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A. The method of quasilinearization coupled with the method of lower and
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taining approximate solutions of non-linear differential equations. In this paper,
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1. I

Let y0, z0 ∈ C1(J,�m) with y0(t) ≤ z0(t), y′0(t) ≤ z′0(t) on J and define the following
set

Ω = {(t, u, v) : y0(t) ≤ u ≤ z0(t), y′0(t) ≤ v ≤ z′0(t), t ∈ J, u, v ∈ �m}.
In this paper, the vectorial inequalities mean that the same inequalities hold between
their corresponding components.

Assume thatA is a singular square matrix of orderm and f ∈ C(Ω,�m). In this
paper we shall study the following system of differential equations

Ax′(t) = f (t, x(t), x′(t)), t ∈ J = [0, b] (1.1)

with the initial condition
x(0) = x0 ∈ �m. (1.2)

The method of quasilinearization offers an approach for obtaining approximate solu-
tions to non-linear differential equations. It has been generalized in recent years by
Lakshmikantham and various coauthors to apply to a wide variety of problems, (see,
for example, [5–12] and [3, 4]). In this paper, we apply this technique to problems
of type (1.1)–(1.2). We show that it is possible to construct monotone sequences that
converge to the solution iff is replaced byf +g with f +Φ convex andg+Ψ concave
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for some convex functionΦ and for some concave functionΨ. This convergence is
quadratic or semiquadratic. This paper generalizes the results of [4]. Iff does not
depend on the third variable with a unit matrix in the place ofA, then problem (1.1)–
(1.2) is considered in [8].

2. A

In the place of (1.1)–(1.2), we consider the system of differential equations of the
form:

Ax′(t) = f (t, x(t), x′(t)) + g(t, x(t), x′(t)) ≡ F (t, x, x′), t ∈ J,

x(0) = x0 ∈ �m,
(2.1)

whereJ = [0, b] and f , g ∈ C(J×�m×�m,�m). Note that problem (2.1) is identical
with the problem

x′(t) = (A + B)−1[F (t, x, x′) + Bx′(t)], t ∈ J,

x(0) = x0

provided thatB is anm×mmatrix such that (A + B)−1 exists.
A function v ∈ C1(J,�) is said to be a lower solution of problem (2.1) if

v′(t) ≤ (A + B)−1[F (t, v(t), v′(t)) + Bv′(t)], t ∈ J, v(0) ≤ x0,

and an upper solution of (2.1) if the inequalities in these relations are reversed.

Let us introduce the following assumptions:

H1. There exists a square matrixB of order m such that the matrixA + B is
non-singular and (A + B)−1B ≥ 0; moreover, forf , g ∈ C(Ω,�m), function
F = f + g satisfies the Lipschitz condition with respect to the last variable,
so foru, α, ᾱ ∈ �m such thaty0(t) ≤ u ≤ z0(t), y′0(t) ≤ α, ᾱ ≤ z′0(t) on J, the
condition

|(A + B)−1[F (t,u, α) −F (t, u, ᾱ)]| ≤ (A + B)−1B|α − ᾱ|
holds, where|α| = (|α1|, . . . , |αm|)T for α ∈ �m.

H2. fx, gx,Φ,Φx,Φy,Ψ,Ψx,Ψy ∈ C(Ω,�m); herex andy denote the second and
third variable, respectively.

H3. The matrices (A + B)−1Fx, (A + B)−1Φx are non-decreasing with respect to
the second variable, and (A + B)−1Gx, (A + B)−1Ψx are non-increasing with
respect to the second variable onΩ with F = f + Φ, G = g + Ψ.

H4. (A + B)−1Fx, (A + B)−1Φx are non-decreasing in the third variable, and (A +

B)−1Gx, (A + B)−1Ψx are non-increasing in the third variable onΩ.
H5. (A + B)−1V(t, y0, z0) ≥ 0, t ∈ J for some functionV defined later [(A +

B)−1V(t, y0, z0) ≥ 0 means that the entries of the matrix (A + B)−1V(t, y0, z0)
are non-negative].
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H6. There existm×mmatricesC1, C2, C3, C4 with non-negative entries such that

∣∣∣(A + B)−1 [
fx(t,u, v) − fx(t, ū, v̄)

