

HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2015.1357

ON SUBSEQUENTIAL CONVERGENCE OF BOUNDED SEQUENCES

İBRAHİM ÇANAK AND ÜMİT TOTUR

Received 28 September, 2014

Abstract. In this paper we establish some Tauberian-like conditions in terms of the weighted general control modulo of integer order to retrieve subsequential convergence of a sequence from its boundedness.

2010 Mathematics Subject Classification: 40E05

Keywords: subsequential convergence, weighted means, weighted general control modulo, slowly oscillating sequence

1. INTRODUCTION

Let $p = (p_n)$ be a sequence of nonnegative numbers with $p_0 > 0$ and

$$P_n := \sum_{k=0}^n p_k \to \infty \quad \text{as} \quad n \to \infty.$$

The weighted means of a sequence (u_n) of real numbers are defined by

$$\sigma_{n,p}^{(1)}(u) := \frac{1}{P_n} \sum_{k=0}^n p_k u_k$$

for all nonnegative integers n.

We define the weighted mean method as follows:

Definition 1. If $\lim_{n\to\infty} \sigma_{n,p}^{(1)}(u) = s$, then we say that (u_n) is said to be limitable to *s* by the weighted mean method (\overline{N}, p_n) and we write $u_n \to s(\overline{N}, p_n)$.

If $p_n = 1$ for all *n*, then the corresponding weighted mean method is the (*C*, 1) method of Cesàro.

The sequence $\Delta u = (\Delta u_n)$ of the backward differences of (u_n) is defined by $\Delta u_n = u_n - u_{n-1}$, and $\Delta u_0 = u_0$ for n = 0.

The identity

$$u_n - \sigma_{n,p}^{(1)}(u) = V_{n,p}^{(0)}(\Delta u), \tag{1.1}$$

© 2015 Miskolc University Press

where $V_{n,p}^{(0)}(\Delta u) = \frac{1}{P_n} \sum_{k=1}^n P_{k-1} \Delta u_k$, is known as the weighted Kronecker identity.

We define $\sigma_{n,p}^{(m)}(u)$ and $V_{n,p}^{(m)}(\Delta u)$ by

$$\sigma_{n,p}^{(m)}(u) = \begin{cases} \frac{1}{P_n} \sum_{k=0}^n p_k \sigma_{k,p}^{(m-1)}(u) & , m \ge 1\\ u_n & , m = 0 \end{cases}$$

and

$$V_{n,p}^{(m)}(\Delta u) = \begin{cases} \frac{1}{P_n} \sum_{k=0}^n p_k V_{k,p}^{(m-1)}(\Delta u) & , m \ge 1\\ V_{n,p}^{(0)}(\Delta u) & , m = 0 \end{cases}$$

respectively (see [4]).

The weighted classical control modulo of (u_n) is denoted by $\omega_{n,p}^{(0)}(u) = \frac{P_{n-1}}{p_n} \Delta u_n$ and the weighted general control modulo of integer order $m \ge 1$ of (u_n) is defined by $\omega_{n,p}^{(m)}(u) = \omega_{n,p}^{(m-1)}(u) - \sigma_{n,p}^{(1)}(\omega^{m-1}(u)) \text{ (see [2]).}$ A new kind of convergence was defined by Dik [5] as follows.

Definition 2. A sequence $u = (u_n)$ is said to be subsequentially convergent if there exists a finite interval I(u) such that all accumulation points of (u_n) are in I(u)and every point of I(u) is an accumulation point of (u_n) .

It is clear from the definition that subsequential convergence implies boundedness. But the converse is not true in general. For example, $((-1)^n)$ is bounded, but it is not subsequentially convergent. The converse implication is true under some conditions imposed on the sequence.

The following theorem is a more general one stating that under which condition bounded sequences are subsequential convergent.

Theorem 1 ([5]). Let (u_n) be a bounded sequence. If $\Delta u_n = o(1)$, then (u_n) is subsequentially convergent.

