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1. Preliminaries

It is well known that the classical Bernstein operator associates the polynomial

B =3 (1 )era-or(2) (1)

r=0
to any function f € C|0, 1].

In (1.1), the approximated function f is evaluated at equally spaced intervals.
Further were given extensions of this operator to the case of multivariate functions
by D. D. Stancu [10,11, 12], E. Dobrescu and I. Matei [6], C. Badea, I. Badea and
H. H. Gonska [1], and D. Barbosu [2, 3, 4]. In all these extensions, the approximated
function f : [0,1]™ — R is evaluated at equally spaced intervals.

G. M. Phillips [7, 8, 9] constructed a generalization of the classical operator of
Bernstein where the approximated function f is evaluated at intervals which form
a geometric progression. We start by recalling some results due to G. M. Phillips
containing g-integers.

Let ¢ > 0 be any positive real number. For any non-negative integer ¢ the so called
" g-integer” was introduced, denoted by [i] and defined by
1— qi
) , 1
i={ T-¢ 17 (1.2)
1, q=1.

A 7g-factorial” was defined in the following obvious way:

il = {[z‘][z‘ - 1}7...[1],;__01,2,... )
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and a ” ¢g-binomial coefficient” was defined as:

[f}zvm%gm' (1.4)

Note that the g-binomial coefficients satisfy — see [7] — the recurrence relations

RO KA T

[kjl}_[rﬁl}+¢{f]' (1.6)

Next, a sequence of positive linear operators B, : C[0,1] — C|0, 1] was constructed,

and

which associates for any positive integer n to any f € C[0, 1] the polynomial

mgm =35 " e T 0-eo) (19)

s=0

In (1.9) an empty product denotes 1 and f,. = f ([T]) Clearly, if ¢ = 1 the operator
(1.9) is reduced to the classical Bernstein operator.

It was proved ([7], [8], [9] ) that the properties of the generalized Bernstein operator
are similar to the properties of the classical Bernstein operator (1.1).

The aim of the present paper is to extend the operator (1.9) to the case of bivariate
functions.

2. Main results

Let 12 = [0,1] x [0,1] be the unit square and R’ = {f | f : I — R} denote the
space of real bivariate functions defined on this square.

For any function f € R! ® and any positive real numbers g1, g2 > 0 one denotes by

ni—ry—1
USRS SV R FO | (U (21)

T = =0 5120

and

nog—ro—1
Y (Fiavy) = me[”z] nO T (- (2.2)

) =0 S2 =0

respectively, the parametric extensions of the operator (1.9). Note that in (2.1) and
(2.2) an empty product denotes 1 and f,, = f (M y) s fr=1f ( x, [Tz ) Clearly,

[na]’
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for g1 = 1 and g2 = 1 the parametric extensions (2.1) and (2.2) are reduced to the
parametric extensions of the classical Bernstein operator.

From the definitions (2.1) and (2.2), it follows

Lemma 2.1. The parametric extensions (2.1) and (2.2) of the operator (1.9) are
linear positive operators on C(I?).

Lemma 2.2. Let f € C(I?). Then, for any y € [0, 1] the operator (2.1) has the
following interpolation properties

(i) By (f:0,y) = f(0,y)

(i) By, (f;1,9) = f(1,y).

Proof.

(i) By the definition (2.1), we obtain:

ny—ri—1
o (fiz,y) = Zfrl[nl} " H (1-qi'z) =

T1= =0 T1 =0

— { 8 } 20 nﬁl(l —¢'z) + f [ ’”;1 ] xni:f(l — gz ot (2.3)

s1=0 s=0
n n
++f”{n}x .

