
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 18 (2017), No. 2, pp. 611–621 DOI: 10.18514/MMN.2017.1379

FIXED POINT RESULTS FOR GENERALIZED RATIONAL
˛-GERAGHTY CONTRACTION

MUHAMMAD ARSHAD AND AFTAB HUSSAIN

Received 15 October, 2014

Abstract. In this paper, an effort has been made to improve the notion of ˛-Geraghty contrac-
tion type mappings and establish some common fixed point theorems for a pair of ˛-admissible
mappings under the improved approach of generalized rational ˛-Geraghty contractive type con-
dition in a complete metric space. An example has been constructed to demonstrate the novelty
of these results.
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1. PRELIMINARIES AND SCOPE

In 1973, Geraghty [3] studied a generalization of Banach contraction principle. He
generalized the Banach contraction principle in a different way than it was done by
different investigators. In 2012, Samet et al. [16], introduced a concept of ˛� - con-
tractive type mappings and established various fixed point theorems for mappings in
complete metric spaces. Afterwards, Karapinar [11], refined the notion and obtained
various fixed point results. See more results in [9]. Hussain et al. [7], generalized the
concept of ˛-admissible mappings and proved fixed point theorems. Subsequently,
Abdeljawad [1] introduced a pair of ˛�admissible mappings satisfying new suffi-
cient contractive conditions different from those in [7], [16] and obtained fixed point
and common fixed point theorems. Salimi et al. [15], modified the concept of ˛� �
contractive mappings and established fixed point results. Recently, Hussain et al. [8]
proved some fixed point results for single and set-valued ˛��� -contractive map-
pings in the setting of complete metric space. Mohammadi et al. [13], introduced
a new notion of ˛���contractive mappings and showed that it was a real gener-
alization for some old results. Thereafter, many papers have published on geraghty
contractions. For more detail see [4–6, 8, 11, 14] and references therein.

Definition 1 ([16]). Let S W X ! X and ˛ W X �X ! R. We say that S is ˛-
admissible if x;y 2X; ˛.x;y/� 1) ˛.Sx;Sy/� 1:
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Example 1 ([12]). Consider X D Œ0;1/, and define S WX !X and ˛ WX �X !
Œ0;1/ by Sx D 2x; for all x;y 2X and

˛ .x;y/D

�
e

y
x ; if x � y;x ¤ 0
0; if x < y:

Then S is ˛�admissible.

Definition 2 ([1]). Let S;T W X ! X and ˛ W X �X ! Œ0;C1/. We say that
the pair .S;T / is ˛-admissible if x;y 2 X such that ˛.x;y/ � 1, then we have
˛.Sx;Ty/� 1 and ˛.T x;Sy/� 1:

Definition 3 ([10]). Let S W X ! X and ˛ W X �X ! Œ0;C1/. We say that S is
triangular ˛-admissible if x;y 2X; ˛.x;´/� 1 and ˛.´;y/� 1) ˛.x;y/� 1:

Definition 4 ([10]). Let S WX !X and ˛ WX �X ! .�1;C1/. We say that S
is a triangular ˛-admissible mapping if

(T1) ˛.x;y/� 1 implies ˛.Sx;Sy/� 1; x;y 2X ,
(T2) ˛.x;´/� 1, ˛.´;y/� 1, implies ˛.x;y/� 1, x;y;´ 2X .

Definition 5 ([1]). Let S;T W X ! X and ˛ W X �X ! .�1;C1/. We say that
a pair .S;T / is triangular ˛-admissible if

(T1) ˛.x;y/� 1, implies ˛.Sx;Ty/� 1 and ˛.T x;Sy/� 1; x;y 2X:
(T2) ˛.x;´/� 1, ˛.´;y/� 1, implies ˛.x;y/� 1, x;y;´ 2X .

Definition 6 ([15]). Let S W X ! X and let ˛;� W X �X ! Œ0;C1/ be two
functions. We say that T is ˛-admissible mapping with respect to � if x;y 2 X;
˛.x;y/� �.x;y/) ˛.Sx;Sy/� �.Sx;Sy/: Note that if we take �.x;y/D 1; then
this definition reduces to definition in [16]. Also if we take ˛.x;y/D 1; then we says
that S is an �-subadmissible mapping.

