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Abstract. In this paper we establish some Tauberian-like conditions in terms of the weighted
general control modulo of integer order to retrieve subsequential convergence of a sequence
from its boundedness.
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1. INTRODUCTION

Let p D .pn/ be a sequence of nonnegative numbers with p0 > 0 and

Pn WD

nX
kD0

pk!1 as n!1:

The weighted means of a sequence .un/ of real numbers are defined by

� .1/n;p.u/ WD
1

Pn

nX
kD0

pkuk

for all nonnegative integers n.
We define the weighted mean method as follows:

Definition 1. If limn!1�
.1/
n;p.u/D s, then we say that .un/ is said to be limitable

to s by the weighted mean method .N ;pn/ and we write un! s.N ;pn/.

If pn D 1 for all n, then the corresponding weighted mean method is the .C;1/
method of Cesàro.

The sequence �u D .�un/ of the backward differences of .un/ is defined by
�un D un�un�1, and �u0 D u0 for nD 0:

The identity
un��

.1/
n;p.u/D V

.0/
n;p.�u/; (1.1)
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where V .0/n;p.�u/D
1
Pn

Pn
kD1Pk�1�uk; is known as the weighted Kronecker iden-

tity.
We define � .m/n;p .u/ and V .m/n;p .�u/ by

� .m/n;p .u/D

8̂<̂
:

1

Pn

nX
kD0

pk�
.m�1/

k;p
.u/ ;m� 1

un ;mD 0

and

V .m/n;p .�u/D

8̂<̂
:

1

Pn

nX
kD0

pkV
.m�1/

k;p
.�u/ ;m� 1

V
.0/
n;p.�u/ ;mD 0

respectively (see [4]).

The weighted classical control modulo of .un/ is denoted by!.0/n;p.u/D
Pn�1

pn
�un

and the weighted general control modulo of integer orderm� 1 of .un/ is defined by
!
.m/
n;p .u/D !

.m�1/
n;p .u/��

.1/
n;p.!

m�1.u// (see [2]).
A new kind of convergence was defined by Dik [5] as follows.

Definition 2. A sequence u D .un/ is said to be subsequentially convergent if
there exists a finite interval I.u/ such that all accumulation points of .un/ are in I.u/
and every point of I.u/ is an accumulation point of .un/.

It is clear from the definition that subsequential convergence implies boundedness.
But the converse is not true in general. For example, ..�1/n/ is bounded, but it is not
subsequentially convergent. The converse implication is true under some conditions
imposed on the sequence.

The following theorem is a more general one stating that under which condition
bounded sequences are subsequential convergent.

Theorem 1 ([5]). Let .un/ be a bounded sequence. If �un D o.1/, then .un/ is
subsequentially convergent.

Throughout this paper, we write un D o.1/ or un DO.1/ rather than limnun D 0
or .un/ is bounded for large enough n.

Example 1. Using Theorem 1, one can easily show that the sequence .un/ D
.sin
p
n/ is subsequentially convergent. Indeed, the sequence .un/ is bounded. From

the fact that

j�unj D j�sin.
p
n/j D jsin.

p
n/� sin.

p
n�1/j � j

p
n�
p
n�1j

D

ˇ̌̌̌
1

p
nC
p
n�1

ˇ̌̌̌
D o.1/;
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it follows that�unD o.1/. Thus by Theorem 1, the sequence .un/ is subsequentially
convergent.

Definition 3 ([9]). A sequence .un/ is slowly oscillating if

lim
�!1C

lim
n

max
nC1�k�Œ�n�

ˇ̌̌̌
ˇ̌ kX
jDnC1

�uj

ˇ̌̌̌
ˇ̌D 0:

It is clear from Definition 3 that slow oscillation of .un/ implies �un D o.1/.
By Littlewood’s condition n�un D O.1/ [8] and slow oscillation of .un/, Dik

et al. [6] obtained some Tauberian-like theorems to recover subsequential conver-
gence of .un/ from its boundedness. The condition n�un D O.An/, where .An/
is an unbounded sequence, is used as a Tauberian-like condition for the recovery of
subsequential convergence of .un/ from its boundedness by Dik et al. [6]. Later in
[1], Çanak and Dik introduced some Tauberian-like conditions !.m/n;1 .u/ D O.An/,
where .An/ is an unbounded sequence, and slow oscillation of .��n;1.!.m/.u/// for
recovering subsequential convergence of the sequence of .un/ from its boundedness.

In this paper we prove that subsequential convergence of .un/ follows from its
boundedness under the condition given in terms of the weighted general control mod-
ulo of the oscillatory behavior of integer order of the sequence .un/.

2. MAIN RESULTS

The main theorem of this paper involves the concepts of a regularly varying se-
quence of index ˛ > �1 and slowly oscillating sequence.