]∣∣∣ ≤ C1

m∑

i=1

[|ui − ūi | + |vi − v̄i |] ,

∣∣∣(A + B)−1 [
gx(t,u, v) − gx(t, ū, v̄)

]∣∣∣ ≤ C2

m∑

i=1

[|ui − ūi | + |vi − v̄i |],

∣∣∣(A + B)−1 [Φx(t,u, v) − Φx(t, ū, v̄)]
∣∣∣ ≤ C3

m∑

i=1

[|ui − ūi | + |vi − v̄i |],

∣∣∣(A + B)−1 [Ψx(t,u, v) − Ψx(t, ū, v̄)]
∣∣∣ ≤ C4

m∑

i=1

[|ui − ūi | + |vi − v̄i |]

for y0(t) ≤ u ≤ z0(t), y′0(t) ≤ v, v̄ ≤ z′0(t), t ∈ J with u, ū, v, v̄ ∈ �m.

3. M 

The next lemma is a special case of Theorem 1.1.4 from [8].

Lemma 1. Assume thatsi j (t) ≥ 0, t ∈ J for i , j, whereS = [si j ] is a continuous
square matrix of orderm. Let p ∈ C1(J,�m) and

p′(t) ≤ S(t)p(t), t ∈ J,

p(0) ≤ 0 =
[
0, . . . ,0︸  ︷︷  ︸

m

]T .

Thenp(t) ≤ 0 on J.

Lemma 2. Let assumptionsH1 andH3 be satisfied. Then, foru, v, ū, v̄ ∈ �m such
thaty0(t) ≤ u ≤ ū ≤ z0(t), y′0(t) ≤ v ≤ v̄ ≤ z′0(t), t ∈ J, we have

(A + B)−1[F (t,u, v) −F (t, ū, v̄)] ≤ (A + B)−1{[−Fx(t,u, v) −Gx(t, ū, v)

+ Φx(t, ū, v) + Ψx(t, u, v)](ū− u)+B(v̄ − v)}.
P. The mean value theorem and assumptionH1 yield

(A + B)−1[F (t,u, v) −F (t, ū, v̄)]

= (A + B)−1[F (t, u, v) −F (t, ū, v) + F (t, ū, v) −F (t, ū, v̄)]

≤ (A + B)−1
{[∫ 1

0
Fx(t, su+ (1− s)ū, v)ds

]
(u− ū) + B(v̄ − v)

}

= (A + B)−1
{∫ 1

0

[
Fx(t, su+ (1− s)ū, v) + Gx(t, su+ (1− s)ū, v)

− Φx(t, su+ (1− s)ū, v) − Ψx(t, su+ (1− s)ū, v)
]
ds(u− ū) + B(v̄ − v)

}
.
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Hence, we have the assertion of Lemma 2, by using assumptionH3. �

Now we are in a position to prove the following result:

Theorem 1. Assume thatf , g ∈ C(Ω,�m), and

(i) y0, z0 ∈ C1(J,�m) are lower and upper solutions of problem(2.1) and such
thaty0(t) ≤ z0(t) andy′0(t) ≤ z′0(t) on J,

(ii) AssumptionsH1–H6 hold with

V(t, y, z) = Fx(t, y, y
′) + Gx(t, z, z

′) − Φx(t, z, z
′) − Ψx(t, y, y

′).

(iii) Problem(2.1)has at most one solution.

Then, there exist monotone sequences{yn}, {zn} which converge uniformly onJ to
the unique solutionx of problem(2.1). Moreover, the convergence is quadratic with
respect tou and it is semiquadratic with respect tou′ for u = yn andu = zn.

P. Let yn+1 andzn+1 be the solutions of the linear initial value problems

y′n+1(t) = (A + B)−1{F (t, yn, y
′
n)+By′n(t)+ V(t, yn, zn)[yn+1(t)−yn(t)]

}
,

yn+1(0) = x0,

and

z′n+1(t) = (A + B)−1{F (t, zn, z
′
n)+Bz′n(t)+V(t, yn, zn)[zn+1(t)−zn(t)]

}
,

zn+1(0) = x0,

for n = 0,1, . . . . Note that the sequences{yn}, {zn} are well defined.
First of all, we shall prove that

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J,

y′0(t) ≤ y′1(t) ≤ z′1(t) ≤ z′0(t), t ∈ J.
(3.1)

Let us putp = y0 − y1, so p(0) ≤ 0. Then we see that

p′(t) ≤ (A + B)−1{F (t, y0, y
′
0) + By′0(t) −F (t, y0, y

′
0) − By′0(t)

− V(t, y0, z0)[y1(t) − y0(t)]
}

= (A + B)−1V(t, y0, z0)p(t), t ∈ J.

