Miskolc Mathematical Notes

REFINEMENTS OF THE LOWER BOUNDS OF JENSEN'S FUNCTIONAL REVISITED

IVA FRANJIĆ AND JOSIP PEČARIĆ

Received 29 October, 2014

Abstract

The functional defined as the difference of the right-hand and the left-hand side of Jensen's inequality is called Jensen's functional. The aim of this paper is to study its lower bounds. More precisely, some refinements of its lower bounds are recaptured under more relaxed conditions on the n-tuple \mathbf{x}.

2010 Mathematics Subject Classification: 26D15; 26A51
Keywords: Jensen's inequality, Jensen's functional, lower bounds, refinement

1. Introduction

Jensen's inequality is possibly one of the most famous and most explored inequalities. It has been generalized in numerous directions and it has found its application in various areas; see for example [8] and the references therein. Classical Jensen's inequality states as follows.

Theorem 1 (Jensen, 1905. [8]). Let I be an interval in \mathbb{R} and $f: I \rightarrow \mathbb{R}$ be a convex function. Let $n \geq 2, \boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in I^{n}$ and $\boldsymbol{p}=\left(p_{1}, \ldots, p_{n}\right)$ be a positive n-tuple, that is, such that $p_{i}>0$ for $i=1, \ldots, n$. Then

$$
f\left(\frac{1}{P_{1}^{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{1}^{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)
$$

where $P_{1}^{n}=\sum_{i=1}^{n} p_{i}$. If f is strictly convex, then the inequality is strict, unless $x_{1}=x_{2}=\ldots=x_{n}$.

The functional defined as the difference of the right-hand and the left-hand side of Jensen's inequality:

$$
\begin{equation*}
J(\mathbf{x}, \mathbf{p}, f)=\frac{1}{P_{1}^{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\frac{1}{P_{1}^{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \tag{1.1}
\end{equation*}
$$

The research of the authors has been fully supported by Croatian Science Foundation under the project 5435.
is called Jensen's functional. What will interest us here in particular are its lower bounds. Some related results can be found, for example, in [1], [4], [5], [7], but the papers of special interest at the moment are [3], [2] and [6].

In [2], the author presented some lower bounds for Jensen's functional which were later recaptured in [6] under relaxed conditions on the n-tuple \mathbf{x}. The results from [6] are the basis for the results which are to be presented in this paper. Without any loss of generality, we assume $P_{1}^{n}=1$ since for positive n-tuples such that $P_{1}^{n} \neq 1$ results follow easily after substituting p_{j} by p_{j} / P_{1}^{n}. Furthermore, for $1 \leq i<k \leq n$, we introduce notation:

$$
\begin{aligned}
J_{i k}(\mathbf{x}, \mathbf{p}, f) & =P_{1}^{i} f\left(x_{i}\right)+\sum_{m=i+1}^{k-1} p_{m} f\left(x_{m}\right)+P_{k}^{n} f\left(x_{k}\right) \\
& -f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right)
\end{aligned}
$$

where

$$
P_{i}^{j}=\sum_{m=i}^{j} p_{m}
$$

Note that $J_{i k}(\mathbf{x}, \mathbf{p}, f)$ can be obtained from $J(\mathbf{x}, \mathbf{p}, f)$ upon taking $x_{1}=x_{2}=\ldots=$ x_{i} and $x_{k}=x_{k+1}=\ldots=x_{n}$ and that $J_{1 n}(\mathbf{x}, \mathbf{p}, f)=J(\mathbf{x}, \mathbf{p}, f)$. In what follows, I is an interval in \mathbb{R} and

$$
\bar{X}_{i}^{j}=\frac{1}{P_{i}^{j}} \sum_{m=i}^{j} p_{m} x_{m}
$$

Theorem 2 (Theorem 2.1, [6]). Let f be a convex function on I and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 2$. Let $1 \leq i<k \leq n$ and $x_{1}, x_{2}, \ldots, x_{k} \in I$. If x_{i} is such that

$$
\begin{align*}
& \bar{X}_{1}^{i} \leq x_{i} \leq \frac{1}{P_{i+1}^{n}}\left(\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \tag{1.2}\\
& \text { or } \frac{1}{P_{i+1}^{n}}\left(\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \leq x_{i} \leq \bar{X}_{1}^{i} \tag{1.3}
\end{align*}
$$

then we have

$$
\begin{equation*}
J_{1 k}(\boldsymbol{x}, \boldsymbol{p}, f) \geq J_{i k}(\boldsymbol{x}, \boldsymbol{p}, f) \tag{1.4}
\end{equation*}
$$

Theorem 3 (Theorem 2.3, [6]). Let f be a convex function on I and p be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 2$. Let $1 \leq i<k \leq n$ and $x_{j}, x_{j+1}, \ldots, x_{n} \in I$.