Lemma 1 ([2]). Let S W X ! X be a triangular ˛-admissible mapping. Assume
that there exists x0 2X such that ˛.x0;Sx0/� 1:Define a sequence fxng by xnC1D
Sxn: Then we have ˛.xn;xm/� 1 for all m;n 2N[f0g with n < m:

Lemma 2. Let S;T W X ! X be a triangular ˛-admissible mapping. Assume
that there exists x0 2 X such that ˛.x0;Sx0/ � 1: Define sequence x2iC1 D Sx2i ;
and x2iC2 D T x2iC1, where i D 0;1;2; : : : :: Then we have ˛.xn;xm/ � 1 for all
m;n 2N[f0g with n < m:

We denote by˝ the family of all functions ˇ W Œ0;C1/! Œ0;1/ such that, for any
bounded sequence ftng of positive reals, ˇ.tn/! 1 implies tn! 0.

Theorem 1 ([3]). Let .X;d/ be a metric space. Let S WX!X be a self mapping.
Suppose that there exists ˇ 2˝ such that for all x;y 2X ,

d.Sx;Sy/� ˇ .d.x;y//d.x;y/:

then S has a fixed unique point p 2X and fSnxg converges to p for each x 2X .
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2. RESULTS

In this section, we prove some fixed point theorems satisfying generalized rational
˛-Geraghty contraction type mappings in complete metric space. Let .X;d/ be a
metric space, and let ˛ WX �X! R be a function. Let S;T WX!X is called a pair
of generalized rational ˛-Geraghty contraction type mappings if there exists ˇ 2 ˝
such that for all x;y 2X ,

˛.x;y/d.Sx;Ty/� ˇ .M.x;y//M.x;y/ (2.1)

where

M.x;y/Dmax
�
d.x;y/;

d.x;Sx/d.y;Ty/

1Cd.x;y/
;
d.x;Sx/d.y;Ty/

1Cd.Sx;Ty/

�
:

If S D T then T is called generalized rational ˛-Geraghty contraction type mappings
if there exists ˇ 2˝ such that for all x;y 2X ,

˛.x;y/d.T x;Ty/� ˇ .N.x;y//N.x;y/

where

N.x;y/Dmax
�
d.x;y/;

d.x;T x/d.y;Ty/

1Cd.x;y/
;
d.x;T x/d.y;Ty/

1Cd.T x;Ty/

�
:

Theorem 2. Let .X;d/ be a complete metric space, ˛ WX �X! R be a function.
Let S;T WX !X be two mappings then suppose that the following holds:

(i) .S;T / is pair of generalized rational ˛-Geraghty contraction type mapping;
(ii) .S;T / is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� 1;
(iv) S and T are continuous;
Then .S;T / have common fixed point.

Proof. Let x1 inX be such that x1D Sx0 and x2D T x1. Continuing this process,
we construct a sequence xn of points in X such that,

x2iC1 D Sx2i ; and x2iC2 D T x2iC1, where i D 0;1;2; : : : : (2.2)

By assumption ˛.x0;x1/� 1 and pair .S;T / is ˛ -admissible, by Lemma 2, we have

˛.xn;xnC1/� 1 for all n 2N[f0g: (2.3)

Then

d.x2iC1;x2iC2/D d.Sx2i ;T x2iC1/� ˛.x2i ;x2iC1/d.Sx2i ;T x2iC1/

� ˇ .M.x2i ;x2iC1//M.x2i ;x2iC1/;

for all i 2N[f0g: Now

M.x2i ;x2iC1/Dmax
�
d.x2i ;x2iC1/;

d.x2i ;Sx2i /d.x2iC1;T x2iC1/

1Cd.x2i ;x2iC1/
;
d.x2i ;Sx2i /d.x2iC1;T x2iC1/

1Cd.Sx2i ;T x2iC1/

�
Dmax

�
d.x2i ;x2iC1/;

d.x2i ;x2iC1/d.x2iC1;x2iC2/

1Cd.x2i ;x2iC1/
;
d.x2i ;x2iC1/d.x2iC1;x2iC2/

1Cd.x2iC1;x2iC2/

�
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�max
˚
d.x2i ;x2iC1/;d.x2iC1;x2iC2/

	
:

