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AsstrAcT. The method of quasilinearization coupled with the method of lower and
upper solutions has been very useful in providing an analytical approach to ob-
taining approximate solutions of non-linearffdrential equations. In this paper,

it is applied to systems of non-linearfiirential equations with a singular matrix.
Sequences of approximate solutions are convergent to the solution and the conver-
gence is quadratic or semiquadratic.
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1. INTRODUCTION

Letyo, 20 € CH(J, R™) with yo(t) < zo(t), yo(t) < 7,(t) onJ and define the following
set

Q={(t,u,v): yo(t) U< 2(t), yo(t) <v<7(t), ted uveRM.

In this paper, the vectorial inequalities mean that the same inequalities hold between
their corresponding components.

Assume thafA is a singular square matrix of orderand f € C(Q, R™). In this
paper we shall study the following system offdrential equations

AX(t) = f(t, x(t), X'(t)), teI=1[0,b] (1.2)
with the initial condition
X(0) = xo € R™. (1.2)
The method of quasilinearizatiorfers an approach for obtaining approximate solu-
tions to non-linear dferential equations. It has been generalized in recent years by
Lakshmikantham and various coauthors to apply to a wide variety of problems, (see,
for example, [5-12] and [3, 4]). In this paper, we apply this technique to problems

of type (1.1)—(1.2). We show that it is possible to construct monotone sequences that
converge to the solution if is replaced byf + g with f + ® convex andy+¥ concave
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14 T. JANKOWSKI

for some convex functio® and for some concave functidhh This convergence is
guadratic or semiquadratic. This paper generalizes the results of [#]ddks not
depend on the third variable with a unit matrix in the placé&gahen problem (1.1)—
(1.2) is considered in [8].

2. ASSUMPTIONS

In the place of (1.1)-(1.2), we consider the system fiedential equations of the
form:
AX (1) = f(t, x(1), X' () + g(t, x(t), X' (1)) = Z(t, x,X), te]
X(0) = xo € R™,
whereJ = [0,b] and f,g € C(J x R™x R™ R™). Note that problem (2.1) is identical
with the problem

2.1)

X (t) = (A+ B)".Z(t, x, X) + BX(t)], ted
X(0) = %o

provided thatB is anm x m matrix such thatA + B)~ exists.
A functionv € C1(J R) is said to be a lower solution of problem (2.1) if

v'(t) < (A+ B (L o(t), ' (1) + BY (D], ted v(0)< X,
and an upper solution of (2.1) if the inequalities in these relations are reversed.

Let us introduce the following assumptions:

Hi. There exists a square matri of order m such that the matriA + B is
non-singular andA + B)™'B > 0; moreover, forf,g € C(Q,R™), function
& = f + g satisfies the Lipschitz condition with respect to the last variable,
so foru, @, @ € R™ such thao(t) < u < 7o(t), yy(t) < a,a < Zy(t) onJ, the

condition
I(A+B)".Z(t,u,a) - Z(t,u,a)] < (A+B) Bl - a
holds, wheréa| = (Ja4), ..., lam)" for @ € R™.

Ho. fx, gx, @, Oy, @, ¥, Px, ¥, € C(, R™); herex andy denote the second and
third variable, respectively.

Hs. The matricesA + B)~1Fy, (A + B)~1®, are non-decreasing with respect to
the second variable, ané ¢ B)"1G,, (A + B)"1¥, are non-increasing with
respect to the second variableQwith F = f + ®, G =g + V.