If x_{k} is such that

$$
\begin{align*}
\frac{1}{P_{1}^{k-1}\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}\right)} \leq & \leq x_{k} \leq \bar{X}_{k}^{n} \tag{1.5}\\
\text { or } \quad \bar{X}_{k}^{n} & \leq x_{k} \leq \frac{1}{P_{1}^{k-1}}\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}\right), \tag{1.6}
\end{align*}
$$

then we have

$$
\begin{equation*}
J_{i n}(\boldsymbol{x}, \boldsymbol{p}, f) \geq J_{i k}(\boldsymbol{x}, \boldsymbol{p}, f) \tag{1.7}
\end{equation*}
$$

In the same paper, in Theorems 2.2 and 2.4 , alternative sets of conditions under which (1.4) and (1.7) hold were given, respectively, but it can be seen from the proofs that these conditions are actually more restricting than those given in Theorem 2 and Theorem 3, respectively. Finally, another related result, providing a somewhat different type of conditions, was given in the same paper in the following theorem.

Theorem 4 (Theorem 2.7, [6]). Let f be a convex function on I and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 2$. Let $\boldsymbol{x} \in I^{n}$ be a real n-tuple and let $1 \leq i<k \leq n$. If x_{i} and x_{k} are such that

$$
\begin{array}{ll}
& \bar{X}_{1}^{i} \leq x_{i} \leq \bar{X}_{1}^{n} \leq x_{k} \leq \bar{X}_{k}^{n} \\
\text { or } & \bar{X}_{k}^{n} \leq x_{k} \leq \bar{X}_{1}^{n} \leq x_{i} \leq \bar{X}_{1}^{i}, \tag{1.9}
\end{array}
$$

then we have

$$
J(\boldsymbol{x}, \boldsymbol{p}, f) \geq J_{i k}(\boldsymbol{x}, \boldsymbol{p}, f) .
$$

These results dealt with obtaining the lower bound for Jensen's functional with two fixed variables. In [3], the author went one step further and gave lower bounds for Jensen's functional with three fixed variables.

Theorem 5. Let f be a convex function on I and let $x_{1}, x_{2}, \ldots, x_{n} \in I(n \geq 4)$ be such that

$$
x_{1} \leq x_{2} \leq \ldots \leq x_{n}
$$

and let $p_{1}, p_{2}, \ldots, p_{n}$ be positive weights such that $P_{1}^{n}=1$. For fixed x_{i}, x_{j}, x_{k} ($1 \leq i<j<k \leq n$), we have

$$
\begin{aligned}
J(\boldsymbol{x}, \boldsymbol{p}, f) & \geq F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) \\
\text { and } & \text { for } x_{j} \leq \frac{P_{1}^{i} x_{i}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{k}^{n}} \\
J(\boldsymbol{x}, \boldsymbol{p}, f) \geq G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) & \text { for } x_{j} \geq \frac{P_{1}^{i} x_{i}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{k}^{n}},
\end{aligned}
$$

where

$$
F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)=P_{1}^{i} f\left(x_{i}\right)+P_{i+1}^{j} f\left(x_{j}\right)+P_{k}^{n} f\left(x_{k}\right)
$$

$$
\begin{align*}
& -\left(P_{1}^{j}+P_{k}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+P_{i+1}^{j} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}}\right) \tag{1.10}\\
G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) & =P_{1}^{i} f\left(x_{i}\right)+P_{j}^{k-1} f\left(x_{j}\right)+P_{k}^{n} f\left(x_{k}\right) \\
& -\left(P_{1}^{i}+P_{j}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+P_{j}^{k-1} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}}\right) \tag{1.11}
\end{align*}
$$