AssumptionH5 and Lemma 1 yieldp(t) ≤ 0 on J proving thaty0(t) ≤ y1(t) on J.
Since (A + B)−1V(t, y0, z0) ≥ 0, andp(t) ≤ 0 on J, then p′(t) ≤ 0, so y′0(t) ≤ y′1(t)
on J. By the same way we can show thatz1(t) ≤ z0(t) andz′1(t) ≤ z′0(t), t ∈ J. Put
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p = y1 − z1. Then, by Lemma 2 and assumptionH4, we have

p′(t) = (A + B)−1{F (t, y0, y
′
0) −F (t, z0, z

′
0) + B[y′0(t) − z′0(t)]

+ V(t, y0, z0)[y1(t) − y0(t) − z1(t) + z0(t)]}
≤ (A + B)−1{[−Fx(t, y0, y

′
0) −Gx(t, z0, y

′
0) + Φx(t, z0, y

′
0)

+ Ψx(t, y0, y
′
0)][z0(t) − y0(t)] + B[z′0(t) − y′0(t)]

+ V(t, y0, z0)[y1(t) − y0(t) − z1(t) + z0(t)] + B[y′0(t) − z′0(t)]}
= (A + B)−1{[Gx(t, z0, z

′
0) −Gx(t, z0, y

′
0) + Φx(t, z0, y

′
0)

− Φx(t, z0, z
′
0)][z0(t)−y0(t)] + V(t, y0, z0)p(t)}

≤ (A + B)−1V(t, y0, z0)p(t)

with p(0) = 0. Hence, we havep(t) ≤ 0, and thenp′(t) ≤ 0 on J which shows that
y1(t) ≤ z1(t), y′1(t) ≤ z′1(t), t ∈ J. This means that (3.1) holds.

In the next step we need to show thaty1 andz1 are lower and upper solutions of
problem (2.1), respectively. By Lemma 2 and assumptionsH3 andH4, we obtain

y′1(t) = (A + B)−1{F (t, y0, y
′
0) + By′0(t) + V(t, y0, z0)[y1(t) − y0(t)]}

≤ (A + B)−1{F (t, y1, y
′
1) + By′1(t) + [−Fx(t, y0, y

′
0) −Gx(t, y1, y

′
0)

+ Φx(t, y1, y
′
0) + Ψx(t, y0, y

′
0)][y1(t) − y0(t)] + V(t, y0, z0)[y1(t) − y0(t)]}

= (A + B)−1{F (t, y1, y
′
1) + By′1(t) + [Gx(t, z0, z

′
0) −Gx(t, y1, y

′
0)

+ Φx(t, y1, y
′
0) − Φx(t, z0, z

′
0)][y1(t) − y0(t)]}

≤ (A + B)−1[F (t, y1, y
′
1) + By′1(t)],

and

z′1(t) = (A + B)−1{F (t, z0, z
′
0) + Bz′0(t) + V(t, y0, z0)[z1(t) − z0(t)]}

≥ (A + B)−1{F (t, z1, z
′
1) + Bz′1(t) + [Fx(t, z1, z

′
1) + Gx(t, z0, z

′
1)

− Φx(t, z0, z
′
1) − Ψx(t, z1, z

′
1)][z0(t) − z1(t)] + V(t, y0, z0)[z1(t) − z0(t)]}

= (A + B)−1{F (t, z1, z
′
1) + Bz′1(t) + [Fx(t, z1, z

′
1) − Fx(t, y0, y

′
0)

+ Gx(t, z0, z
′
1) −Gx(t, z0, z

′
0) + Φx(t, z0, z

′
0) − Φx(t, z0, z

′
1)