Here f; = f ([%] y) , i = 0,n. Substituting x = 0, we get that

B0 =h| o | =1 () = f0.0)

for any y € [0,1].
(ii) Substituting = 1in (2.3), one obtains B} (f;1,y) = f(1,y), forany y € [0,1].
In a similar way, we obtain

Lemma 2.3. For any = € [0,1] and any f € C(I?) the operator (2.2) has the
following interpolation properties

(i) Bpa(f;2,0) = f(x,0)

(i) B (fiz1) = f(z,1).
Lemma 2.4. The operators Bm,B}{2 commute on C(I?). Their product is the
linear positive operator By, ,, : C(I 2) — C(I?), which associates to any function

f € C(I?) the approximant

Ny

Bussalfi) = 35 3 g [ 2] [ 22 oy

r1=07r2=0
’I’L17T171 ’I’L277‘271

[I I-qg'z) I (Q-a°y).

51=0 32=0

(2.1)
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Proof. By direct computation one obtains

By, B, (fra,y) = By, (B, (fr2,y) =

no ng—ro—1
=Br (Z Ira { 7;; ]y” 11 (1q§2y)> =

T‘2=0 51=0
no ’n,g—’l“g—l no ’I’LQ—’I“Q—l
n2 n2
S Bl P ) QCEYAVERTRED S [l FEN ) (Y
ro=0 s9=0 ro=0 s9=0
ni nl—rl—l
ni
([ ]n T a-a) -
7‘1:0 81:0
ni no n n 77,177”171 ’I’Lg*Tzfl
_ 1 2 ri,,T s s
Sy e T a-a I 0-am
7‘1=07‘2=0 81=0 82=0

In a similar way, it follows

ny nag

xT nl n2 T T
B%zBrn(f;x?y) = E E [ ) :l |: o :l x'ty 2fr177’2 X
r1=07r2=0

nlfrlfl n277~271

IT a-¢= ] 0-¢.

8120 SQIO

We obtain (2.4). The positivity and linearity of B, , follow from relation (2.4).

Lemma 2.5. The generalized bivariate Bernstein operator (2.4) interpolates the
function f in the four corners of the unit square, i.e.,

{ Bn17n2(f;0,0 =
Bnlﬂ’LQ(f;l?O =

S—
~
—
=
o
=
Selon
3
<
3
[V
)
\'l—‘
—
S~—
Il

Proof. We apply lemma 2.4.

Lemma 2.6. Let e;; : I? — 1% ¢;5(z,y) = 'y’ (0 <i+j < 2,i,j — integers)
be the test functions. Then, the following equalities

(i) Bn,.m,(e00,7,y) = eon(z,9);
ny Ny (610;x, y) = e1o(x,y);

ng,n, (eOI;mv y) = 601(1‘7 y)7

— —
jar =
=

~—

Bn1 S, (ell;myy) = 611(%?%)?
v) B, n, (e20,7,y) = eao(z,y) + x(ﬁ;]x);
Vl) Bnl My (602;1’, y) = 602(1'7 y) + %7
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hold for any (z,y) € I
Proof. We show only the proof of (vi). By definition (2.4), one has

Bnl My (602; z, y) =

Yy (%) B }H(l i) T G- =

r1=07r2=0 s1=0 s2=0
n1 n ni—ry—1 ne [7”2] 2 nog—ro—1
:{Z [ " ]”3 II ﬂw?fﬂ)}{Z(ﬁ) v 1 (1—q52y)}:
’1"1:0 1 81:0 7‘2:0 2 82:0

- Bnl (60;1’) Bn2 (62;y)7

where B, , B, are the generalized Bernstein operators introduced by G. M. Phillips
—see [7] —and e; : [ — I,e;(z) = 2%(i = 0,1,2) are the one variate test functions. It
is well known [7] that these operators satisfy the following equalities

y(1—y)

Bnl (60;1') = 60(%), an (eQ;y) = eQ(y) +
[n2]

for all x € I and y € I. By using these two equalities, we get (vi).

Theorem 2.1. Let be ¢1 = ¢1(n1),¢2 = ¢2(n2), and let ¢1(n1) — 1,¢2(ng) — 1
from below as n; — 00,m9 — o0o. Then, for any f € C(I?) the sequence of bivariate

generalized Bernstein polynomials defined at (2.4) converges uniformly to f(z,y) on
12

Proof. By using relation (1.2) and the hypothesis that ¢ = ¢1(n1) — 1 as
n; — 00, one obtains that [n;] — oo as ny — oo.

