1
_ p q
l’(h” % ’\(h)lk () Ze(hﬂ(h)qf?(p/\(hnk) > e madAm 1k
2 2 h 2 h 2
With help (3.10) we get (4.3). ]

Theorem 15. When GF,, and G F,, are in geodesic correspondence, we have the
following projective invariant entities:

Shkm (6. 5) =Y (hiem) =~ (Shkx(m)P}’;’;-+5kmxfh)P*’) =12,
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where )Gl(hkm) 0 = 1,2, are Ricci coefficients of rotation.

Proof. Using (4.5) we get

i i — I (si.pP : i P :
1
2

2

Multiplying (4.8) by /\(k),-)&’(‘m) and using orthogonality condition, we have

_ 1 — -
I{hkm—m(Shk/\(m)Pz? +8kmA gy P gp
2

1 k *p J p*p
= %hkm - nt1 (ahkk(m)Pkp + 8km)‘(h)Pjp)’
2
where the projectively transformed Ricci coefficients of rotation are given by

Viem = 20p |74y om) = My g ©p Gy 0 =12
4
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