In addition, we have $J(\boldsymbol{x}, \boldsymbol{p}, f)=F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)$ for

$$
\begin{aligned}
& x_{1}=x_{2}=\ldots=x_{i} \\
& x_{i+1}=x_{i+2}=\ldots=x_{j} \\
& x_{j+1}=x_{j+2}=\ldots=x_{k-1}=\frac{P_{1}^{i} x_{i}+P_{i+1}^{j} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}} \\
& x_{k}=x_{k+1}=\ldots=x_{n}
\end{aligned}
$$

and $J(\boldsymbol{x}, \boldsymbol{p}, f)=G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)$ for

$$
\begin{aligned}
& x_{1}=x_{2}=\ldots=x_{i} \\
& x_{i+1}=x_{i+2}=\ldots=x_{j-1}=\frac{P_{1}^{i} x_{i}+P_{j}^{k-1} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}} \\
& x_{j}=x_{j+1}=\ldots=x_{k-1} \\
& x_{k}=x_{k+1}=\ldots=x_{n}
\end{aligned}
$$

The principal aim of this paper is to recapture results from Theorem 5 under relaxed conditions on the n-tuple \mathbf{x}. We shall do so by employing Theorems 2, 3 and 4.

The key step in proving the results in [3], [2] and [6] was the following lemma which was presented in [2]. It will play a vital role here as well.

Lemma 1. Let f be a convex function on I and let p_{1}, p_{2} be non-negative real numbers. If $a_{1}, a_{2}, b_{1}, b_{2} \in I$ are such that $a_{1}, a_{2} \in\left[b_{1}, b_{2}\right]$ and

$$
p_{1} a_{1}+p_{2} a_{2}=p_{1} b_{1}+p_{2} b_{2}
$$

then

$$
p_{1} f\left(a_{1}\right)+p_{2} f\left(a_{2}\right) \leq p_{1} f\left(b_{1}\right)+p_{2} f\left(b_{2}\right)
$$

2. MAIN RESULTS

We present a series of theorems providing several different sets of conditions on the n-tuple \mathbf{x} under which the inequalities stated in Theorem 5 hold.

Theorem 6. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. Let $1 \leq i<j<k \leq n$. If x_{i} is such that

$$
\begin{equation*}
\bar{X}_{1}^{i} \leq x_{i} \leq \bar{X}_{i+1}^{n} \quad \text { or } \quad \bar{X}_{i+1}^{n} \leq x_{i} \leq \bar{X}_{1}^{i} \tag{2.1}
\end{equation*}
$$

x_{j} is such that

$$
\begin{equation*}
\bar{X}_{i+1}^{j-1} \leq x_{j} \leq \frac{P_{1}^{i} x_{i}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{k}^{n}} \tag{2.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{P_{1}^{i} x_{i}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{k}^{n}} \leq x_{j} \leq \bar{X}_{i+1}^{j-1} \tag{2.3}
\end{equation*}
$$

and x_{k} is such that either (1.5) or (1.6) holds, then we have

$$
\begin{equation*}
J(\boldsymbol{x}, \boldsymbol{p}, f) \geq F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f), \tag{2.4}
\end{equation*}
$$

where $J(\boldsymbol{x}, \boldsymbol{p}, f)$ is defined in (1.1) and $F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)$ in (1.10).
Proof. We present the proof in three steps.
First step. We have

$$
\begin{align*}
J(\mathbf{x}, \mathbf{p}, f) & \geq \sum_{m=1}^{i} p_{m} f\left(x_{m}\right)+P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+p_{j} f\left(x_{j}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right) \\
& +\sum_{m=k}^{n} p_{m} f\left(x_{m}\right)-f\left(\bar{X}_{1}^{n}\right) \tag{2.5}
\end{align*}
$$

Namely, this is equivalent to

$$
\sum_{m=i+1}^{j-1} p_{m} f\left(x_{m}\right) \geq P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right) \quad \text { and } \quad \sum_{m=j+1}^{k-1} p_{m} f\left(x_{m}\right) \geq P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)
$$

which are both immediate consequences of Jensen's inequality. Note that the righthand side of (2.5) is equal to the value of $J(\mathbf{x}, \mathbf{p}, f)$ for an n-tuple \mathbf{x} such that $x_{i+1}=$ $\ldots=x_{j-1}=\bar{X}_{i+1}^{j-1}$ and $x_{j+1}=\ldots=x_{k-1}=\bar{X}_{j+1}^{k-1}$.