Has. (A+ B)"'Fy, (A + B)~1®, are non-decreasing in the third variable, aAd-(
B)~1Gy, (A + B)"1¥, are non-increasing in the third variable On

Hs. (A + B)"V(t,y0,20) > 0, t € J for some functionV defined later [A +
B)~V(t, yo, 20) > 0 means that the entries of the matx+« B)"1V(t, yo, Zo)
are non-negative].
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Hg. There exismx mmatricesCy, Cp, C3, C4 with non-negative entries such that

|(A+B) [ fx(t u,v) - f(t G| < Co D Tlui = Gl + loi — ail],
i=1

|(A+B) ™ gx(t, U 0) - gx(t. O] < C2 ) [iui = Gl + o - will,
i=1

|(A+ B) ™ [@x(t, U, v) — Dx(t, U,0)]| < C3 inui = G| + [vi — uill,
i=1

m
|(A+ B [x(t, U, 0) - Px(t, G, 0)]] < Ca ) [Iui = Gil + oy — o]
i=1
for yo(t) < u < zo(t), yp(t) < v, v < Z(t), t € Iwith u,u,v,0 € R™.
3. MAIN RESULTS

The next lemma is a special case of Theorem 1.1.4 from [8].

Lemma 1. Assume thasj(t) > 0,t € Jfori # j, whereS = [s;] is a continuous
square matrix of ordem. Let p € C(J,R™) and

p'() <SMPM), ted
p(0)<0=10,...,0]".

m

Thenp(t) <0onJ

Lemma 2. Let assumptionsl; andH3 be satisfied. Then, far, v, u,v € R™ such
thatyo(t) < u < u < 70(t), yo(t) < v < v < Z(1), te J we have

(A+B) [ F(tuo) - Z(LU 0] < (A+B) H[~Fx(t,u,v) - G(t, U 0)
+ Dy(t, u,v) + Px(t, u,v)](u— u)+B(v — v)}.
Proor. The mean value theorem and assumptiaryield
(A+ B) .7 (t,u,v) - Z(t,0,0)]
= (A+B) .7t uv) - Z(t,0,0) +.Z(t,00) — Z(t,0,0)]

<(A+ B)‘l{[fl Fy(t, su+ (1 - s)u,v)ds| (u—U) + B(v - v)}
0
=(A+ B)—l{fl[Fx(t, su+ (1 - 9u,v) + Gx(t, su+ (1 - s)u,v)
0

— Dy(t, su+ (1 - s)u,v) — ¥x(t, su+ (1 — s)u,v)]dgu—u) + B(v — v)}.
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Hence, we have the assertion of Lemma 2, by using assumggion

O

Now we are in a position to prove the following result:

Theorem 1. Assume thaf, g € C(Q, R™), and

() yo,20 € CYHJ,R™) are lower and upper solutions of problef®.1) and such
thatyo(t) < zo(t) andyg(t) < z(t) onJ,
(i) Assumption$i;—Hg hold with

V(t,y,2) = Fx(t,y,y') + Gx(t, 2 Z) — O«(t, 2 Z) — ¥x(t, y, y).

(iii) Problem(2.1) has at most one solution.

Then, there exist monotone sequenggs {z,} which converge uniformly od to
the unique solutiorx of problem(2.1). Moreover, the convergence is quadratic with
respect tau and it is semiquadratic with respect tb for u = y, andu = z,.

Proor. Letyn,1 andz,,1 be the solutions of the linear initial value problems
Va1 (®) = (A+ B H.Z (t, yn, yp) +Byn(tH V(t, yn, Z0)[ynea () —yn ()]},
yn+1(0) = XO’

and

Z1(0) = (A+ B HF(t, 20, 2) + BZ(0) + V(b yn, 20)[Zns1() ~ Za()]},
Z,+1(0) = Xo,
forn=0,1,.... Note that the sequencég}, {z,} are well defined.
First of all, we shall prove that
yo(t) < ya(t) < z1(t) < (1), teJ

yo(t) < ¥4 < Z (1) < Z(1), ted (3.1)

Let us putp = yo — y1, S0 p(0) < 0. Then we see that

P'(t) < (A+B)H{.F (o, yo) + Byo(t) — F (L, yo, yo) — Byo(t)
= V(t. yo. 20)[y1(t) — yo(®)]} = (A+ B) V(L. yo. 20)p(t). te J
AssumptionHs and Lemma 1 yieldy(t) < 0 onJ proving thatyo(t) < y1(t) on J.

