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Abstract. In this paper, we deal with the existence of the mild solutions to the fractional im-
pulsive evolution equations. By definitions of the lower and upper quasi-solutions and technique
of mixed monotone iterative, we get several existence results. The results are new and extend
previously known results. An example illustrates the main results.
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1. INTRODUCTION

It is well known that fractional differential equation is one of the most valuable
tools in modeling of many phenomena in various fields, such as physics, chemistry,
aerodynamics, etc(see[8,23]). Recently, many researchers pay more attention to frac-
tional evolution equations because they are applied more widely than the ordinary
differential equations. There has been a significant theoretical development in frac-
tional evolution equations(see[1, 3, 4, 10–21, 24]).

As for impulsive differential equations, they are used to describe the dynamics of
real processes and phenomena in which sudden, discontinuous jumps occurs, such as
shocks, harvesting or natural disasters, and so on. The theory of impulsive differential
equations have been emerging as an important area of investigation. Particularly, the
fractional impulsive evolution equations are more useful and valuable because of its
widely used in control, mechanics, electrical engineering, biological, and so on.

In [21], Mu discussed the existence of the mild solutions of the following fractional
evolution equations in an ordered Banach space X by using the monotone iterative
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technique. (
cD˛u.t/CAu.t/D f .t;u.t//; for t 2 I;
u.0/D x0 2X;

where cD˛ is the Caputo fractional derivative of order 0 < ˛ < 1, I D Œ0;T �, A W
D.A/ � X ! X be a closed linear operator, �A is the infinitesimal generator of
an analytic semigroup of uniformly bounded linear operators T .t/.t � 0/, and f W
I �X !X is continuous.

In this paper, we use the monotone iterative technique of mixed monotone operator
to discuss the existence of the mild solutions of the following fractional impulsive
evolution equations in an ordered Banach space E8̂<̂

:
cD˛u.t/CAu.t/D f .t;u.t/;u.t//;0 < ˛ < 1; t 2 J 0;

M u jtDtkD Ik.u.tk/;u.tk//; k D 1;2; : : : ;m;

u.0/D u0;

(1.1)

where cD˛u.t/ denotes a Caputo fractional derivative of u.t/, J D Œ0;T �, J 0 D
J nft1; t2; : : : ; tmg, 0 D t0 < t1 < � � � < tm < tmC1 D T , A W D.A/ � E ! E is a
closed linear operator and �A generates a C0-semigroup T .t/.t � 0/ in E, f 2
C.J �E �E;E/, Ik 2 C.E �E;E/, u0 2 E, M u.t/ jtDtkD u.t

C

k
/�u.t�

k
/, u.tC

k
/

and u.t�
k
/ represent the right-hand limit and the left-hand limit of the function u.t/

at t D tk , respectively.
By applying the operators semigroups theory and the method of mixed monotone

iterative, we get the existence of mild solutions for the problem (1.1). The results are
new and are the extension of [21]. Moreover, we also discuss the existence of mild
solutions for the problem (1.1) under the situation that the coupled lower and upper
mild quasi-solutions of problem (1.1) do not exist.

The rest of this paper is organized as follows: In Section 2, we present some
useful and necessary definitions, preliminary results and notations that will be used
to prove our main results. In Section 3, under suitable assumptions, we use the mixed
monotone iterative technique to show the existence of the mild solutions of (1.1).
Finally, in Section 4, we give an example to illustrate our main results.

2. PRELIMINARY CONSIDERATIONS

Suppose that .X;k � k/ is a real Banach space which is partially ordered by a cone
P �X , i.e.,x � y if and only if y�x 2P . If x � y and x¤ y, then we denote x < y
or y > x. We denote � be the zero element of X . Recall that a non-empty closed
convex set P � X is a cone if it satisfies (i) x 2 P , � � 0) �x 2 P ; (ii) x 2 P ,
�x 2 P ) x D � .