Second step. We claim that

$$
\begin{aligned}
& \sum_{m=1}^{i} p_{m} f\left(x_{m}\right)+P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+p_{j} f\left(x_{j}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right) \\
& \quad+\sum_{m=k}^{n} p_{m} f\left(x_{m}\right)-f\left(\bar{X}_{1}^{n}\right) \\
& \geq P_{1}^{i} f\left(x_{i}\right)+P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+p_{j} f\left(x_{j}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+P_{k}^{n} f\left(x_{k}\right)
\end{aligned}
$$

$$
\begin{equation*}
-f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \tag{2.6}
\end{equation*}
$$

This inequality follows immediately after first applying Theorem 2 for $k=n$ and then Theorem 3.

Third step. The final claim is that

$$
\begin{aligned}
& P_{1}^{i} f\left(x_{i}\right)+P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+p_{j} f\left(x_{j}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+P_{k}^{n} f\left(x_{k}\right) \\
& \quad-f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \geq F_{i j k}(\mathbf{x}, \mathbf{p}, f),
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+\left(P_{1}^{j}+P_{k}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+P_{i+1}^{j} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}}\right) \\
& \geq P_{i+1}^{j-1} f\left(x_{j}\right)+f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right)
\end{aligned}
$$

Jensen's inequality implies that we have

$$
\begin{aligned}
& f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \\
& \quad \leq P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+\left(P_{1}^{j}+P_{k}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+\sum_{m=i+1}^{j} p_{m} x_{m}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}}\right)
\end{aligned}
$$

so we now only need to prove that

$$
\begin{aligned}
& P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+\left(P_{1}^{j}+P_{k}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+P_{i+1}^{j} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}}\right) \\
& \geq P_{i+1}^{j-1} f\left(x_{j}\right)+\left(P_{1}^{j}+P_{k}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+\sum_{m=i+1}^{j} p_{m} x_{m}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}}\right)
\end{aligned}
$$

Here we employ Lemma 1 for

$$
a_{1}=x_{j}, a_{2}=\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{j} p_{m} x_{m}+P_{k}^{n} x_{k}\right) /\left(P_{1}^{j}+P_{k}^{n}\right)
$$

$b_{1}=\bar{X}_{i+1}^{j-1}$ and $b_{2}=\left(P_{1}^{i} x_{i}+P_{i+1}^{j} x_{j}+P_{k}^{n} x_{k}\right) /\left(P_{1}^{j}+P_{k}^{n}\right)$ (or the obvious rearrangement) to complete the proof. Condition (2.2) (that is, (2.3)) ensures that the conditions of Lemma 1 are satisfied. This is easily checked.

Theorem 7. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. Let $1 \leq i<j<k \leq n$. If x_{i} is such that either (1.2) or (1.3) holds, x_{j} is such that either (2.2) or (2.3) holds and x_{k} is such that

$$
\begin{equation*}
\bar{X}_{1}^{k-1} \leq x_{k} \leq \bar{X}_{k}^{n} \quad \text { or } \quad \bar{X}_{k}^{n} \leq x_{k} \leq \bar{X}_{1}^{k-1} \tag{2.7}
\end{equation*}
$$

then the inequality (2.4) is valid.
Proof. Proof is analogous to the proof of Theorem 6. Namely, the first and the third step of the proof are completely the same, but we have a slight difference in the second step. To obtain inequality (2.6), first apply Theorem 3 for $i=1$ and then Theorem 2.

Remark 1. Note that since

$$
\frac{1}{P_{i+1}^{n}}\left(\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \leq \bar{X}_{i+1}^{n} \quad \text { if } \quad x_{k} \leq \bar{X}_{k}^{n}
$$

and similarly

$$
\bar{X}_{1}^{k-1} \leq \frac{1}{P_{1}^{k-1}}\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}\right) \quad \text { if } \quad \bar{X}_{1}^{i} \leq x_{i}
$$

Theorem 6 imposes a more restricting condition on x_{k}, while Theorem 7 imposes a more restricting condition on x_{i}.

Remark 2. An increasing n-tuple \mathbf{x} satisfies the first condition in (2.1), the lefthand side of the condition (2.2) and the condition (1.5), and also the condition (1.2) and the first condition in (2.7). Thus, Theorems 6 and 7 both provide generalizations of Theorem 5.