+ Ψx(t, y0, y
′
0) − Ψx(t, z1, z

′
1)][z0(t) − z1(t)]}

≥ (A + B)−1[F (t, z1, z
′
1) + Bz′1(t)]

which shows thaty1 andz1, respectively, are lower and upper solutions of problem
(2.1). Let us assume that

yk−1(t) ≤ yk(t) ≤ zk(t) ≤ zk−1(t), t ∈ J,

y′k−1(t) ≤ y′k(t) ≤ z′k(t) ≤ z′k−1(t), t ∈ J,
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and letyk, zk be lower and upper solutions of problem (2.1) for somek ≥ 1. We shall
prove that

yk(t) ≤ yk+1(t) ≤ zk+1(t) ≤ zk(t), t ∈ J,

y′k(t) ≤ y′k+1(t) ≤ z′k+1(t) ≤ z′k(t), t ∈ J.
(3.2)

Put p = yk − yk+1. Then

p′(t) ≤ (A + B)−1{F (t, yk, y
′
k) + By′k(t) −F (t, yk, y

′
k) − By′k(t)

− V(t, yk, zk)[yk+1(t) − yk(t)]} = (A + B)−1V(t, yk, zk)p(t)

with p(0) = 0. Note that, by assumptionsH3–H5,

(A + B)−1V(t, yk, zk) = (A + B)−1[Fx(t, yk, y
′
k) + Gx(t, zk, z

′
k) − Φx(t, zk, z

′
k)

− Ψx(t, yk, y
′
k)]

≥ (A + B)−1[Fx(t, y0, y
′
0) + Gx(t, z0, z

′
0) − Φx(t, z0, z

′
0)

− Ψx(t, y0, y
′
0)]

= (A + B)−1V(t, y0, z0) ≥ 0, t ∈ J.

Hence, by Lemma 1,p(t) ≤ 0, p′(t) ≤ 0, t ∈ J, which shows thatyk(t) ≤ yk+1(t) and
y′k(t) ≤ y′k+1(t), t ∈ J. Using the same argument we can prove thatzk+1(t) ≤ zk(t),
z′k+1(t) ≤ z′k(t), t ∈ J.

Let p = yk+1 − zk+1. Thenp(0) = 0. Using Lemma 2 and assumptionH4, we get

p′(t) = (A + B)−1{F (t, yk, y
′
k) −F (t, zk, z

′
k) + B[y′k(t) − z′k(t)]

+ V(t, yk, zk)[yk+1(t) − yk(t) − zk+1(t) + zk(t)]}
≤ (A + B)−1{[−Fx(t, yk, y

′
k) −Gx(t, zk, y

′
k) + Φx(t, zk, y

′
k)

+ Ψx(t, yk, y
′
k)][zk(t) − yk(t)]

+ V(t, yk, zk)[yk+1(t) − yk(t) − zk+1(t) + zk(t)]}
= (A + B)−1{[Gx(t, zk, z

′
k) −Gx(t, zk, y

′
k) + Φx(t, zk, y

′
k)

− Φx(t, zk, z
′
k)][zk(t) − yk(t)] + V(t, yk, zk)p(t)}

≤ (A + B)−1V(t, yk, zk)p(t), t ∈ J.

This proves thatyk+1(t) ≤ zk+1(t), andy′k+1(t) ≤ z′k+1(t), t ∈ J, so relation (3.2)
holds. Hence, by induction, for alln, we have

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), t ∈ J,

y′0(t) ≤ y′1(t) ≤ · · · ≤ y′n(t) ≤ z′n(t) ≤ · · · ≤ z′1(t) ≤ z′0(t), t ∈ J.

Employing standard techniques (using the Arzeli theorem and the Lebesgue theo-
rem), it can be shown thatyn → y, y′n → y′, zn → z, z′n → z′, y, z ∈ C1(J,�m), where
y andzare solutions of problem (2.1). Hence, by assumption (iii), we havey = z = x
on J is the unique solution of (2.1).
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The order of convergence of sequences{yn}, {zn}, {y′n}, {z′n} is considered in the
next part of our considerations. For this purpose, we put

pn+1 = x− yn+1 ≥ 0, qn+1 = zn+1 − x ≥ 0 on J,

and note thatpn+1(0) = qn+1(0) = 0 for n ≥ 0. Using the integral mean value theorem
and assumptionsH1, H3, H6, we get

p′n+1(t) = (A + B)−1{F (t, x, x′) + Bx′(t) −F (t, yn, x
′) + F (t, yn, x

′)