Moreover, P is called normal if there exists a constant N > 0 such that, for all
x; y 2X , � � x � y implies k x k�N k y k. In this case, N is called the normality
constant of P .
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Let E be an ordered Banach space with the norm k � k and partial order �, whose
positive coneP Dfx 2E j x� �g is normal with normal constantN . LetPC.J;E/D
fu W J !E j u.t/ is continuous at t ¤ tk and left continuous at t D tk and u.tC

k
/ ex-

ists, kD 1;2; : : : ;mg. PC.J;E/ is a Banach space with the norm k u kPCD supt2J k
u.t/ k.

Let C.J;E/ denote the Banach space of all continuous E-value functions on J
with the norm k u kCDmaxt2J k u.t/ k, denoted by Y . Then Y is an ordered Banach
space by the normal cone PC D fu 2 Y j u � �; t 2 J g. We use E1 to denote the
Banach space D.A/ with the graph norm k � k1Dk � k C k A� k.

Now, we recall some properties of the measure of noncompactness which will be
used later. Let �.�/ denote the Kuratowski measure of noncompactness of bounded
set. For more details of the definition and properties of the measure of noncompact-
ness, see [2].

Next,Let us recall the basic definitions and propertiy of fractional calculus(for
more details, see [8, 23]):

Definition 1. For ˛ > 0, the integral

I˛f .t/D
1

� .˛/

Z t

0

.t � s/˛�1f .s/ds;

is called the Riemann-Liouville fractional integral of order ˛.

Definition 2. For a function f .t/, the Caputo derivative of order ˛ can be written
as

cD˛f .t/D
1

� .n�˛/

Z t

0

.t � s/n�˛�1f .n/.s/ds;

where n�1 < ˛ � n.

Theorem 1. Let n� 1 < ˛ � n and f .t/ 2 C nŒ0;T �; then we have the following
equality

I˛.cD˛f .t//D f .t/�

n�1X
iD0

f .i/.0/

� .iC1/
t i :

Guo[5, 6] intoduced the definition of a mixed monotone operator:

Definition 3. A WP �P !P is said to be a mixed monotone operator ifA.x;y/ is
increasing in x and decreasing in y. i.e., ui , vi .i D 1;2/2P , u1 � u2, v1 � v2 imply
A.u1;v1/� A.u2;v2/. Element x 2 P is called a fixed point of A if A.x;x/D x.

Heinz[7] proved the following result:

Theorem 2. Let B D fung � PC.J;E/ be a bounded and countable set, then
�.B.t// is Lebesgue integral on J , and

�

��Z
J

un.t/dt j nD 1;2; : : :

��
� 2

Z
J

�.B.t//dt:
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We make a frequent use of the following result due to Ye[25]:

Theorem 3. Suppose that b � 0, ˛ > 0, a.t/ is a nonnegative function locally
integrable on 0 � t < T and suppose that u.t/ is nonnegative and locally integrable
on 0� t < T with

u.t/� a.t/Cb

Z t

0

.t � s/˛�1u.s/ds

on this interval, then

u.t/� a.t/C

Z t

0

"
1X
nD1

.b� .˛//n

� .n˛/
.t � s/n˛�1a.s/

#
ds:

3. MAIN RESULTS

In this section, we use the mixed monotone iterative technique to discuss the ex-
istence of the mild solutions of the problem (1.1). Consider the following linear
fractional impulsive evolution equation in E:8̂<̂

:
cD˛u.t/CAu.t/D h.t/; 0 < ˛ < 1; t 2 J 0;

M u jtDtkD yk; k D 1;2; : : : ;m;

u.0/D u0 2E;

(3.1)

We also quote the following results of [24]:

Definition 4. For each h 2 Lp.J;E/.p > 1
˛
/, yk 2E, k D 1;2; : : : ;m, a function

u 2 PC.J;E/ is called a mild solution of the problem (3.1), if the following integral
equations are satisfied.