Since @ + B)"V(t, yo, 20) > 0, andp(t) < 0 onJ, thenp/(t) < 0, soy(t) < y;(t)
on J By the same way we can show thaft) < zo(t) andz(t) < z(t), t € J Put
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p = y1 — z3. Then, by Lemma 2 and assumptibla, we have

P'(t) = (A+B) T (t, o, yo) — Z (t 20, Z) + Blyp(t) - Z()]
+ V(t, yo, 20)[y1(t) — yo(t) — z1(t) + 2o(t)]}
< (A+ B) " H[-Fx(t, yo, ) — Gx(t, 20, yg) + Px(t. 20, 1)
+ Wx(t, yo. yp)l[ 20(t) — yo (V)] + BZ(t) — yo(1)]
+V(t yo, 20)[y1(t) — yo(t) — a(t) + Zo(t)] + Blyp(t) — (1}
= (A+ B) H[Gx(t, 20, %) — Gx(t, 20, yp) + Px(t, 20, yp)
— Ox(t, 20, Z)][ 20(t) —yo (V)] + V(X yo. o) P(t)}
< (A+B) V(L. yo. 20) P(t)
with p(0) = 0. Hence, we hav(t) < 0, and thenp’(t) < 0 onJ which shows that
y1(t) < z1(1), y1(t) < Z (1), t € J. This means that (3.1) holds.
In the next step we need to show thatandz; are lower and upper solutions of
problem (2.1), respectively. By Lemma 2 and assumpttiénandH,, we obtain
Y1) = (A+ B)"H.F (t, yo, yo) + Byp(t) + V(t. yo, 20)[ya(t) — yo(®)]}
< (A+ B H.Z (L, y1. y3) + By (1) + [-Fx(t, yo. yp) — Gx(t, y1. yp)
+ Ox(t, y1, yo) + ¥x(t yo. yp)llya(t) — yo(V)] + V(L. yo, Z0)[y1(t) — yo(D)]}
= (A+ B H{.F (t,y1. yy) + By (t) + [Gx(t. 20, %) — Gx(t, y1. 4p)
+ Dy(t, y1, yo) — Cx(t, 20, Z)1[y1(t) — yo(V)]}
< (A+B) [ F(tys.y) + Byi (D),
and

(1) = (A+ B H.Z (1, 20, 2)) + B(t) + V(t yo, 0)[z1(t) — 20(1)]}
> (A+B) H{.F(t. 1. Z) + BZ(t) + [Fx(t. 1. ) + Gx(t. 0. Z)
— Ox(t, 20, Z) — Px(t, 21, Z)[20(t) — z2(t)] + V(L. yo, 20)[2(t) — Zo()]}
= (A+ By M. (t. 2. ) + BZ(t) + [Fult. 2. ) — Fx(t. yo. vp)
+ Gy(t, 20, Zl) - Gx(t, 20, %) + Oy(t, 20, 26) — Oy(t, 20, le)
+Wx(t, yo, yo) — Px(t, 21, Z)[20(t) — 2 (D]}
> (A+B) .7 (t, z1,7) + BZ(1)]

which shows thal; andz, respectively, are lower and upper solutions of problem
(2.1). Let us assume that

y-1(t) < yk(t) < z(t) < za(t), ted,
Y1 () S y(t) < Z (1) < Z_4(1), tel
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and letyy, z« be lower and upper solutions of problem (2.1) for sdare 1. We shall
prove that

yk(t) < yea(t) < Zera(t) < z(t), ted,
Ye®) < i () < Z, (D) < Z (1), ted
Putp = yk — yk+1. Then

P < (A+B)HF (6 o v + Bric(®) — Z (t vk i) — Bui(®)
= V(t, k> 20 [yk1(0) — ()]} = (A+ B)V(t, yx, 20 p(t)
with p(0) = 0. Note that, by assumptior$;—Hs,
(A+ B)V(t k- 20) = (A+ B) " [Fu(t, v 1) + Gx(t: 2, 4) — Oult, 2, Z)

= Wx(t, yi, Y]

> (A+ B) ' [Fx(t. yo. Yo) + Gx(t, 20, Zy) — Ox(t, 20, 7))
— Wx(t, yo. yp)]