−F (t, yn, y
′
n) − V(t, yn, zn)[yn+1(t) − x(t) + x(t) − yn(t)] − By′n(t)

}

≤ (A + B)−1
{[∫ 1

0
Fx(t, sx+ (1− s)yn, x

′)ds

]
pn(t) + 2B|p′n(t)|

+ V(t, yn, zn)[pn+1(t) − pn(t)]

}

= (A + B)−1
{∫ 1

0
[Fx(t, sx+ (1− s)yn, x

′) + Gx(t, sx+ (1− s)yn, x
′)

− Φx(t, sx+ (1− s)yn, x
′) − Ψx(t, sx+ (1− s)yn, x

′)]ds pn(t)

+ 2B|p′n(t)| + V(t, yn, zn)[pn+1(t) − pn(t)]

}

≤ (A + B)−1{[Fx(t, x, x
′) − Fx(t, yn, y

′
n) + Gx(t, yn, x

′) −Gx(t, zn, z
′
n)

+ Φx(t, zn, z
′
n) − Φx(t, yn, x

′) + Ψx(t, yn, y
′
n) − Ψx(t, x, x

′)]pn(t)

+ V(t, yn, zn)pn+1(t) + 2B|p′n(t)|}

≤
(C1 + C2 + 2C3 + 2C4)

m∑

i=1

pni(t)

+ (C2 + C3 + C4)
m∑

i=1

[qni(t) + |q′ni(t)|]

+(C1 + C3 + C4)
m∑

i=1

|p′ni(t)|
 pn(t)

+ (A + B)−1 {
2B|p′n(t)| + V(t, yn, zn)pn+1(t)

}
.

Note that
m∑

i=1

pni(t)pn(t) ≤ m
2

p2
n(t) +

1
2

W p2
n(t),

m∑

i=1

qni(t)pn(t) ≤ m
2

p2
n(t) +

1
2

Wq2
n(t),

(3.3)
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wherep2
n = [p2

1,n, . . . , p
2
m,n]T , W = [wi j ], wi j = 1, i, j = 1, . . . ,m. This and previous

calculations give

p′n+1(t) ≤ Kpn+1(t) + A1p2
n(t) + A2q2

n(t) + A3|p′n(t)|2 + A4|q′n(t)|2 + A5|p′n(t)| (3.4)

with (A+ B)−1 fx ≤ K1, (A+ B)−1gx ≤ K2, K = K1 + K2 onΩ. Here,K1,K2 arem×m
non-negative matrices and

A1 =
1
2

(C1 + C2 + 2C3 + 2C4)(mI + W) + (C2 + C3 + C4)m

+ (C1 + C3 + C4)
m
2
,

A2 =
1
2

(C2 + C3 + C4)W,

A3 =
1
2

(C1 + C3 + C4)W,

A4 = A2,

A5 = 2(A + B)−1B.

There is no loss of generality assuming thatK−1 exists such thatki j ≥ 0, whereki j

represents the components of this matrix. Hence, fort ∈ J, we have

pn+1(t) ≤
∫ t

0
eK(t−s)

[
A1p2

n(s) + A2q2
n(s) + A3|p′n(s)|2 + A4|q′n(s)|2 + A5|p′n(s)|

]
ds.

This implies

max
t∈J
‖pn+1(t)‖ ≤ B1 max

t∈J
‖pn(t)‖2+B2 max

t∈J
‖qn(t)‖2+B3 max

t∈J
‖p′n(t)‖2

+ B4 max
t∈J
‖q′n(t)‖2 + B5 max

t∈J
‖p′n(t)‖, (3.5)

where‖v‖2 =
[|v1|2, . . . , |vm|2]T , v ∈ �m, and

A0 = K−1eKb, Bi = A0Ai ,

for i = 1,5. Combining (3.4) and (3.5) we obtain

max
t∈J
‖p′n+1(t)‖ ≤ Ā1 max

t∈J
‖pn(t)‖2 + Ā2 max

t∈J
‖qn(t)‖2 + Ā3 max

t∈J
‖p′n(t)‖2

+ Ā4 max
t∈J
‖q′n(t)‖2 + Ā5 max

t∈J
‖p′n(t)‖

with Āi = Ai + KBi , i = 1,5.
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Similarly we have

q′n+1(t) = (A + B)−1{F (t, zn, z
′
n) + Bz′n(t) −F (t, x, z′n)