u.t/D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

S˛.t/u0C
R t
0 .t � s/

˛�1T˛.t � s/h.s/ds; t 2 Œ0; t1�;

S˛.t/u0CS˛.t � t1/y1C
R t
0 .t � s/

˛�1T˛.t � s/h.s/ds; t 2 .t1; t2�;
:::

S˛.t/u0C
Pm
iD1S˛.t � ti /yi C

R t
0 .t � s/

˛�1T˛.t � s/h.s/ds;

t 2 .tm;b�;

where

S˛.t/D

Z 1
0

�˛.�/T .t
˛�/d�; T˛.t/D ˛

Z 1
0

��˛.�/T .t
˛�/d�;

and

�˛.�/D
1

˛
��1�

1
˛$˛.�

� 1
˛ /� 0;

$˛.�/D
1

�
˙1nD1.�1/

n�1��n˛�1
� .n˛C1/

nŠ
sin.n�˛/; � 2 .0;1/;
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�˛ is a probability density function defined on .0;1/, that is

�˛.�/� 0; � 2 .0;1/ and

Z 1
0

�˛.�/d� D 1:

Theorem 4. For a uniformly bounded C0-semigroup T .t/.t � 0/
(i.e. supt2Œ0;1/ k T .t/ k�M ), we have that for any fixed t � 0, S˛.t/ and T˛.t/ are
linear and bounded operators, i.e.,

k S˛.t/ kE�M; and k T˛.t/ kE�
M

� .˛/
:

The following definition is given by Li[9]:

Definition 5. A C0-semigroup T .t/.t � 0/ in E is said to be positive, if order
inequality T .t/u� � holds for every u� �; u 2E and t � 0.

We introduce the mild quasi-solutions of problem (1.1).

Definition 6. Let �� 0 be a constant, If functions x0; y0 2 PC.J;E/ satisfy8̂<̂
:
cD˛x0.t/CAx0.t/� f .t;x0.t/;y0.t//C�.x0.t/�y0.t//; t 2 J 0;

M x0 jtDtk� Ik.x0.tk/;y0.tk//; k D 1;2; : : : ;m;

x0.0/� u0;8̂<̂
:
cD˛y0.t/CAy0.t/� f .t;y0.t/;x0.t//C�.y0.t/�x0.t//; t 2 J

0;

M y0 jtDtk� Ik.y0.tk/;x0.tk//; k D 1;2; : : : ;m;

y0.0/� u0;

we call x0; y0 coupled lower and upper mild quasi-solutions of problem (1.1). More-
over, change ” � ”; ” � ” into ”D ”, we call x0; y0 coupled mild quasi-solutions of
problem (1.1), if x0 D y0 D u, we call u a mild solution of problem (1.1).

Evidently, PC.J;E/ is also an ordered Banach space with the partial order �
reduced by the positive cone P1 D fu 2 PC.J;E/ j u.t/ � �; t 2 J g. P1 is also
normal with the same normal constant N . For x; y 2 PC.J;E/ with x � y, we use
Œx;y� to denote the order interval fu 2 PC.J;E/ j x � u � yg and Œx.t/;y.t/� to
denote the order interval fu 2E j x.t/� u.t/� y.t/; t 2 J g.

Theorem 5. Let E be an ordered Banach space whose positive cone P is normal,
�A generates a positive C0-semigroup T .t/.t � 0/ in E, f 2 C.J �E �E;E/,
Ik 2C.E�E;E/, k D 1;2; : : : ;m. Assume that the problem (1.1) has coupled lower
and upper mild quasi-solutions x0 and y0 such that x0 � y0 and suppose that the
following conditions are satisfied:
(H1) There exist constants M > 0 and �� 0 such that

f .t;x2;y2/�f .t;x1;y1/� �M.x2�x1/��.y1�y2/;
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for any t 2 J and x0.t/� x1.t/� x2.t/� y0.t/, x0.t/� y2.t/� y1.t/� y0.t/.
(H2) The impulsive function Ik satisfies