Theorem 8. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. Let $1 \leq i<j<k \leq n$. Let x_{i} and x_{k} be such that either (1.8) or (1.9) holds and x_{j} be such that either (2.2) or (2.3) holds. Then the inequality (2.4) is valid.

Proof. In respect to the proof of Theorem 6, there is a difference again only in the second step. To obtain inequality (2.6), apply Theorem 4.

Remark 3. Note that an increasing n-tuple \mathbf{x} does not necessarily satisfy either (1.8) or (1.9).

Theorem 9. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. Let $1 \leq i<j<k \leq n$. If x_{i} is such that either one of the conditions in (2.1) hold, x_{j} is such that

$$
\begin{equation*}
\bar{X}_{j+1}^{k-1} \leq x_{j} \leq \frac{P_{1}^{i} x_{i}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{k}^{n}} \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{P_{1}^{i} x_{i}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{k}^{n}} \leq x_{j} \leq \bar{X}_{j+1}^{k-1} \tag{2.9}
\end{equation*}
$$

and x_{k} is such that either (1.5) or (1.6) holds, then we have

$$
\begin{equation*}
J(\boldsymbol{x}, \boldsymbol{p}, f) \geq G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) \tag{2.10}
\end{equation*}
$$

where $J(\boldsymbol{x}, \boldsymbol{p}, f)$ is defined in (1.1) and $G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)$ in (1.11).
Proof. The proof follows in the footsteps of the proof of Theorem 6. Namely, the first and the second step are the same (note that the conditions on x_{i} and x_{k} are the same). The difference is in the third step. Here we need to prove that

$$
\begin{aligned}
& P_{1}^{i} f\left(x_{i}\right)+P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+p_{j} f\left(x_{j}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+P_{k}^{n} f\left(x_{k}\right) \\
& \quad-f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \geq G_{i j k}(\mathbf{x}, \mathbf{p}, f),
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+\left(P_{1}^{i}+P_{j}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+P_{j}^{k-1} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}}\right) \\
& \geq P_{j+1}^{k-1} f\left(x_{j}\right)+f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right)
\end{aligned}
$$

Jensen's inequality implies that

$$
\begin{aligned}
& f\left(P_{1}^{i} x_{i}+\sum_{m=i+1}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) \\
& \quad \leq P_{i+1}^{j-1} f\left(\bar{X}_{i+1}^{j-1}\right)+\left(P_{1}^{i}+P_{j}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+\sum_{m=j}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}}\right)
\end{aligned}
$$

so there is only left to prove that

$$
\begin{aligned}
& P_{j+1}^{k-1} f\left(\bar{X}_{j+1}^{k-1}\right)+\left(P_{1}^{i}+P_{j}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+P_{j}^{k-1} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}}\right) \\
& \geq P_{j+1}^{k-1} f\left(x_{j}\right)+\left(P_{1}^{i}+P_{j}^{n}\right) f\left(\frac{P_{1}^{i} x_{i}+\sum_{m=j}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}}\right),
\end{aligned}
$$

Now we apply Lemma 1 for $a_{1}=x_{j}, a_{2}=\left(P_{1}^{i} x_{i}+\sum_{m=j}^{k-1} p_{m} x_{m}+P_{k}^{n} x_{k}\right) /\left(P_{1}^{i}+\right.$ $\left.P_{j}^{n}\right), b_{1}=\bar{X}_{j+1}^{k-1}$ and $b_{2}=\left(P_{1}^{i} x_{i}+P_{j}^{k-1} x_{j}+P_{k}^{n} x_{k}\right) /\left(P_{1}^{i}+P_{j}^{n}\right)$ (or the obvious rearrangement) to complete the proof. This time condition (2.8) (that is, (2.9)) ensures that the conditions of Lemma 1 are satisfied.

Theorem 10. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. Let $1 \leq i<j<k \leq n$. If x_{i} is such that either (1.2) or (1.3) holds, x_{j} is such that either (2.8) or (2.9) holds and x_{k} is such that either one of the conditions in (2.7) holds, then the inequality (2.10) is valid.

Proof. The first and the second step of the proof are the same as in Theorem 7, while the third step is the same as in the proof of Theorem 9.