Definition 4 ([7]). A positive sequence .R.n// is said to be regularly varying of
index ˛ > �1 if

lim
n!1

R.Œ�n�/

R.n/
D �˛; � > 0; ˛ > �1: (2.1)

The following theorems generalize some theorems in [1] that are exactly given
in terms of the weighted general control modulo of the oscillatory behavior of the
sequence .un/.

Theorem 2. Let .un/ be a bounded sequence and

Pn�1

pn
DO.n/: (2.2)

Let .An/ be a sequence such that

1

Pn

nX
kD0

pkjAkj
p
DO.1/;p> 1 (2.3)
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for some regularly varying sequence .Pn/ of index ˛ > �1. If

!.m/n;p .u/DO.An/ (2.4)

then .un/ is subsequentially convergent.

Theorem 3. Let .un/ be a bounded sequence and let .Pn/ be regularly varying
of index ˛ > �1. If .�� .1/n;p.!.m/.u/// is slowly oscillating for some nonnegative
integer m, then .un/ is subsequentially convergent.

3. IDENTITIES AND A LEMMA

In this section, we present some identities and a lemma to be used in the proof of
the main theorems.

The identities

Pn�1

pn
�� .m/n;p .u/D V

.m�1/
n;p .�u/

and

� .1/n;p

�
Pn�1

pn
�V .0/n;p.�u/

�
D
Pn�1

pn
�V .1/n;p.�u/:

are proved by Totur and Çanak [10].
For a sequence uD .un/, we define�
Pn�1

pn
�

�
m

un D

�
Pn�1

pn
�

�
m�1

�
Pn�1

pn
�un

�
D
Pn�1

pn
�

��
Pn�1

pn
�

�
m�1

un

�
;

where
�
Pn�1

pn
�
�
0
un D un, and

�
Pn�1

pn
�
�
1
un D

Pn�1

pn
�un:

A different representation of the weighted general control modulo of integer order
m� 1 of a sequence .un/ is given by the identity

!.m/n;p .u/D

�
Pn�1

pn
�

�
m

V .m�1/n;p .�u/ (3.1)

in ([10]).
We note that any .Pn/ with limn!1 Pn

n
D 1 is regularly varying of index 1.

Lemma 1. Let .Pn/ be regularly varying of index ˛ > �1. If .un/ is limitable to
s by the weighted mean method .N ;pn/ and slowly oscillating, then .un/ converges
to s.

Proof. Assume that .Pn/ be regularly varying of index ˛ > �1. If .un/ is slowly
oscillating, then .V .0/n;p.�u// is slowly oscillating (see [3]). Since un! s.N ;pn/ and
.V

.0/
n;p.�u// is slowly oscillating, the proof is completed by [2, Theorem 6]. �
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4. PROOFS

In this section, proofs of theorems and corollaries are given.

Proof of Theorem 2. By (2.3), it follows that the sequence
�Pn

jD1
pjAj

Pj�1

�
is slowly

oscillating. Indeed,

max
nC1�k�Œ�n�

ˇ̌̌̌
ˇ̌ kX
jDnC1

pjAj

Pj�1

ˇ̌̌̌
ˇ̌� max

nC1�k�Œ�n�

kX
jDnC1

ˇ̌̌̌
pjAj

Pj�1

ˇ̌̌̌

�

Œ�n�X
jDnC1

pj jAj j

Pj�1
�

1

Pn

Œ�n�X
jDnC1

pj jAj j

D
PŒ�n��Pn

Pn

1

PŒ�n��Pn

Œ�n�X
jDnC1

pj jAj j

�
PŒ�n��Pn

Pn

1

.PŒ�n��Pn/
1
p

0@ Œ�n�X
jDnC1

pj jAj j
p

1A 1
p

D
.PŒ�n��Pn/

1� 1
p

Pn

0@ Œ�n�X
jDnC1

pj jAj j
p

1A 1
p

D
.PŒ�n��Pn/

1
q

Pn

0@ Œ�n�X
jDnC1

pj jAj j
p

1A 1
p

;

D
.PŒ�n��Pn/

1
q

.Pn/
1
q

0@PŒ�n�
Pn

1

PŒ�n�

Œ�n�X
jD0

pj jAj j
p

1A 1
p

D
.PŒ�n��Pn/

1
q

.Pn/
1
q

.PŒ�n�/
1
p

.Pn/
1
p

0@ 1

PŒ�n�

Œ�n�X
jD0

pj jAj j
p

1A 1
p

;