= (A+B)V(t,y0,20) > 0, teJ

Hence, by Lemma 1p(t) < 0, p/(t) < 0,t € J, which shows that(t) < yk:+1(t) and
¥ () < y4(0), t € J Using the same argument we can prove thaf(t) < z(t),

z.,)<z(),ted
Let p = yks1 — Z+1. Thenp(0) = 0. Using Lemma 2 and assumptibfy, we get

P'(t) = (A+ B HZ (tyw y) — F (1. 2 Z) + Blyi(t) — Z(1)]

+ V(t, yk 20 [yk+1(t) — yk(t) = Zera (V) + z (O]}

< (A+ B) H{[=Fx(t. vk y) — Gx(t. Z, yi) + Ot 2, 1)
+ Wx(t, s il Z() — yk(®)]
+ V(t, yk, Z)[yk+1(t) — yk(t) — Zr2 (1) + (D]}

= (A+ B) " H[Gx(t, z, Z) — Gx(t, Z, y}) + Dx(t, Z, yp)
— Ox(t, Z, Z)I[Z () — yk(®)] + V(L yx. 20 p(L)}

< (A+B)WV(t, yi, 2)p(t), ted

This proves thayk1(t) < zu1(t), andy, ,(t) < z (1), t € J, so relation (3.2)
holds. Hence, by induction, for all we have

yo) <yr(®) <+ <yn() <z(t) <--- < z(t) < (1), te
yo) <yiM) < - <yp) < () < --- < Z (1) < z(b), ted
Employing standard techniques (using the Arzeli theorem and the Lebesgue theo-
rem), it can be shown that, — v, y, — v,z — 2, Z, — Z, y,z€ C}(J,R™), where
y andz are solutions of problem (2.1). Hence, by assumption (iii), we ave = x
on J is the unique solution of (2.1).

(3.2)



QUASILINEARIZATION FOR DIFFERENTIAL EQUATIONS WITH A SINGULAR MATRIX 19

The order of convergence of sequenétss, {z.}, {y;}, {z,} is considered in the
next part of our considerations. For this purpose, we put

Pn+1 = X—=yn+1 2 0, O+l =2Zn+1—%X>0 on J

and note thapn,1(0) = gn+1(0) = 0 for n > 0. Using the integral mean value theorem
and assumptionds, Hs, Hg, we get

Pra(®) = (A+ B HF (L, % X) + BX() = F(tyn, X) + Z (L, yn, X)
= Z(tyn. yn) = V(& yn, Z0)[yn+2 () = X(1) + X(t) = yn(t)] — Byn(t)}

1
<(A+ B)‘l{[ f Fx(t, $X+ (1= yn, X)ds| pa(t) + 2BIpy (1)l
0

V(t g Z0) [ Prea () — pn<t)]}

=(A+ B)‘l{fl[Fx(t, sX+ (1= 9yn, X) + Gx(t, sx+ (1 — Syn, X)
0
= Dy(t, SX+ (1 = 9yn, X) = Px(t, sX+ (1 = yn, X)]ds m(t)
2BIBHO)+ V(Lo 20 [Pra() - P01

<(A+ B)_l{[l:x(t’ X, X') = Fx(t, yn, yp) + Gx(t, yn, X') — Gx(t, 20, )
+ Dx(t, Zn, 7)) — Dx(t, yn, X') + Px(t, yn, yp) — Px(t, X, X)] pn(t)

m
< {(Cl +Cp + 2C3 + 2Ca) Z Pri(t)
i=1

+(Ca+ Ca +Ca) ) [ani(t) + Iy (O]

-1
+(C1+C3+Cy) Z Ip;,i(t)l} Pn(t)
i1

+ (A+ B)H{2BIpp(t)] + V(t, yn, Zn) Prsa(t)} -
Note that

Pri(t) Pn(t) < 2|on(t)+ Twi,
(3.3)

e il

Oni(t) Pa(t) < —pn(t)+ Woﬁ(t)