+ F (t, x, z′n) −F (t, x, x′) + V(t, yn, zn)[qn+1(t) − qn(t)] − Bx′(t)
}

≤ (A + B)−1
{[∫ 1

0
Fx(t, szn + (1− s)x, z′n)ds

]
qn(t) + 2B|q′n(t)|

+V(t, yn, zn)[qn+1(t) − qn(t)]
}

≤ (A + B)−1{[Fx(t, zn, z
′
n)−Fx(t, yn, y

′
n)+Gx(t, x, z

′
n)−Gx(t, zn, z

′
n)

+ Φx(t, zn, z
′
n) − Φx(t, x, z

′
n) + Ψx(t, yn, y

′
n) − Ψx(t, zn, z

′
n)]qn(t)

+ V(t, yn, zn)qn+1(t) + 2B|q′n(t)|}

≤
(C1 + C2 + 2C3 + 2C4)

m∑

i=1

qni(t)

+(C1 + C3 + C4)
m∑

i=1

[
pni(t) + |p′ni(t)| + |q′ni(t)|

]
 qn(t)

+ Kqn+1(t) + A5|q′n(t)|
≤ D1p2

n(t) + D2q2
n(t) + D1|p′n(t)|2+D1|q′n(t)|2+Kqn+1(t)+A5|q′n(t)|,

where

D1 =
1
2

(C1 + C3 + C4)W,

D2 =
3
2

m(C1 + C3 + C4) +
1
2

(C1 + C2 + 2C3 + 2C4)(mI + W).

Hence,

max
t∈J
‖qn+1(t)‖ ≤ B̄1 max

t∈J
‖pn(t)‖2 + B̄2 max

t∈J
‖qn(t)‖2 + B̄1 max

t∈J
‖p′n(t)‖2

+ B̄1 max
t∈J
‖q′n(t)‖2 + B̄3 max

t∈J
‖q′n(t)‖,

whereB̄1 = A0D1, B̄2 = A0D2, andB̄3 = B5A.
Combining this with the last relation forq′n+1 we get

max
t∈J
‖q′n+1(t)‖ ≤ L̄1 max

t∈J
‖pn(t)‖2 + L̄2 max

t∈J
‖qn(t)‖2 + L̄1 max

t∈J
‖p′n(t)‖2

+ L̄1 max
t∈J
‖q′n(t)‖2 + L̄3 max

t∈J
‖q′n(t)‖,

with L̄1 = D1 + KB̄1, L̄2 = D2 + KB̄2, and L̄3 = A5 + KB̄3. This completes the
proof. �

Let us introduce the following assumptions:
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H17 (i) (A + B)−1Fx is non-decreasing in the third variable onΩ and V1 =

Fx(t, y, y′), or
(ii) (A + B)−1Fx is non-increasing in the third variable onΩ and V1 =

Fx(t, y, z′).
H27 (i) (A + B)−1Gx is non-increasing in the third variable onΩ and V2 =

Gx(t, z, z′), or
(ii) (A + B)−1Gx is non-decreasing in the third variable onΩ and V2 =

Gx(t, z, y′).
H37 (i) (A + B)−1Φx is non-decreasing in the third variable onΩ and V3 =

Φx(t, z, z′), or
(ii) (A + B)−1Φx is non-increasing in the third variable onΩ and V3 =

Φx(t, z, y′).
H47 (i) (A + B)−1Ψx is non-increasing in the third variable onΩ and V4 =

Ψx(t, y, y′), or
(ii) (A + B)−1Ψx is non-decreasing in the third variable onΩ and V4 =

Ψx(t, y, z′).

The set of all assumptions fromH17 to H47 will be denoted byH7. Since in any
assumptionsH17–H47 we have two cases (i) or (ii), so we have 16 possibilities for
constructing assumptionH7. Note that if we choose case (i) in any assumptionsH17–
H47, then assumptionH7 is identical with assumptionH4.