In a similar way, [ns] — oo as ng — 0.

Next, using lemma 2.6, it follows that B, », (eij;x,y) = ei;, uniformly on I? as
ni,ng — OQO.

Applying now the well-known test theorem of Korovkin for bivariate functions,
one obtains that B, ., (f;z,y) converges to f(z,y), uniformly on I?, and the proof
ends.

Theorem 2.2. For any f : I? — R, bounded on I2, the inequality

R ) 29
holds.
In (2.5), [|f]

smoothness.

Proof. Let f : I? — R be a bivariate bounded function and den02ted and let
the set of all bounded bivariate functions defined on I? be denoted by R!™ Then, the

denotes the uniform norm and w denotes the first order modulus of
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first order modulus of smoothness is the function w : R — [0,1], defined for any
fe R and any (d1,02) € Ri by

w(81,62) = sup {|f(z,y) — f(&',y)| (z,y) € I*, (2, ¢) € I’ |z — 2’| <61,y —y| < b2}
(2.6)

It is well known that w, defined at (2.6), is a monotone increasing function with
respect to the natural order of R?, i.e.

((51,(52) € Ri, ((517(5 ) € Ri,&l < (5 (52 < (5’2 = W(61762) < w(6/1,6/2) (27)

After this introduction, let us to begin the proof. Using lemma (2.6) (the equality
(1)), we can write

B, i, (f;2,9) — flz,9)] =

-yl

() 7]

Taking into account the monotonicity of w, one obtains
XIE

oyt e = (6
(i CRE >(ﬁﬁ) >

(1] [n2]
From (2.7), (2.8) follows the inequality

o)
B, i, (f52,9) = fla,y)] S K (2.9)

)

[l
[

where

()
kﬂ—%[ﬁ}ﬂfiT%Lw?®+gx

=0 et
( - i:o % - 1‘ [ " ]yrz nzﬁol(l quy)+1> .
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Next, applying the Schwarz inequality, one obtains

(B8] o0 -

T1:0 51:0
1
_ i [7’1] JZ’ <|: n1 :|xr1 ”1ﬁ71(1 q5196)> ’ %
- T 1 — 4
7‘1:0 [nl] rl 81:0
ny—ry—1 % 2
l: :11 :| ! H (1 _ qflx)> <
51:0
(S T3] )
r1=0 [nl] " s1=0
ni n TLl—’I”l—l
(Z [ " }x 11 (1—(1?:0)) =
7‘1:0 1 81:0
= {Bn1 (e2;7) — 2z - By, (e157) + Bp (eo; z)} B, (eo;w) =
1—x) z(l—x) 1
m = T (210)
In a similar way we obtain
i <M_ > |: na :| rgnQﬁil(l_ So ) ’ < 1 (2 11)
S\be] ) L [T 10 0B ] |

Combining now the inequalities (2.9), (2.10) and (2.11), one obtains

1 1
|Bn177L2(f7‘ray)_f(x7y)|Sw( /—[n1]7 /_[TLQ])X
L iy, 1 Y L .
< [m]'Q—ml]-Fl)( [n]'2—[712]+1)_4 <\/W’\/@> (2.12)

From (2.12), computing the supremum follows (2.5) and the proof ends.

Remarks 2.1.

(i) Clearly, if g1 = g2 = 1, then operator (2.4) is reduced to the classical Bernstein
bivariate operator, considered first by D. D. Stancu [10].

In this case, the results contained in theorems 2.1 and 2.2 are reduced to the
well-known results due to D. D. Stancu [10, 11].

(ii) If g1 = 1,92 # 1 or q1 # 1,92 = 1, other interesting operators of Bernstein
type can be obtained. The approximation properties of these operators are similar to
the properties of the classical bivariate operator of Bernstein.
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(iii) All the results contained in the present paper can be extended to the case of
n-variate functions.

Finally , we mention that a first form of this paper was presented at ” micro-
CAD 99” (in Miskolc, Hungary, February 1999), and we express our gratitude to all
our colleagues from Miskolc, especially to Professor Aurél Galdntai.
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