I
=
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wherepi = [p,,.... Panl"» W = [wij], wij = 1,i,j = 1,...,m This and previous
calculations give

Py 1(®) < Kpnaa() + ALpa(t) + AcR(t) + Aslph()I? + Adldih (D)1 + Aslph()l  (3.4)

with (A+ B) 1y < K1, (A+ B)1gy < Ko, K = K1 + K> onQ. Here, K1, K, aremx m
non-negative matrices and

1

A = 5(C1+C + 2C5 + 2Ca)(ml + W) + (Cz + Cs + Ca)m
+(C1+C3+ C4)g,
1

A = E(Cz + C3 + C4)W

1
Az = E(Cl +C3+ C4)W,
A=Ay,
As = 2(A+ B)B.

There is no loss of generality assuming tKat' exists such thaki; > 0, wherek;;
represents the components of this matrix. Hencet, &4d, we have

t

Pra() < [ €I AP + AR(S) + AdPLLIF + Ad (S + Alpi(9l]d
This implies

max||pn: 1))l < B1 max||pn(t)[I?+ B2 max|ign(t)||*+ Bz max|| ph (1)l

ted ted ted ted

+ By max||g,t)II? + Bs max||p,®)ll, (3.5)
ted ted
where|lvl2 = [Jo1%, . .., lom?]", v € R™, and
Ao =K B = AoA,
fori = 1,5. Combining (3.4) and (3.5) we obtain
/ AN 2 N 2 A / 2
rggxnpml(t)ll <A rPE%X“pn(t)H +A rpgxllqn(t)ll + Az rgajtxllpn(t)ll

+ Ay max|g(B)II? + As maxi|p0)ll
ted ted

with A = A, + KB;,i = 1,5.
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Similarly we have

U1 = (A+ B HT (4. 2, ) + BZ(H) — F(t. %, Z)
+ 7 (1, % 20) = F(t, X, X) + V(t, yn, Zn) O+ 2(t) — an(t)] — BX (1)}

<(A+B)™1 {[fl FIx(t, sz + (1 - 9X, 2;1)ds] an(t) + 2By, (1)
0

V(L Z)l e () - (0] |

<(A+ B)_l{[Fx(te Zn, Z,) — Fx(t, yn, yn) +Gx(t, X, Z,) - Gx(t, Z1, Z,)
+ Dy(t, 2, ) — Dx(t, X, Z) + Px(t, un, yp) — Px(t, zn, Z,)] (1)
+ V(t, Yn, Zn)On+1(t) + 2BJoy ()1}

m
< {(Cl +Cy + 2C3 + 2Cy) Z ani(t)
i=1

m
+(C1+C3+Cy) Z[pni(t) +1pri (O] + |%(t)|]} On(t)
i=1
+ Kns1(t) + Aslan ()l
< D1pA(t) + D203(t) + D1lps(t)I2+ D1l (t)%+Kans1(t) + Asldi(t)1,
where

1
Dy = E(Cl +C3+ ChW,
3 1
Dy = Em(Cl +C3+ C4) + E(Cl +Co+2C3+ 2C4)(ml + VV)
Hence,
max||gns1(t)ll < By max||pa(t)lI? + B2 max||gn(t)l1? + By max||p,0)I?
ted ted ted ted
+ By max|ig,(®)I? + Bz max||ap(b)ll,
ted ted

whereB; = AgD1, By = AgD», andBs = BsA.
Combining this with the last relation fay, , , we get

’ P 2 1 2 P / 2
<
r{g\anm(t)ll_Llrggxnpn(t)ll +Lzrp€<'31XIan(t)ll +L1rp€r31XI|pn(t)ll
+ L max| )l + Lz max|ig,(®)ll,
ted ted