Thus

d.x2iC1;x2iC2/� ˇ .M.x2i ;x2iC1//M.x2i ;x2iC1/

� ˇ .d.x2i ;x2iC1//d..x2i ;x2iC1/ < d.x2i ;x2iC1/:

so that,
d..x2iC1;x2iC2/ < d.x2i ;x2iC1/: (2.4)

This implies that

d.xnC1;xnC2/ < d.xn;xnC1/; for all n 2N[f0g: (2.5)

So, sequence fd.xn;xnC1/g is nonnegative and nonincreasing. Now, we prove that
d.xn;xnC1/! 0: It is clear that fd.xn;xnC1/g is a decreasing sequence. Therefore,
there exists some positive number r such that limn!1d.xn;xnC1/D r: From .2:4/;

we have
d.xnC1;xnC2/

d.xn;xnC1/
� ˇ.d.xn;xnC1//� 1:

Now by taking limit n!1; we have

1� ˇ.d.xn;xnC1//� 1;

that is
lim
n!1

ˇ.d.xn;xnC1//D 1:

By the property of ˇ, we have

lim
n!1

d.xn;xnC1/D 0: (2.6)

Now, we show that sequence fxng is Cauchy sequence. Suppose on contrary that
fxng is not a Cauchy sequence. Then there exists � > 0 and sequences fxmk

g and
fxnk
g such that, for all positive integers k, we have mk > nk > k,

d.xmk
;xnk

/� � (2.7)

and
d.xmk

;xnk�1
/ < �: (2.8)

By the triangle inequality, we have

� � d.xmk
;xnk

/

� d.xmk
;xnk�1

/Cd.xnk�1
;xnk

/

< �Cd.xnk�1
;xnk

/:

That is,
� < �Cd.xnk�1

;xnk
/ (2.9)

for all k 2N. In the view of .2:9/, .2:6/; we have

lim
k!1

d.xmk
;xnk

/D �: (2.10)
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Again using triangle inequality, we have

d.xmk
;xnk

/� d.xmk
;xmkC1

/Cd.xmkC1
;xnkC1

/Cd.xnkC1
;xnk

/

and

d.xmkC1
;xnkC1

/� d.xmkC1
;xmk

/Cd.xmk
;xnk

/Cd.xnk
;xnkC1

/:

Taking limit as k!C1 and using .2:6/ and .2:10/; we obtain

lim
k!C1

d.xmkC1
;xnkC1

/D �: (2.11)

By Lemma 2, ˛.xnk
;xmkC1

/� 1; we have

d.xnkC1
;xmkC2

/D d.Sxnk
;T xmkC1

/� ˛.xnk
;xmkC1

/d.Sxnk
;T xmkC1

/

� ˇ.M.xnk
;xmkC1

//M.xnk
;xmkC1

/:

Finally, we conclude that
d.xnkC1

;xmkC2
/

M.xnk
;xmkC1

/
� ˇ.M.xnk

;xmkC1
//:

By using .2:6/, taking limit as k!C1 in the above inequality; we obtain

lim
k!1

ˇ.d.xnk
;xmkC1

//D 1: (2.12)

So, limk!1d.xnk
;xmkC1

/ D 0 < �; which is a contradiction. Hence fxng is a
Cauchy sequence. Since X is complete so there exists p 2 X such that xn ! p

implies that x2iC1 ! p and x2iC2 ! p. As S and T are continuous, so we get
T x2iC1 ! Tp and Sx2iC2 ! Sp . Thus p D Sp similarly, p D Tp; we have
Sp D Tp D p: Then .S;T / have common fixed point. �

In the following Theorem, we dropped continuity.

Theorem 3. Let .X;d/ be a complete metric space, ˛ WX �X! R be a function.
Let S;T WX !X be two mappings then suppose that the following holds:

(i) .S;T / is a pair of generalized rational ˛ -Geraghty contraction type mapping;
(ii) .S;T / is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� 1;
(iv) if fxng is a sequence in X such that ˛.xn;xnC1/ � 1 for all n 2N[f0g and

xn! p 2 X as n!C1; then there exists a subsequencefxnk
g of fxng such that

˛.xnk
;p/� 1 for all k:

Then .S;T / have common fixed point.