Ik.x1;y1/� Ik.x2;y2/; k D 1;2; : : : ;m;

for any t 2 J and x0.t/� x1.t/� x2.t/� y0.t/, x0.t/� y2.t/� y1.t/� y0.t/.
(H3) There exists a constant M1 > 0 such that

�.ff .t;xn;yn/g/�M1.�.fxng/C�.fyng//;

for any t 2 J and increasing monotone sequence fxng � Œx0.t/;y0.t/� and decreas-
ing monotone sequence fyng � Œx0.t/;y0.t/�.
Then (1.1) has minimal and maximal coupled mild solutions between x0 and y0.

Proof. For the C0-semigroup T .t/.t � 0/,we know that there exist ! > 0 andfM �
1 such that k T .t/ k�fMe!t (see Theorem2.2 in [22]). Now let us takeM >! > 0, it
is easy to see that �.ACMI/ also generates a C0-semigroup S.t/D e�MtT .t/.t �

0/ in E. S.t/.t � 0/ is positive because T .t/.t � 0/ is positive. Moreover, k S.t/ kD
e�Mt k T .t/ k�fMe�.M�!/t �fM .

Next, let �˛.t/ D
R1
0 �˛.�/S.t

˛�/d� , '˛ D ˛
R1
0 ��˛.�/S.t

˛�/d� . According
to Theorem 4 ,

k �˛.t/ k�fM; k '˛ k�
fM
� .˛/

:

Define the operator 	 W Œx0;y0�� Œx0;y0�! PC.J;E/ by

	.x;y/.t/D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�˛.t/u0C
R t
0 .t � s/

˛�1'˛.t � s/Œf .s;x.s/;y.s//

C.M C�/x.s/��y.s/�ds; t 2 Œ0; t1�;

�˛.t/u0C�˛.t � t1/I1.x.t1/;y.t1//C
R t
0 .t � s/

˛�1'˛.t � s/

Œf .s;x.s/;y.s//C .M C�/x.s/��y.s/�ds; t 2 .t1; t2�;
:::

�˛.t/u0C
Pm
iD1�˛.t � ti /Ii .x.ti /;y.ti //

C
R t
0 .t � s/

˛�1'˛.t � s/

Œf .s;x.s/;y.s//C .M C�/x.s/��y.s/�ds; t 2 .tm;T �;

According to the Definition 4, we know that u is a mild solution of problem (1.1)
if only if uD 	.u;u/.

Next we show that 	 is a mixed monotone operator. For x0.t/� x1.t/� x2.t/�
y0.t/, x0.t/� y2.t/� y1.t/� y0.t/, t 2 .tk; tkC1�, from (H1), we can get that

f .t;x1;y1/CMx1��y1 � f .t;x2;y2/CMx2��y2;

so
f .t;x1;y1/C .M C�/x1��y1 � f .t;x2;y2/C .M C�/x2��y2:

From (H2), we have

Ik.x1;y1/� Ik.x2;y2/; k D 1;2; : : : ;m:
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Since S.t/ is a positive C0-semigroup, so

	.x1;y1/.t/� 	.x2;y2/.t/:

	 is a mixed monotone operator.
Then, we show that 	 W Œx0;y0�� Œx0;y0�! Œx0;y0�:

Let h.t/ Dc D˛x0.t/CAx0.t/CMx0.t/. From Definition 6, we get h.t/ �
f .t;x0.t/;y0.t//C�.x0.t/� y0.t//CMx0.t/: According to Definition 4, for t 2
.tk; tkC1�:

x0.t/D �˛.t/x0.0/C

kX
iD1

�˛.t � ti /M x0 jtDti C

Z t

0

.t � s/˛�1'˛.t � s/h.s/ds

� �˛.t/u0C

Z t

0

.t�s/˛�1'˛.t�s/Œf .s;x0.s/;y0.s//C.M C�/x0.s/��y0.s/�ds

C

kX
iD1

�˛.t � ti /Ii .x0.ti /;y0.ti //

� 	.x0;y0/.t/:

So, x0.t/ � 	.x0;y0/.t/. Similarly, we can get 	.y0;x0/.t/ � y0.t/. That is to
say 	 W Œx0;y0�� Œx0;y0�! Œx0;y0� is a continuous mixed monotone operator.