Now we can formulate the following

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied with assump-
tion H7 instead ofH4 and for

V = V1 + V2 − V3 − V4.

Then the conclusion of Theorem 1 is true.

P. Since the proof can be constructed on the basis of the proof of the previous
theorem, we shall only indicate the necessary changes. We should create assumption
H7. Let H7 be produced from assumptionsH17(ii), H27(ii), H37(ii), andH47(ii). Note
that the sequences{yn}, {zn} are constructed as before with

V(t, y, z) = Fx(t, y, z
′) + Gx(t, z, y

′) − Φx(t, z, y
′) − Ψx(t, y, z

′).

Based on the assumption

(A + B)−1V(t, y0, z0) ≥ 0

and Lemma 1, it is quite easy to show thaty0(t) ≤ y1(t), y′0(t) ≤ y′1(t), z1(t) ≤ z0(t)
andz′1(t) ≤ z′0(t) on J. If we put p = y1 − z1, then, by Lemma 2 and assumptions
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H17(ii), H47(ii), we have

p′(t) ≤ (A + B)−1{[−Fx(t, y0, y
′
0) −Gx(t, z0, y

′
0) + Φx(t, z0, y

′
0)

+ Ψx(t, y0, y
′
0)][z0(t) − y0(t)] + B[z′0(t) − y′0(t)]

+ V(t, y0, z0)[y1(t) − y0(t) − z1(t) + z0(t)] + B[y′0(t) − z′0(t)]}
= (A + B)−1{[Fx(t, y0, z

′
0) − Fx(t, y0, y

′
0) + Ψx(t, y0, y

′
0)

− Ψx(t, y0, z
′
0)][z0(t) − y0(t)]

+ V(t, y0, z0)p(t)} ≤ (A + B)−1V(t, y0, z0)p(t),

p(0) = 0.

Hence, by Lemma 1, we havep(t) ≤ 0, and thereforep′(t) ≤ 0 on J which shows
thaty1(t) ≤ z1(t), y′1(t) ≤ z′1(t), t ∈ J. It means that (3.1) holds.

In the next step we need to show thaty1 andz1 are lower and upper solutions of
problem (2.1), respectively. Note that, using Lemma 2 and assumptionsH3 andH7,
we get

y′1(t) ≤ (A + B)−1{F (t, y1, y
′
1) + By′1(t) + [−Fx(t, y0, y

′
0) −Gx(t, y1, y

′
0)

+ Φx(t, y1, y
′
0) + Ψx(t, y0, y

′
0)][y1(t) − y0(t)] + V(t, y0, z0)[y1(t) − y0(t)]}

= (A + B)−1{F (t, y1, y
′
1) + By′1(t) + [Fx(t, y0, z

′
0) − Fx(t, y0, y

′
0)

+ Gx(t, z0, y
′
0) −Gx(t, y1, y

′
0) + Φx(t, y1, y

′
0) − Φx(t, z0, y

′
0) + Ψx(t, y0, y

′
0)

− Ψx(t, y0, z
′
0)][y1(t) − y0(t)]} ≤ (A + B)−1[F (t, y1, y

′
1) + By′1(t)],

and

z′1(t) ≥ (A + B)−1{F (t, z1, z
′
1) + Bz′1(t) + [Fx(t, z1, z

′
1) + Gx(t, z0, z

′
1)

− Φx(t, z0, z
′
1) − Ψx(t, z1, z

′
1)][z0(t) − z1(t)] + V(t, y0, z0)[z1(t) − z0(t)]

}

= (A + B)−1{F (t, z1, z
′
1) + Bz′1(t) + [Fx(t, z1, z

′
1) − Fx(t, y0, z

′
0)

+ Gx(t, z0, z
′
1) −Gx(t, z0, y

′
0) + Φx(t, z0, y

′
0) − Φx(t, z0, z

′
1)

+ Ψx(t, y0, z
′
0) − Ψx(t, z1, z

′
1)][z0(t) − z1(t)]

}

≥ (A + B)−1[F (t, z1, z
′
1) + Bz′1(t)],

which shows thaty1 andz1 are lower and upper solutions of problem (2.1), respec-
tively.