Proof. Follows the similar lines of the Theorem 2. Define a sequence x2iC1 D
Sx2i ; and x2iC2 D T x2iC1, where i D 0;1;2; : : : : converges to p 2X: By the hypo-
theses of (iv) there exists a subsequencefxnk

g of fxng such that ˛.x2nk
;p/ � 1 for

all k: Now by using .2:1/ for all k; we have

d.x2nkC1;Tp/D d.Sx2nk
;Tp/� ˛.x2nk

;p/d.Sx2nk
;Tp/



616 MUHAMMAD ARSHAD AND AFTAB HUSSAIN

� ˇ
�
M.x2nk

;p/
�
M.x2nk

;p/:

so that,
d.x2nkC1;Tp/� ˇ

�
M.x2nk

;p/
�
M.x2nk

;p/: (2.13)
On the other hand, we obtain

M.x2nk
;p/Dmax

�
d.x2nk

;p/;
d.x2nk

;Sx2nk
/;d.p;Tp/

1Cd.x2nk
;p/

;
d.x2nk

;Sx2nk
/;d.p;Tp/

1Cd.Sx2nk
;Tp/

�
:

Letting k!1 then we have

lim
k!1

M.x2nk
;p/Dmaxfd.p;Sp/;d.p;Tp/g : (2.14)

Case I.
limk!1M.x2nk

;p/ D d.p;Tp/: Suppose that d.p;Tp/ > 0. From .2:14/, for a
large k , we have M.x2nk

;p/ > 0, which implies that

ˇ.M.x2nk
;p// <M.x2nk

;p/:

Then, we have
d.x2nk

;Tp/ <M.x2nk
;p/ (2.15)

Letting k!1 in .2:15/, we obtain that d.p;Tp/ < d.p;Tp/, which is a contradic-
tion. Thus, we find that d.p;Tp/D 0, implies p D Tp:
Case II.
limk!1M.x2nk

;p/D d.p;Sp/: Similarly p D Sp: Thus p D Tp D Sp: �

IfM.x;y/Dmax
�
d.x;y/;

d.x;Sx/d.y;Sy/

1Cd.x;y/
;
d.x;Sx/d.y;Sy/

1Cd.Sx;Sy/

�
and S D T in

Theorem 2 and Theorem 3 , we have the following corollaries.

Corollary 1. Let .X;d/ be a complete metric space and let S is ˛� admissible
mappings such that the following holds:

(i) S is a generalized rational ˛-Geraghty contraction type mapping;
(ii) S is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;T .x0//� 1;
(iv) S is continuous;
Then S has a fixed point p 2 X , and S is a Picard operator, that is, fSnx0g

converges to p.

Corollary 2. Let .X;d/ be a complete metric space and let S is ˛� admissible
mappings such that the following holds:

(i) S is a generalized rational ˛-Geraghty contraction type mapping;
(ii) S is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� 1;
(iv) if fxng is a sequence in X such that ˛.xn;xnC1/ � 1 for all n 2N[f0g and

xn! p 2 X as n!C1; then there exists a subsequencefxnk
g of fxng such that

˛.xnk
;p/� 1 for all k:
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Then S has a fixed point p 2 X , and S is a Picard operator, that is, fSnx0g
converges to p.

IfM.x;y/Dmaxfd.x;y/;d.x;Sx/;d.y;Sy/g in Theorem 1, Theorem 2, we ob-
tain the following corollaries.

Corollary 3 ([2]). Let .X;d/ be a complete metric space, ˛ W X �X ! R be a
function. Let S WX !X be a mapping then suppose that the following holds:

(i) S is a generalized ˛-Geraghty contraction type mapping;
(ii) S is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� 1;
(iv) S is continuous;
Then S has a fixed point p 2 X , and S is a Picard operator, that is, fSnx0g

converges to p.

Corollary 4 ([2]). Let .X;d/ be a complete metric space, ˛ W X �X ! R be a
function. Let S WX !X be a mapping then suppose that the following holds:

(i) S is a generalized ˛-Geraghty contraction type mapping;
(ii) S is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� 1;
(iv) if fxng is a sequence in X such that ˛.xn;xnC1/ � 1 for all n 2N[f0g and

xn! p 2 X as n!C1; then there exists a subsequencefxnk
g of fxng such that

˛.xnk
;p/� 1 for all k:

Then S has a fixed point p 2 X , and S is a Picard operator, that is, fSnx0g
converges to p.