Define two sequences fxng, fyng:

xn D 	.xn�1;yn�1/; yn D 	.yn�1;xn�1/; nD 1;2; : : :

Then from the mixed monotonicity of 	 , we have:

x0 � x1 � x2 � � � � � xn � � � � � yn � � � � � y2 � y1 � y0:

Let H D fxn j nD 1;2; : : :gCfyn j nD 1;2; : : :g, H1 D fxn j nD 1;2; : : :g, H2 D
fyn j n D 1;2; : : :g, H3 D f.xn�1;yn�1/ j n D 1;2; : : :g, H4 D f.yn�1;xn�1/ j n D
1;2; : : :g. Then we can get that H1.t/D 	.H3.t//, H2.t/D 	.H4.t//. Let ˝.t/D
�.H.t//, t 2 J .

Now we show that ˝.t/� 0 for t 2 J .
For t 2 Œ0; t1�, we have

˝.t/D �.H.t//D �.H1.t/CH2.t//D �.	.H3.t//C	.H4.t///

D �

��
�˛.t/u0C

Z t

0

.t � s/˛�1'˛.t � s/Œf .s;xn�1.s/;yn�1.s//

C .M C�/xn�1.s/��yn�1�dsC�˛.t/u0

C

Z t

0

.t�s/˛�1'˛.t�s/Œf .s;yn�1.s/;xn�1.s//C.MC�/yn�1.s/��xn�1�ds

��
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�
2fM
� .˛/

Z t

0

�.f.t � s/˛�1Œf .s;xn�1.s/;yn�1.s//Cf .s;yn�1.s/;xn�1.s//

CM.xn�1.s/Cyn�1.s//�g/ds

�
2fM
� .˛/

Z t

0

.t � s/˛�1.2M1CM/.�.H1.s//C�.H2.s///ds

D
2fM
� .˛/

.2M1CM/

Z t

0

.t � s/˛�1˝.s/ds:

According to Theorem 3, we get˝.t/� 0 for t 2 Œ0; t1�. Hence fxn.t/gCfyn.t/g
is precompact, so fxn.t/g and fyn.t/g are precompact for t 2 Œ0; t1�. In the same time
we can get that I1.H3.t1// and I1.H4.t1// are precompact and �.I1.H3.t1///D 0,
�.I1.H4.t1///D 0.

For t 2 .t1; t2�,

˝.t/D �.H.t//D �.H1.t/CH2.t//D �.	.H3.t//C	.H4.t///

D�

��
�˛.t/u0C

Z t

0

.t�s/˛�1'˛.t�s/Œf .s;xn�1.s/;yn�1.s//C.MC�/xn�1.s/

��yn�1�dsC�˛.t � t1/I1.xn�1.t1/;yn�1.t1//C�˛.t/u0

C�˛.t � t1/I1.yn�1.t1/;xn�1.t1//

C

Z t

0

.t �s/˛�1'˛.t �s/Œf .s;yn�1.s/;xn�1.s//C .M C�/yn�1.s/��xn�1�ds

��
�
2fM
� .˛/

Z t

0

�.f.t � s/˛�1Œf .s;xn�1.s/;yn�1.s//Cf .s;yn�1.s/;xn�1.s//

CM.xn�1.s/Cyn�1.s//�g/ds

�
2fM
� .˛/

Z t

0

.t � s/˛�1.2M1CM/.�.H1.s//C�.H2.s///ds

D
2fM
� .˛/

.2M1CM/

Z t

0

.t � s/˛�1˝.s/ds

D
2fM
� .˛/

.2M1CM/

Z t

t1

.t � s/˛�1˝.s/ds:

