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Abstract. Using a recent extension of Fréchet differentiability (approach of Taylor mappings,
see [1]), the notion of Clarke subdifferential in binormed spaces, and the notion of closed pair
of multifunctions, we present a convenient test for the weak metric regularity of a non-strictly
Fréchet differentiable functions in terms of the surjectivity of its Taylor strict derivative. As an
application, we give an example of a non-strictly Fréchet differentiable function for which the
given test works.
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1. AN INTRODUCTION TO METRIC REGULARITY

Throughout this section, we consider an open set U in a normed space .E;k � k1/,
a closed set S � U , a Euclidean space .Y;k � k/, and a continuous map hWU ! Y .

Let x 2 S , T 1S .x/ the Clarke tangent cone to S at x with respect to the norm k �k1,
d1S the distance function to the set S with respect to the norm k � k1.

The calculation of K1
h�1.h.x//

contingent cone to h�1.h.x// at x with respect to

the norm k � k1 requires first to bound the distance of a point ´ to the set h�1.h.x//
in terms of the function value h.´/. This leads us to the notion of metric regularity.

We say h is k � k1 weakly metrically regular on S at the point x if there is a real
constant K such that

d1
S\h�1.h.x//

.´/�Kkh.´/�h.x/k

for all ´ close to x with respect to the norm k � k1. If h is k � k1 strictly Fréchet
differentiable at x, we can present a convenient condition for weak metric regularity
as follows:

Theorem 1. If h is k�k1 strictly Fréchet differentiable at the point x in S and
rh.x/.T 1S .x//D Y then h is k�k1 weakly metrically regular on S at x.

A pretty application of the above theorem is the classical Liusternik theorem.
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Theorem 2. If h is k�k1 strictly Fréchet differentiable at the point x and rh.x/
is surjective then the set h�1.h.x// is tangentially regular at x and K1

h�1.h.x//
D

N.rh.x//, where N.�/ denote the null space.

Using a recent extension of Fréchet differentiability (approach of Taylor mappings,
see [1]) and the notion of Clarke subdifferential in binormed spaces, we want to estab-
lish the same conclusion of the theorem 1 for non k�k1 strictly Fréchet differentiable
mappings.

For this, we pause to recall some terminology before proving the main result.

2. STRICTLY TAYLOR DIFFERENTIABLE MAPPINGS

Let k�k1, k�k2 two norms defined on a linear space E such that .E;k�k2/ is a Ba-
nach space and, for some c > 0, the condition k�k1 � c k�k2 holds.

Let U an open subset of .E;k�k1/, S a closed subset of .E;k�k1/ such that S �U ,
.Y;k � k/ is a Euclidean space, hWU ! Y .

According to [1], we say that h is a .k�k1 ;k�k2/ strictly Taylor differentiable map-
ping at a point x 2 U if there exists a continuous linear operator from .E;k�k2/ to
.Y;k � k/ such that

h.x0C s/�h.x0/�Ls D o.ksk2/

in .Y;k � k/ as x0!k�k1 x, s!k�k1 0. Let us first note that such L is unique since h
is k�k2 Fréchet differentiable at x. If h is .k�k1 ;k�k2/ strictly differentiable at x 2 U ,
then we set rh.x/D L.

Even if h is a .k�k1 ;k�k2/ strictly Taylor differentiable mapping at a point x, h is
not necessarily k�k1 Fréchet differentiable at x. But if k�k1 is equivalent to the norm
k�k2, then h is necessarily strictly k�k1 Fréchet differentiable at x.

So the notion of strict differentiability in terms of Taylor strengthens and general-
izes the elegant notion of strict Fréchet differentiability.

In order to generalize the classical Theorem 1, we extend the notion of Clarke
subdifferentiability in a normed spaces to binormed spaces.

3. CLARKE SUBDIFFERENTIAL IN BINORMED SPACES

Throughout this section we consider a binormed space .E;k�k1 ;k�k2/ such that
.E;k�k2/ is a Banach space and, for some c > 0, the inequality k�k1 � c k�k2 holds,
an open set U of a normed space .E;k�k1), a closed subset S of .E;k�k1/ such
that S � U , a Euclidean space .Y;k � k/, a locally Lipschitzian around xx 2 U with
respect to the norm k�k2 mapping hWU ! .Y;k � k/, and a k�k2 locally Lipschitzian
real function h2 around xx 2 U .