Let .X;d/ be a metric space, and let ˛;� W X �X ! R be a function. A map
S;T W X ! X is called a pair of generalized rational ˛-Geraghty contraction type
mappings if there exists ˇ 2˝ such that for all x;y 2X ,

˛.x;y/� �.x;y/) d.Sx;Ty/� ˇ .M.x;y//M.x;y/ (2.16)

where

M.x;y/Dmax
�
d.x;y/;

d.x;Sx/d.y;Ty/

1Cd.x;y/
;
d.x;Sx/d.y;Ty/

1Cd.Sx;Ty/

�
:

Theorem 4. Let .X;d/ be a complete metric space. Let S is ˛�admissible map-
pings with respect to � such that the following holds:

(i) .S;T / is a generalized rational ˛-Geraghty contraction type mapping;
(ii) .S;T / is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� �.x0;Sx0/;
(iv) S and T are continuous;
Then .S;T / have common fixed point.
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Proof. Let x1 inX be such that x1D Sx0 and x2D T x1. Continuing this process,
we construct a sequence xn of points in X such that,

x2iC1 D Sx2i ; and x2iC2 D T x2iC1, wherei D 0;1;2; : : : : (2.17)

By assumption ˛.x0;x1/� �.x0;x1/ and the pair .S;T / is ˛-admissible with respect
to �, we have; ˛.Sx0;T x1/ � �.Sx0;T x1/ from which we deduce that ˛.x1;x2/ �
�.x1;x2/ which also implies that ˛.T x1;Sx2/ � �.T x1;Sx2/: Continuing in this
way we obtain ˛.xn;xnC1/� �.xn;xnC1/ for all n 2N[f0g:

d.x2iC1;x2iC2/ D d.Sx2i ;T x2iC1/� ˛.x2i ;x2iC1/d.Sx2i ;T x2iC1/

� ˇ .M.x2i ;x2iC1//M.x2i ;x2iC1/;

Therefore,
d.x2iC1;x2iC2/� ˛.x2i ;x2iC1/d.Sx2i ;T x2iC1/ (2.18)

for all i 2N[f0g: Now

M.x2i ;x2iC1/Dmax
�
d.x2i ;x2iC1/;

d.x2i ;Sx2i /d.x2iC1;T x2iC1/

1Cd.x2i ;x2iC1/
;
d.x2i ;Sx2i /d.x2iC1;T x2iC1/

1Cd.Sx2i ;T x2iC1/

�
Dmax

�
d.x2i ;x2iC1/;

d.x2i ;x2iC1/d.x2iC1;x2iC2/

1Cd.x2i ;x2iC1/
;
d.x2i ;Sx2i /d.x2iC1;T x2iC1/

1Cd.x2iC1;x2iC2/

�
�max

˚
d.x2i ;x2iC1/;d.x2iC1;x2iC2/

	
:

From the definition of ˇ, the case M.x2i ;x2iC1/D d.x2iC1;x2iC2/ is impossible.

d.x2iC1;x2iC2/� ˇ .M.x2i ;x2iC1//M.x2i ;x2iC1/

� ˇ .d.x2iC1;x2iC2//d.x2iC1;x2iC2/ < d.x2iC1;x2iC2/:

Which is a contradiction. Otherwise, in other case

d.x2iC1;x2iC2/� ˇ .M.x2i ;x2iC1//M.x2i ;x2iC1/

� ˇ .d.x2i ;x2iC1//d..x2i ;x2iC1/ < d.x2i ;x2iC1/:

This, implies that

d.xnC1;xnC2/ < d.xn;xnC1/; for all n 2N[f0g: (2.19)

Follows the similar lines of the Theorem 2. Hence p is common fixed point of S and
T . �

Theorem 5. Let .X;d/ be a complete metric space and let .S;T / are ˛�admissible
mappings with respect to � such that the following holds:

(i) .S;T / is a generalized rational ˛-Geraghty contraction type mapping;
(ii) .S;T / is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� �.x0;Sx0/;
(iv) if fxng is a sequence in X such that ˛.xn;xnC1/ � �.xn;xnC1/ for all n 2

N[f0g and xn! p 2X as n!C1; then there exists a subsequencefxnk
g of fxng

such that ˛.xnk
;p/� �.xnk

;p/ for all k:
Then S and T has common fixed point.
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Proof. Follows the similar line of the Theorem 3. �

IfM.x;y/Dmax
�
d.x;y/;

d.x;Sx/d.y;Sy/

1Cd.x;y/
;
d.x;Sx/d.y;Sy/

1Cd.Sx;Sy/

�
and S D T in

the Theorem 4, Theorem 5 , we get the following corollaries.