According to Theorem 3,˝.t/� 0 for t 2 .t1; t2�. Continuing this process in each
interval, we can prove that˝.t/� 0 in J . Hence fxn.t/gCfyn.t/g is precompact, so
fxn.t/g and fyn.t/g are precompact. fxn.t/g is a increasing sequence and fyn.t/g is a
decreasing sequence, then we can easily get that fxn.t/g and fyn.t/g are convergent.

x�.t/D lim
n!1

xn.t/; y�.t/D lim
n!1

yn.t/; t 2 J:
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Evidently, x� and y� are bounded integrable in J . Since we have that xn.t/ D
	.xn�1;yn�1/.t/ and yn.t/D 	.yn�1;xn�1/.t/, letting n!1, by the Lebesgue
dominated convergence theorem, we get

x�.t/D 	.x�;y�/.t/; y�.t/D 	.y�;x�/.t/;

and x�.t/; y�.t/ 2 PC.J;E/, x0.t/ � x�.t/ � y�.t/ � y0.t/. By monotonicity of
fxn.t/g and fyn.t/g, x�.t/ and y�.t/ are the minimal and maximal coupled fixed
points of A in Œx0;y0�, respectively and they are the minimal and maximal coupled
mild solutions of the problem (1.1) in Œx0;y0�, respectively. �

Theorem 6. Let E be an ordered Banach space whose positive cone P is normal,
�A generates a positive C0-semigroup T .t/.t � 0/ in E, f 2 C.J �E �E;E/,
Ik 2C.E�E;E/, k D 1;2; : : : ;m. Assume that the problem (1.1) has coupled lower
and upper mild quasi-solutions x0 and y0 such that x0 � y0 and suppose that (H1),
(H2) and (H4) are satisfied. Furthermore, we impose that: (H4) there exist constants
L1 � 0 and L2 � 0 such that

f .t;x2;y2/�f .t;x1;y1/� L1.x2�x1/CL2.y1�y2/;

for any t 2 J and x0.t/ � x1.t/ � x2.t/ � y0.t/, x0.t/ � y2.t/ � y1.t/ � y0.t/.
Then (1.1) has a unique mild solution between x0 and y0 .

Proof. Firstly, we prove that (H1) and (H4) imply (H3). For t 2 J , let fxng �
Œx0.t/;y0.t/� be an increasing monotone sequence and fyng � Œx0.t/;y0.t/� be a
decreasing monotone sequence. Let m> n, by (H1) and (H4), we have

0� .t;xm;ym/�f .t;xn;yn/CM.xm�xn/C�.yn�ym/

� .M CL1/.xm�xn/C .�CL2/.yn�ym/:

By the normality of cone P , we have

k f .t;xm;ym/�f .t;xn;yn/ k

�N k .M CL1/.xm�xn/C .�CL2/.yn�ym/ k CM k .xm�xn/ k

C� k .yn�ym/ k

� ŒN.M CL1/CM� k .xm�xn/ k CŒN.M CL2/C�� k .yn�ym/ k :

By the definition of the measure of noncompactness, we have

�.ff .t;xn;yn/g/� ŒN.M CL1/CM��.fxng/C ŒN.�CL2/C���.fyng/

�M1.�.fxng/C�.fyng//;

whereM1DN.MCL1C�CL2/CMC�. So (H3) holds. Thus, by Theorem 5,
the problem (1.1) has minimal and maximal coupled mild solutions x�.t/ and y�.t/
in Œx0;y0�. Next we show that x�.t/� y�.t/ in J .
For t 2 Œ0; t1�, we have
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0� y�.t/�x�.t/D 	.y�;x�/.t/�	.x�;y�/.t/