with Ly = D1 + KBy, L, = Dy + KBy, andLg = As + KBg. This completes the
proof. O

Let us introduce the following assumptions:
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Hiz (i) (A + B)"'F4 is non-decreasing in the third variable énandV; =
Fx(t,y,y'), or
(i) (A + B)"1Fy is non-increasing in the third variable gd andV, =
Fx(t,y,Z).
Ho7 (i) (A + B)™1Gy is non-increasing in the third variable d& and V> =
Cx(t,z Z), or
(i) (A + B)1Gy is non-decreasing in the third variable énandV, =
G«(t,z y').
Hs7 (i) (A + B)™1®, is non-decreasing in the third variable énhand Vs =
Dy(t,2,Z), or
(i) (A + B)"dy is non-increasing in the third variable g& and V3 =
DOu(t,z y).
Hs7 (i) (A + B)"1¥, is non-increasing in the third variable @b andV, =
Yy(t,y,y'), or
(i) (A + B)™1¥, is non-decreasing in the third variable énhandV, =
Yy(t, y, 2).

The set of all assumptions froi17 to Ha7 will be denoted byH7. Since in any
assumptiondd17—Hs7 we have two cases (i) or (ii), so we have 16 possibilities for
constructing assumptidf;. Note that if we choose case (i) in any assumptidps-
Ha7, then assumptiohl; is identical with assumptioRi,.

Now we can formulate the following

Theorem 2. Assume that the assumptions of Theorem 1 are satisfied with assump-
tion H-; instead ofH4 and for

V:V1+V2—V3—V4.
Then the conclusion of Theorem 1 is true.
Proor. Since the proof can be constructed on the basis of the proof of the previous
theorem, we shall only indicate the necessary changes. We should create assumption

H. Let H7 be produced from assumptioRlg7(ii), Ho7(ii), Ha7(ii), and Hy7(ii). Note
that the sequencég,}, {z,} are constructed as before with

V(t,y,2) = Fx(t,y,Z) + Gx(t, 2 y') — Dx(t, 2 y') — ¥x(t, y, Z).

Based on the assumption
(A+B)V(t,y0,20) = 0

and Lemma 1, it is quite easy to show that) < yi(t), yo(t) < y1(1), zu(t) < (1)
andz(t) < z(t) onJ. If we putp = y; — z, then, by Lemma 2 and assumptions
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Ha17(ii), Haz(ii), we have

P'(t) < (A+ B) H[-Fx(t, yo, yp) — Gult, 20. yp) + Px(t. 0, )
+ Wx(t, yo. yp)l[ 20(t) — yo(B)] + BlZ(t) — yo(1)]
+ V(t, yo, 20)[ya(t) = yo(t) — zu(t) + z0(t)] + Blyp(t) — (O]}
= (A+ B) H[Fx(t, 5o, Z) — Fx(t, 5o, yp) + ¥x(t, yo, yp)
= ¥x(t, yo, Z)I[20(t) — yo(V)]
+V(t, yo. 20)P(t)} < (A + B)V(t, yo, 20) (1),
p(0) = 0.
Hence, by Lemma 1, we hay#t) < 0, and thereforegy’(t) < 0 onJ which shows
thaty:(t) < zi(t), y(t) < Z(1), t € J It means that (3.1) holds.

In the next step we need to show thatandz; are lower and upper solutions of
problem (2.1), respectively. Note that, using Lemma 2 and assumptipaadHz,
we get

Y (1) < (A+ B) " H.Z (t,y1. yy) + By (1) + [~Fx(t. yo. y5) — Gx(t, y1. yp)

+ Ox(t, y1, yg) + Px(t, yo. yp)llya(t) — yo(t)] + V(L. yo, 20)[ya(t) — yo(t)]}
= (A+B) ™ MF (ty1, 1) + By () + [Fx(t yo. ) — Fx(t yo, o)
+ Gx(t, 20, o) — Gx(t, y1. o) + Px(t. y1. yg) — x(t, 20, o) + ¥x(t. vo, yp)
— Px(t, yo. Z)][ya(t) — yo(O]) < (A+ B) ' [.F (t,y1,y) + Byy (1),
and
(1) > (A+ B {7 (t,21,2) + BZ(t) + [Fx(t, 21, Z) + Cx(t, %0, Z)
— D(t, 20, ) — ¥x(t, 22, )1 20(t) — 22 (V)] + V(L. yo, Z0) [z (1) — Z0(1)]}
= (A+B) YT (L2, 2) + B4(1) + [Fx(t. 2, 2) — Fx(t.yo. %)
+ Gx(t, 20, Z) — Gx(t, 20, ) + Ox(t, 20, y) — Px(t. 20, 2))
+ Wx(t, yo. ) — Yx(t. 21, Z)][ 20(t) — 22 ()]}
> (A+B)[F(t,21,2) + B4 (1)),
which shows thal;; andz; are lower and upper solutions of problem (2.1), respec-
tIV?Bl});.induction inn, we can show that
yo(t) <ya) <--- <yn(t) < z(t) <--- < z1(t) < 2(t), te ]
Yo <yi(®) < -+ <yp® < (M) <--- < Z (M) < (1), ted