Corollary 5. Let .X;d/ be a complete metric space and let S is ˛�admissible
mappings with respect to � such that the following holds:

(i) S is a generalized rational ˛-Geraghty contraction type mapping;
(ii) S is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� �.x0;Sx0/;
(iv) S is continuous;
Then S has a fixed point p 2 X , and S is a Picard operator, that is, fSnx0g

converges to p.

Corollary 6. Let .X;d/ be a complete metric space and let S is ˛�admissible
mappings with respect to � such that the following holds:

(i) S is a generalized rational ˛-Geraghty contraction type mapping;
(ii) S is triangular ˛-admissible;
(iii) there exists x0 2X such that ˛.x0;Sx0/� �.x0;Sx0/;
(iv) if fxng is a sequence in X such that ˛.xn;xnC1/ � �.xn;xnC1/ for all n 2

N[f0g and xn! p 2X as n!C1; then there exists a subsequencefxnk
g of fxng

such that ˛.xnk
;p/� �.xnk

;p/ for all k:
Then S has a fixed point p 2 X , and S is a Picard operator, that is, fSnx0g

converges to p.

Example 2. Let X D f1;2;3g with metric

d.1;3/D d.3;1/D
5

7
d.1;1/D d.2;2/D d.3;3/D 0

d.1;2/D d.2;1/D 1; d.2;3/D d.3;2/D
4

7

˛ .x;y/D

�
1; if x;y 2X;
0; otherwise

�
:

Define the mappings S;T WX !X as follows:

Sx D 1 for each x 2X:

T .1/D T .3/D 1; T .2/D 3:

and ˇ W Œ0;C1/! Œ0;1�, then

˛.x;y/d.T x;Ty/� ˇ.M.x;y//M.x;y/:

Let x D 2 and y D 3 then condition (2.1) is not satisfied.

d .T .2/;T .3//D d.3;1/D
5

7
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M.x;y/Dmaxfd.2;3/;d.2;T .2//;d.3;T .3//g

Dmax
�
4

7
;
4

7
;
5

7

�
D
5

7

and
˛.2;3/d .T .2/;T .3//— ˇ.M.x;y//M.x;y/:

If

M.x;y/Dmax
�
d.2;3/;

d.2;T .2//d.3;T .3//

1Cd.2;3/
;
d.2;T .2//d.3;T .3//

1Cd.T 2;T 3/

�
Dmax

�
4

7
;
20

77
;
20

84

�
D
4

7

Then the contractions does not holds.

˛.2;3/d .T .2/;T .3//— ˇ.M.x;y//M.x;y/:

We prove that Theorem 1 can be applied to S and T: Let x;y 2 X; clearly .S;T / is
˛�admissible mapping such that ˛.x;y/ � 1: Let x;y 2 X and so that Sx;Ty 2 X
and ˛.Sx;Ty/D 1: Hence .S;T / is ˛-admissible. We show that condition .2:1/ of
Theorem 1 is satisfied. If x;y 2X then ˛.x;y/D 1; we have

˛.x;y/d.Sx;Ty/� ˇ.M.x;y//.M.x;y// :

where

M.x;y/Dmax
�
d.2;3/;

d.2;S.2//d.3;T .3//

1Cd.2;3/
;
d.2;S.2//d.3;T .3//

1Cd.S2;T 3/

�
Dmax

�
4

7
;
20

77
;
20

49

�
D
4

7

and
d.S2;T 3/D d.1;1/D 0:

˛.x;y/d.Sx;Ty/� ˇ.M.x;y//.M.x;y// :

Hence all the hypothesis of the Theorem 1 is satisfied, So S;T have a common fixed
point.

Remark 1. More detail, applications and examples see in [2] and references there
in. Our results are more general than those in [2], [15] and improve several results
existing in the literature.
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