��˛.t/u0C

Z t

0

.t�s/˛�1'˛.t�s/Œf .s;y
�.s/;x�.s//C.MC�/y�.s/��x�.s/�ds

��˛.t/u0�

Z t

0

.t�s/˛�1'˛.t�s/Œf .s;x
�.s/;y�.s//C.MC�/x�.s/��y�.s/�ds

D

Z t

0

.t � s/˛�1'˛.t � s/Œf .s;y
�.s/;x�.s//�f .s;x�.s/;y�.s//

C .M C2�/.y�.s/�x�.s//�ds

�
fM
� .˛/

.L1CL2CM C2�/

Z t

0

.t � s/˛�1.y�.s/�x�.s//ds:

By Theorem 3, we obtain that x�.t/� y�.t/ for t 2 Œ0; t1�. Particularly,
I1.x

�.t1/;y
�.t1//D I1.y

�.t1/;x
�.t1//. For t 2 .t1; t2�, we have

0� y�.t/�x�.t/D 	.y�;x�/.t/�	.x�;y�/.t/

��˛.t/u0C�˛.t�t1/I1.y
�.t1/;x

�.t1//C

Z t

0

.t�s/˛�1'˛.t�s/Œf .s;y
�.s/;x�.s//

C .M C�/y�.s/��x�.s/�ds��˛.t/u0��˛.t � t1/I1.x
�.t1/;y

�.t1//

�

Z t

0

.t � s/˛�1'˛.t � s/Œf .s;x
�.s/;y�.s//C .M C�/x�.s/��y�.s/�ds

D

Z t

0

.t � s/˛�1'˛.t � s/Œf .s;y
�.s/;x�.s//�f .s;x�.s/;y�.s//

C .M C2�/.y�.s/�x�.s//�ds

�
fM
� .˛/

.L1CL2CM C2�/

Z t

0

.t � s/˛�1.y�.s/�x�.s//ds:

By Theorem 3, we obtain that x�.t/� y�.t/ for t 2 .t1; t2�. Continuing this pro-
cess in each interval, we can prove that x�.t/� y�.t/ in J . So x�.t/� y�.t/ is the
unique mild solution of the problem (1.1) in Œx0;y0�. �

In the following, we discuss the existence of mild solutions for the problem (1.1)
under the situation that coupled lower and upper mild quasi-solutions of the problem
(1.1) do not exist.

Theorem 7. Let E be an ordered Banach space whose positive cone P is nor-
mal, �A generates a positive C0-semigroup T .t/.t � 0/ inE, f 2C.J �E�E;E/,
Ik 2C.E�E;E/, kD 1;2; : : : ;m. Let (H1)-(H3) hold and assume that the following
condition is satisfied:
(H5) There exist �� 0, h.t/2PC.J;E/, h.t/� 0, yk 2D.A/, yk � 0, kD 1;2; : : : ;m;
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such that
�x�h.t/� f .t;�x;x/� f .t;x;�x/� �xCh.t/;

�yk � Ik.�x;x/� Ik.x;�x/� yk :

Then (1.1) has minimal and maximal coupled mild solutions.

Proof. Firstly, consider the following linear problem:8̂<̂
:
cD˛u.t/CAu.t/� .�C2�/u.t/D h.t/; 0 < ˛ < 1; t 2 J 0;

M u jtDtkD yk; k D 1;2; : : : ;m;

u.0/D u0;

(3.2)

We know that�.A�.�C2�/I / generates a positiveC0-semigroup S.t/D e.�C2�/t

T .t/.t � 0/ in E. From Definition 4, the linear problem (3.2) has a unique positive
mild solution u 2 PC.J;E/. Let x0 D�u, y0 D u. By (H5), we have8̂̂̂<̂

ˆ̂:
cD˛x0.t/CAx0.t/D �x0.t/�h.t/C2�x0.t/� f .t;x0.t/;y0.t//

C�.x0.t/�y0.t//; t 2 J 0;