for all n.
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Employing standard techniques, it is easy to concludeyhat vy, y, — v',zn —
z 7z, — Z,y,ze CY(JRM), wherey andz are solutions of problem (2.1). Hence, by
assumption (iii), we havg = z= x on J is the unigque solution of (2.1).
To show the quadratic and semiquadratic convergence, we set

Pn+1 = X—yns1 > 0, On+1=Zns1—%X20

onJ. Note thatpn;1(0) = dn+1(0) = O for n > 0. The beginning forp, , , is the same
as in the proof of Theorem 1, so

P < (A+ B)_l{fl[':x(t’ SX+ (1 - 9)yn, X) + Gx(t, sx+ (1 = S)yn, X)
0
— Oy(t, sX+ (1 — Syn, X') — Px(t, sx+ (1 — Syn, X')]ds (1)

+ 2BIPL(0] + V(& g ) [Pt () — (0] }

Now, using the same argument as in the proof of Theorem 1, we can prove that

max||pns1 (Ol < @1 max||p(t)l|? + a2 max|ign(®)lI? + az max||ph ()12
ted ted ted ted

+ aa max|igL®)II? + as max||p,O)ll
ted ted
and

/ — 2 — 2 — / 2
<
mtegxnpml(t)ll < mtEgXIlpn(t)ll +az mtegXIlqn(t)Il + a3 mtegXIlpn(t)ll

+ aa max||gh()1 + @s max|iph(@)ll
ted ted
where
1 1 1
01 = écl(ZmI + W) + §C2(3ml +W) + E(Cg + Cq)(5ml + 2W),
1
02 = z(cz +C3+ Cyh)W,
1
03 = 5(03 +Cay)W,

1
04 = 5(01 +C2+C3+Cy)W,
05 = As,

ande; = Agdi, @ = 6i + Kai, i = 1,5, with Ay andK defined as in the proof of
Theorem 1.
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Similarly, we can show that

max]idn.1(8)Il < A1 maxi|p(t)]® + B2 max|ign(t)]® + Bz max|p ()l

ted ted ted ted

+ Bamaxiign®)l? + Bs maxigh @)
ted ted
and
max||d.. ; (0| < B max||pnII? + B> max||an(t)|I? + Bz max||plt)||?
na Mo, 1 (DI < B2 na IPn (DI + B2 na lan (DIl + B3 na PRIl

+ Ba max||g,(B)II? + Bs max|g(©)ll,
ted ted

with
1
nm = E(Cl + 2C3 + C4)VV,
1
n3 =n4 = E(Cz + C3 + C4)W
175 = As,
1 1 1
2 = 5Ca(2ml + W) + 5Co(3ml + W) + 5(Cs + Ca)(5ml + W),
and

Bi = Ao, Bi =i + K

fori =1,5.

Itis now easy to construct the proofs of the assertions corresponding to the remain-
ing cases of assumptidd; following the proof of Theorem 1 and the proof given
above. We omit the details. The proof of this theorem is therefore complete.o

Remarkl. Note that ifv is a lower solution of problem (2.1) ané ¢ B)™* > 0,
thenv satisfies the relation

AV (1) < Z(t o), (1), ted v(0)< x.
Here, A + B)~1 > 0 means that some entries &f{ B)~! may be equal to zero.
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