By induction inn, we can show that

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), t ∈ J,

y′0(t) ≤ y′1(t) ≤ · · · ≤ y′n(t) ≤ z′n(t) ≤ · · · ≤ z′1(t) ≤ z′0(t), t ∈ J

for all n.
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Employing standard techniques, it is easy to conclude thatyn → y, y′n → y′, zn →
z, z′n→ z′, y, z ∈ C1(J,�m), wherey andz are solutions of problem (2.1). Hence, by
assumption (iii), we havey = z = x on J is the unique solution of (2.1).

To show the quadratic and semiquadratic convergence, we set

pn+1 = x− yn+1 ≥ 0, qn+1 = zn+1 − x ≥ 0

on J. Note thatpn+1(0) = qn+1(0) = 0 for n ≥ 0. The beginning forp′n+1 is the same
as in the proof of Theorem 1, so

p′n+1(t) ≤ (A + B)−1
{∫ 1

0
[Fx(t, sx+ (1− s)yn, x

′) + Gx(t, sx+ (1− s)yn, x
′)

− Φx(t, sx+ (1− s)yn, x
′) − Ψx(t, sx+ (1− s)yn, x

′)]ds pn(t)

+ 2B|p′n(t)| + V(t, yn, zn)[pn+1(t) − pn(t)]

}
.

Now, using the same argument as in the proof of Theorem 1, we can prove that

max
t∈J
‖pn+1(t)‖ ≤ α1 max

t∈J
‖pn(t)‖2 + α2 max

t∈J
‖qn(t)‖2 + α3 max

t∈J
‖p′n(t)‖2

+ α4 max
t∈J
‖q′n(t)‖2 + α5 max

t∈J
‖p′n(t)‖

and

max
t∈J
‖p′n+1(t)‖ ≤ ᾱ1 max

t∈J
‖pn(t)‖2 + ᾱ2 max

t∈J
‖qn(t)‖2 + ᾱ3 max

t∈J
‖p′n(t)‖2

+ ᾱ4 max
t∈J
‖q′n(t)‖2 + ᾱ5 max

t∈J
‖p′n(t)‖

where

δ1 =
1
2

C1(2mI + W) +
1
2

C2(3mI + W) +
1
2

(C3 + C4)(5mI + 2W),

δ2 =
1
2

(C2 + C3 + C4)W,

δ3 =
1
2

(C3 + C4)W,

δ4 =
1
2

(C1 + C2 + C3 + C4)W,

δ5 = A5,

andαi = A0δi , ᾱi = δi + Kαi , i = 1,5, with A0 and K defined as in the proof of
Theorem 1.
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Similarly, we can show that

max
t∈J
‖qn+1(t)‖ ≤ β1 max

t∈J
‖pn(t)‖2 + β2 max

t∈J
‖qn(t)‖2 + β3 max

t∈J
‖p′n(t)‖2

+ β4 max
t∈J
‖q′n(t)‖2 + β5 max

t∈J
‖q′n(t)‖

and

max
t∈J
‖q′n+1(t)‖ ≤ β̄1 max

t∈J
‖pn(t)‖2 + β̄2 max

t∈J
‖qn(t)‖2 + β̄3 max

t∈J
‖p′n(t)‖2

+ β̄4 max
t∈J
‖q′n(t)‖2 + β̄5 max

t∈J
‖q′n(t)‖,

with

η1 =
1
2

(C1 + 2C3 + C4)W,

η3 = η4 =
1
2

(C2 + C3 + C4)W,

η5 = A5,

η2 =
1
2

C1(2mI + W) +
1
2

C2(3mI + W) +
1
2

(C3 + C4)(5mI + W),

and

βi = A0ηi , β̄i = ηi + Kβi

for i = 1,5.
It is now easy to construct the proofs of the assertions corresponding to the remain-

ing cases of assumptionH7 following the proof of Theorem 1 and the proof given
above. We omit the details. The proof of this theorem is therefore complete.�

Remark1. Note that ifv is a lower solution of problem (2.1) and (A + B)−1 ≥ 0,
thenv satisfies the relation

Av′(t) ≤ F (t, v(t), v′(t)), t ∈ J, v(0) ≤ x0.

Here, (A + B)−1 ≥ 0 means that some entries of (A + B)−1 may be equal to zero.
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