M x0 jtDtkD�yk � Ik.x0.tk/;y0.tk//; k D 1;2; : : : ;m;

x0.0/D�u0 � u0;

and 8̂̂̂<̂
ˆ̂:
cD˛y0.t/CAy0.t/D �y0.t/Ch.t/C2�y0.t/� f .t;y0.t/;x0.t//

C�.y0.t/�x0.t//; t 2 J 0;

M y0 jtDtkD yk � Ik.y0.tk/;x0.tk//; k D 1;2; : : : ;m;

y0.0/� u0;

So x0.t/ and y0.t/ are coupled mild lower and upper solutions of (1.1). Hence, the
conclusion follows from Theorem 5. �

4. APPLICATION

Consider the following fractional impulsive partial differential equation8̂̂̂<̂
ˆ̂:
cD˛u�4uD g.x; t;u;u/; 0 < ˛ < 1; t 2 J 0;

u.tC
k
/�u.t�

k
/D Jk.u.x; tk/;u.x; tk//; k D 1;2; : : : ;m;

u j@˝D 0;

u.x;0/D �.x/; x 2˝;

(4.1)

where 4 is the Laplace operator, J D Œ0;b�, 0 D t0 � t1 � � � � � tm � tmC1 D b,
J 0 D J nft1; t2; : : : ; tmg, ˝ � RN is a bounded domain with a smooth boundary @˝.
g W˝ �J �R�R! R is continuous, Jk W R�R! R are continuous.
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Let E D L2.˝/, P D fv 2 L2.˝/ j v.x/ � 0;a:e:x 2 ˝g, then E is a Banach
space and P is a normal cone in E. Define the operator A as follow:

D.A/DH 2.˝/\H 1
0 .˝/; AuD��u:

�A generates a positive C0-semigroup T .t/.t � 0/ in E.
In the following, we need the following assumptions:
(F1) There exist � � 0, h 2 PC.˝ �J /, h.x; t/ � 0, yk 2 D.A/, yk.x/ � 0, k D
1;2; : : : ;m; � 2D.A/, �.x/� 0 such that for any u� 0 2 L2.˝/

�u�h.x; t/� g.x; t;�u;u/� g.x; t;u;�u/� �uCh.x; t/; x 2˝; t 2 J 0;

�yk � Jk.�u;u/� Jk.u;�u/� yk; x 2˝; k D 1;2; : : : ;m:

(F2) For u1 � u2, v2 � v1 such that

Jk.u1.x; tk/;v1.x; tk//� Jk.u2.x; tk/;v2.x; tk//; x 2˝; k D 1;2; : : : ;m:

(F3) The partial derivative g0u and g0v are continuous and have upper bound.

Theorem 8. Let (F1)-(F3) hold. Then the problem (4.1) has a unique mild solu-
tion.

Proof. Let f .t;u;u/ D g.�; t;u.�/;u.�//, Iu;u D Jk.u.�/;u.�//. So the following
linear problem:8̂̂̂<̂

ˆ̂:
cD˛u�4u� .�C2�/uD h.x; t/; 0 < ˛ < 1; t 2 J 0;

u.tC
k
/�u.t�

k
/D yk; k D 1;2; : : : ;m;

u j@˝D 0;

u.x;0/D �.x/; x 2˝;

can be transformed into the following abstract problem:8̂<̂
:
cD˛u.t/CAu.t/� .�C2�/u.t/D h.t/; 0 < ˛ < 1; t 2 J 0;

u.tC
k
/�u.t�

k
/D yk; k D 1;2; : : : ;m;

u.0/D �;

where h.t/D h.�; t /. Use the same method as Theorem 7, we can prove that x0 and
y0 are coupled mild lower and upper quasi-solutions of the problem (4.1). From
assumptions (F2) and (F3), we can prove that (H1), (H2) and (H4) are satisfied. So
by Theorem 6, the problem (4.1) has a unique mild solution. �
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