Let v any vector in E. The Clarke generalized directional derivative of h2 at xx
in the direction v with respect to the norm k�k2, denoted h0;22 .xx;v/, is defined as
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follows:

h
0;2
2 .xx;v/D limsup

x0!k�k2 xx;t#0

h2.x
0C tv/�h2.x

0/

t
:

The Clarke subdifferential of h2 at xx with respect to the norm k�k2, denoted @20h2.xx/,
is the subset of .E;k�k2/

0 given by

@20h2.xx/D f� 2 .E;k�k2/
0
W h

0;2
2 .xx;v/� h�;vi 8v 2Eg:

Analogously, the Clarke subdifferential of h2 at xx with respect to the pair of norms
.k�k1 ;k�k2/, denoted @1;20 h2.xx/, is the subset of .E;k�k2/

0 given by

@
1;2
0 h2.xx/D f� 2 .E;k�k2/

0
W h

0;1
2 .xx;v/� h�;vi 8v 2Eg:

Notice that the Clarke subdifferentials @20h2.xx/ and @10h2.xx/ are smaller than the
generalized Clarke subdifferential @1;20 h2.xx/. For a point x in S , the generalized
Clarke tangent cone to S at x with respect to the norms .k�k1 ;k�k2/, denoted T 1;2S .x/,
is the subset of E given by

T
1;2
S .x/D .cl.RC@1;20 d2S .x//

�;

where cl denotes the ��..E;k�k2/
0;E/ closure.

Analogously, the generalized Clarke normal cone to S at x with respect to the
norms .k�k1 ;k�k2/, denoted N 1;2

S .x/, is the subset of .E;k�k2/
0 given by

N
1;2
S .x/D cl.RC@1;20 d2S .x//;

where cl denotes ��..E;k�k2/
0;E/ closure.

From the above definitions, we deduce immediately that the generalized tangent
cone T 1;2S .x/ is smaller than the tangent cones T 2S .x/ and T 1S .x/.

The first assertion below reiterates that if h2 is a k�k2 locally Lipschitzian real
function on U , then the pair of multifunctions .@20h2;@

1;2
0 h2/ is closed from .U;k�k1/

to ..E;k�k2/
0;��..E;k�k2/

0;E// in the following sense: if xi and �i are sequences
in U and .E;k�k2/

0 such that �i 2 @20h2.xi /, xi converges to x with respect to the
norm k�k1, and �i converges to � for the weak topology ��..E;k�k2/

0;E/, then � 2
@
1;2
0 h2.x/.

Proposition 1. Assume that h2 is a k�k2 locally Lipschitzian real function on U .
Then the pair of multifunctions .@20h2;@

1;2
0 h2/ is closed from .U;k�k1/ to ..E;k�k2/

0;

��..E;k�k2/
0;E//.

Proof. Let xi and �i be sequences in U and .E;k�k2/
0 such that �i 2 @20h2.xi /,

xi converges to x with respect to the norm k�k1, and �i converges to � for the weak
topology ��..E;k�k2/

0;E/.
Let any v 2 E be given. Then h�i ;vi converges to h�;vi.One has h0;22 .xi ;v/ �

h�i ;vi, which implies that h0;12 .xi ;v/� h�i ;vi.
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By the upper semicontinuity of h0;12 with respect to the norm k�k1, we deduce that
h
0;1
2 .x;v/� h�;vi. Since v is arbitrary, � belongs to @1;20 h2.x/. �

Now we can give the main result.

4. A CONVENIENT TEST FOR WEAK METRIC REGULARITY OF .k�k1 ;k�k2/
STRICTLY TAYLOR DIFFERENTIABLE MAPPINGS

Assume that all the hypothesis of Section 3 are satisfied and suppose also that
.E;k�k2/ is a separable Banach space. We can now present a convenient condition
for weak metric regularity of .k�k1 ;k�k2/ strictly Taylor differentiable functions.

Theorem 3 (Surjectivity and metric regularity). If h is k�k2 strictly differentiable
at the point x in S and rh.x/.T 1;2S .x//D Y then h is k�k1 weakly metrically regular
on S at x.

Let us remark that in our theorem, to give a convenient test for the k�k1 weak
metric regularity of a function at a point in terms of the surjectivity of its k�k2 strict
derivative there, we do not require that h is k�k1 strictly differentiable at the point x
as in the classical Theorem 1.

Proof. Without loss of generality, suppose that x D 0 and h.0/ D 0. If h is not
k�k1 weakly metrically regular on S at the point 0 then there is a sequence vr ! 0

in .S;k�k1/ such that h.vr/ ¤ 0 for all r , and a real sequence ır # 0 such that the
function kh.�/kC ırk ��vrk1 is minimized on S at vr . Denoting the local Lipschitz
constant by L, we deduce from the nonsmooth calculus and the Exact penalization
theorem the condition

0 2 @20.khk/.vr/C ırB
�
CL@20d

2
S .vr/;

Where B� denote the unit ball in .E;k�k2/
0.