Remark 4. An increasing n-tuple \mathbf{x} satisfies the first condition in (2.1), the righthand side of the condition (2.9) and the condition (1.5), and also the condition (1.2) and the first condition in (2.7). Thus, Theorems 9 and 10 both provide generalizations of Theorem 5.

Theorem 11. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. Let $1 \leq i<j<k \leq n$. Let x_{i} and x_{k} be such that either (1.8) or (1.9) holds and x_{j} be such that either (2.8) or (2.9) holds. Then the inequality (2.10) is valid.

Proof. The first and the second step of the proof are the same as in Theorem 8, while the third step is the same as in the proof of Theorem 9.

Proposition 1. Let f be a convex function on $I, \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in I^{n}$ and \boldsymbol{p} be a positive n-tuple such that $P_{1}^{n}=1$ for some $n \geq 3$. If $P_{j+1}^{k-1} \geq P_{i+1}^{j-1}$, then we have

$$
\begin{equation*}
G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) \geq F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) \tag{2.11}
\end{equation*}
$$

while if $P_{i+1}^{j-1} \geq P_{j+1}^{k-1}$, then we have

$$
\begin{equation*}
F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) \geq G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f) \tag{2.12}
\end{equation*}
$$

where $F_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)$ is defined as in (1.10) and $G_{i j k}(\boldsymbol{x}, \boldsymbol{p}, f)$ in (1.11).
Proof. Note that

$$
\begin{aligned}
& \frac{P_{1}^{i} x_{i}+P_{j}^{k-1} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{i}+P_{j}^{n}} \\
= & \frac{P_{1}^{j}+P_{k}^{n}}{P_{1}^{i}+P_{j}^{n}} \cdot \frac{P_{1}^{i} x_{i}+P_{i+1}^{j} x_{j}+P_{k}^{n} x_{k}}{P_{1}^{j}+P_{k}^{n}}+\frac{P_{j+1}^{k-1}-P_{i+1}^{j-1}}{P_{1}^{i}+P_{j}^{n}} \cdot x_{j} .
\end{aligned}
$$

Inequality (2.11) now follows directly from Jensen's inequality, while the obvious rearrangement yields (2.12).

REFERENCES

[1] J. Barić, M. Matić, and J. Pečarić, "On the bounds for the normalized Jensen functional and JensenSteffensen inequality," Math. Inequal. Appl., vol. 12, no. 2, pp. 413-432, 2009.
[2] V. Cirtoaje, "The best lower bound depended on two fixed variables for Jensen's inequality with ordered variables," J. Inequal. Appl., vol. 2010, no. Article ID 128258, p. 12 pages, 2010.
[3] V. Cirtoaje, "The best lower bound for Jensen's inequality with three fixed ordered variables," Banach J. Math. Anal., vol. 7, no. 1, pp. 116-131, 2013, doi: 10.15352/bjma/1358864553.
[4] S. S. Dragomir, "Bounds for the normalised Jensen functional," Bull. Austral. Math. Soc., vol. 74, no. 3, pp. 471-478, 2006, doi: 10.1017/S000497270004051X.
[5] S. S. Dragomir, J. Pečarić, and L. E. Persson, "Properties of some functionals related to Jensen's inequality," Acta Math. Hungar., vol. 70, no. 1-2, pp. 129-143, 1996, doi: 10.1007/BF00113918.
[6] I. Franjić, S. Khalid, and J. Pečarić, "Refinements of the lower bounds of the Jensen functional," Abstr. Appl. Anal., vol. 2011, no. Art. ID 924319, p. 13 pp., 2011.
[7] F. C. Mitroi, "Estimating the normalized Jensen functional," J. Math. Inequal., vol. 5, no. 4, pp. 507-521, 2011, doi: $10.7153 / \mathrm{jmi}-05-44$.
[8] J. Pečarić, F. Proschan, and Y. Tong, Convex functions, partial orderings, and statistical applications. Academic Press Inc, 1992.

Authors' addresses
Iva Franjić
University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia

E-mail address: ifranjic@pbf.hr

Josip Pečarić

University of Zagreb, Faculty of Textile Technology, Prilaz baruna Filipovića 28a, 10000 Zagreb, Croatia

E-mail address: pecaric@element.hr