where 1
p C

1
q D 1. Taking limsup of both sides as n!1, we get

limsup
n

max
nC1�k�Œ�n�

ˇ̌̌̌
ˇ̌ kX
jDnC1

pjAj

Pj�1

ˇ̌̌̌
ˇ̌
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� limsup
n

.PŒ�n��Pn/
1
q

.Pn/
1
q

.PŒ�n�/
1
p

.Pn/
1
p

limsup
n

0@ 1

PŒ�n�

Œ�n�X
jD0

pj jAj j
p

1A 1
p

D lim
n

�
PŒ�n��Pn

Pn

� 1
q

lim
n

�
PŒ�n�

Pn

� 1
p

limsup
n

0@ 1

PŒ�n�

Œ�n�X
jD0

pj jAj j
p

1A 1
p

Since .Pn/ is regularly varying of index ˛ > �1, we have

limsup
n

max
nC1�k�Œ�n�

ˇ̌̌̌
ˇ̌ kX
jDnC1

pjAj

Pj�1

ˇ̌̌̌
ˇ̌� C.�˛�1/ 1

q .�˛/
1
p :

for some C > 0.
Finally, taking limsup of both sides as �! 1C, we obtain

lim
�!1C

limsup
n

max
nC1�k�Œ�n�

ˇ̌̌̌
ˇ̌ kX
jDnC1

pjAj

Pj�1

ˇ̌̌̌
ˇ̌� C lim

�!1C
.�˛�1/

1
q .�˛/

1
p D 0:

Slow oscillation of

0@ nX
jD1

pjAj

Pj�1

1A implies that
pjAj

Pj�1
D o.1/: Since !.m/n;p .u/ D

O.An/, it follows from

!.m/n;p .u/D
Pn�1

pn
�

�
.
Pn�1

pn
�/m�1V

.m�1/
n;p .�u/

�
DO.An/

that

�� .1/n;p.!
.m�1/.u//D�

�
.
Pn�1

pn
�/m�1V

.m�1/
n;p .�u/

�
D o.1/:

Since .un/ is bounded, .� .1/n;p.!.m�2/.u/// is bounded for every nonnegative integer
m. From the identity

�

�
.
Pn�1

pn
�/m�2V

.m�2/
n;p .�u/

�
D
pn.

Pn�1

pn
�/m�2V

.m�2/
n;p .�u/

Pn�1

C�

�
.
Pn�1

pn
�/m�1V

.m�1/
n;p .�u/

�
;

it follows that

� .1/n;p.!
.m�2/.u//D�

�
.
Pn�1

pn
�/m�2V

.m�2/
n;p .�u/

�
D o.1/;n!1:
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Continuing in this manner, we obtain that

�� .1/n;p.!
.0/.u//D�V .0/n;p.�u/D o.1/:

Using (1.1), we have

�un D
pnV

.0/
n;p.�u/

Pn�1
C�V .0/n .�u/D o.1/:

By Theorem 1 we have the proof. �

Corollary 1. Let .un/ be a bounded sequence and .An/ be a sequence such that

1

n

nX
kD1

jAkj
p
DO.1/; p> 1: (4.1)

If !.m/n DO.An/; then .un/ is subsequentially convergent.

Proof. Take pn D 1 for every nonnegative integer n in Theorem 2. �

Corollary 1 was given by Çanak and Dik [1].

Proof of Theorem 3. Since .un/ is bounded, then .� .1/n;p.!.m/.u/// is bounded for
every nonnegative integer m. Thus, we get

� .1/n;p.��
.1/.!.m/.u///D

pn.n�/mV
.m/
n;p .�u/

Pn�1
D o.1/:

Since .�� .1/n;p.!.m/.u/// is slowly oscillating, applying Lemma 1 to the sequence
.��

.1/
n;p.!

.m/.u/// we obtain that

�� .1/n;p.!
.m/.u//D�

�
.
Pn�1

pn
�/mV

.m/
n;p .�u/

�
D o.1/:

Since .� .1/n;p.!.m�1/.u/// is bounded for every nonnegative integerm, by the identity

�

�
.
Pn�1

pn
�/m�1V

.m�1/
n;p .�u/

�
D
pn.

Pn�1

pn
�/mV

.m/
n;p .�u/

Pn�1

C�

�
.
Pn�1

pn
�/mV

.m/
n;p .�u/

�
;

it follows that

�� .1/n;p.!
.m�1/.u//D�

�
.
Pn�1

pn
�/m�1V

.m�1/
n;p .�u/

�
D o.1/:

The rest of the proof is as in the proof of Theorem 2. �

Corollary 2. Let .un/ be a bounded sequence. If .� .1/n;p.!.m/.u/// is slowly oscil-
lating for some nonnegative integer m, then .un/ is subsequentially convergent.
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Proof. Proof follows from the fact that limn�un D 0 for every slowly oscillating
sequence .un/. �

Corollary 3. Let .un/ be a bounded sequence. If .�� .1/n .!.m/.u/// is slowly
oscillating for some nonnegative integer m, then .un/ is subsequentially convergent.

Proof. Take pn D 1 for every nonnegative integer n in Theorem 3. �

Corollary 3 was given by Çanak and Dik [1].
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