Hence there are elements ur of @20.khk/.vr/ and wr of L@20d
2
S .vr/ such that urC

wr approaches zero with respect to the dual norm k � k02.
By choosing a subsequence we can assume kh.vr/k�1h.vr/! y ¤ 0. Conse-

quently, ur ! .rh.0//�y for the weak topology ��..E;k�k2/
0;E/. Since the pair of

multifunctions .@20d
2
S ;@

1;2
0 d2S / is closed at 0, we deduce�.rh.0//�y 2L@1;20 d2S .0/�

N
1;2
S .0/. However, by assumption there is a nonzero element p of T 1;2S .0/ such that
rh.0/p D�y, so we arrive at the contradiction

0� hp;�.rh.0//�yi D hrh.0/p;�yi D kyk> 0;

which completes the proof. �

Corollary 1. If h is .k�k1 ;k�k2/ strictly differentiable at the point x in S and
rh.x/.T

1;2
S .x//D Y then h is k�k1 weakly metrically regular on S at x.
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Proof. Since h is .k�k1 ;k�k2/ strictly differentiable at the point x then h is k�k2
strictly differentiable at the point x. Consequently, using Theorem 3, we obtain the
result. �

An immediate consequence of Corollary 1 is the generalized Liusternik theorem.

Theorem 4 (Generalized Liusternik theorem). If h is .k�k1 ;k�k2/ strictly differen-
tiable at the point x in S and rh.x/ is surjective then the set h�1.h.x// is tangen-
tially regular at x with respect to the norm k�k1 and K1

h�1.h.x//
.x/DN.rh.x//.

Proof. Since h is k�k2 strictly differentiable at x then by the classical Liusternik
theorem, we deduce that K1

h�1.h.x//
.x/DK2

h�1.h.x//
.x/DN.rh.x//.

Let us now prove that h�1.h.x// is tangentially regular at x with respect to the
norm k�k1. Assume without loss of generality that x D 0 and h.0/D 0. Its clear that
K1
h�1.0/

.0/�N.rh.x//. So it suffices to prove N.rh.0//� T 1
h�1.0/

.0/.

Fix any element p of N.rh.0// and consider a sequence xr ! 0 in h�1.0/ with
respect to the norm k�k1 and tr # 0, tr >0. The previous result shows h is k�k1 weakly
metrically regular at zero, so there is a constant k such that the inequality

d1
h�1.0/

.xrC trp/�Kkh.xrC trp/k

holds for all large r , and hence there are points ´r 2 h�1.0/ satisfying the estimate

kxrC trp�´rk1 �Kkh.xrC trp/k:

If we define directions pr D t�1r .´r � xr/ then clearly the points xr C trpr lie in
h�1.0/ for large r , and since

kpr �pk1 D
kxrC trp�´rk1

tr
�K
kh.xrC trp/�h.xr/k

tr
! kkrh.0/pk D 0;

we obtain p 2 T 1
h�1.0/

.0/. �

Let us give now an example of a non-strictly Fréchet differentiable function for
which the test given in Theorem 3 works.

Example 1. Let ˝ be a bounded domain in R2, E DW 1;2
0 .˝/ the Sobolev space

with the usual norm k�k2D k�kW 1;2
0 .˝/

. Let also p and " such that 0 < " < 1, "C2 <
p <1. Set k�k1 D k�kLp.˝/. Note that .E;k�k2/ is a separable Banach space. Since
W
1;2
0 .˝/ ,!Lp.˝/, it follows that .E;k�k1 ;k�k2/ is a binormed space such that for

some c > 0, the inequality k�k1 � c k�k2 holds.
Set g.u/D juj"C2 and consider the functional G defined on E by the formula

G.x/D

Z
˝

g.x.s//ds:
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Then G is k�k2 twice Fréchet differentiable at every x 2E and

G.1/.x/hD

Z
˝

g0.x.s//h.s/ds;

G.2/.x/.h1;h2/D

Z
˝

g00.x.s//h1.s/h2.s/ds:

Let us note that G is not k�k1 Fréchet differentiable at any point x 2 E. Indeed, let
˛m !1 and dm !1 such that jg.dm/j � ˛mjdmjp. By the countable additiv-
ity of the Lebesgue measure there exist C > 0 and ˝ 0 � ˝ such that �.˝ 0/ > 0,
dist.˝ 0;@˝/ > 0, and jx.s/j � C for all s 2 ˝ 0. In this case, put D D maxfg.u/ W
juj � C g<1. Choose ˝m �˝ 0 such that �.˝m/D jdmj�pj˛mj�

1
2 for large m.

Let hm be defined by the formula

hm.s/D

(
dm�x.s/ for s 2˝m;
0 for s 2˝ n˝m:

It follows then that khmk1! 0 and

jG.xChm/�G.x/j � ˛mjdmj
p�.˝m/�D�.˝m/

D j˛mj
1
2 �D�.˝m/!C1:

Let km 2 C10 .˝/ such that kkm�hmk1! 0. Then kkmk1! 0, but G.xCkm/�
G.x/!1 since the Lebesgue integral is absolutely continuous. Therefore, G is
not k�k1 Fréchet differentiable at x and consequently, G is not k�k1 strictly Fréchet
differentiable at x.

So to test the weak metric regularity of the functional G on a closed set S of
.E;k�k1/, the classical Theorem 1 cannot be used, but we can apply the Theorem 3
since G is k�k2 strictly differentiable at x. Hence, if S is a closed set in .E;k�k1/
such that rG.x/.T 1;2S .x//D R then G is k�k1 weakly metrically regular on S at x.
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