Throughout this paper, we write $u_n = o(1)$ or $u_n = O(1)$ rather than $\lim_n u_n = 0$ or (u_n) is bounded for large enough n.

Example 1. Using Theorem 1, one can easily show that the sequence $(u_n) =$ $(\sin \sqrt{n})$ is subsequentially convergent. Indeed, the sequence (u_n) is bounded. From the fact that

$$\begin{aligned} |\Delta u_n| &= |\Delta \sin(\sqrt{n})| = |\sin(\sqrt{n}) - \sin(\sqrt{n-1})| \le |\sqrt{n} - \sqrt{n-1}| \\ &= \left|\frac{1}{\sqrt{n} + \sqrt{n-1}}\right| = o(1), \end{aligned}$$

it follows that $\Delta u_n = o(1)$. Thus by Theorem 1, the sequence (u_n) is subsequentially convergent.

Definition 3 ([9]). A sequence (u_n) is slowly oscillating if

$$\lim_{\lambda \to 1+} \overline{\lim_{n}} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^{k} \Delta u_j \right| = 0.$$

It is clear from Definition 3 that slow oscillation of (u_n) implies $\Delta u_n = o(1)$.

By Littlewood's condition $n\Delta u_n = O(1)$ [8] and slow oscillation of (u_n) , Dik et al. [6] obtained some Tauberian-like theorems to recover subsequential convergence of (u_n) from its boundedness. The condition $n\Delta u_n = O(A_n)$, where (A_n) is an unbounded sequence, is used as a Tauberian-like condition for the recovery of subsequential convergence of (u_n) from its boundedness by Dik et al. [6]. Later in [1], Çanak and Dik introduced some Tauberian-like conditions $\omega_{n,1}^{(m)}(u) = O(A_n)$, where (A_n) is an unbounded sequence, and slow oscillation of $(\Delta \sigma_{n,1}(\omega^{(m)}(u)))$ for recovering subsequential convergence of the sequence of (u_n) from its boundedness.

In this paper we prove that subsequential convergence of (u_n) follows from its boundedness under the condition given in terms of the weighted general control modulo of the oscillatory behavior of integer order of the sequence (u_n) .

2. MAIN RESULTS

The main theorem of this paper involves the concepts of a regularly varying sequence of index $\alpha > -1$ and slowly oscillating sequence.

Definition 4 ([7]). A positive sequence (R(n)) is said to be regularly varying of index $\alpha > -1$ if

$$\lim_{n \to \infty} \frac{R([\lambda n])}{R(n)} = \lambda^{\alpha}, \ \lambda > 0, \ \alpha > -1.$$
(2.1)

The following theorems generalize some theorems in [1] that are exactly given in terms of the weighted general control modulo of the oscillatory behavior of the sequence (u_n) .

Theorem 2. Let (u_n) be a bounded sequence and

$$\frac{P_{n-1}}{p_n} = O(n).$$
 (2.2)

Let (A_n) be a sequence such that

$$\frac{1}{P_n} \sum_{k=0}^n p_k |A_k|^{\mathfrak{p}} = O(1), \mathfrak{p} > 1$$
(2.3)

for some regularly varying sequence (P_n) of index $\alpha > -1$. If

$$\omega_{n,p}^{(m)}(u) = O(A_n) \tag{2.4}$$

then (u_n) is subsequentially convergent.

Theorem 3. Let (u_n) be a bounded sequence and let (P_n) be regularly varying of index $\alpha > -1$. If $(\Delta \sigma_{n,p}^{(1)}(\omega^{(m)}(u)))$ is slowly oscillating for some nonnegative integer m, then (u_n) is subsequentially convergent.

3. IDENTITIES AND A LEMMA

In this section, we present some identities and a lemma to be used in the proof of the main theorems.

The identities

$$\frac{P_{n-1}}{p_n}\Delta\sigma_{n,p}^{(m)}(u) = V_{n,p}^{(m-1)}(\Delta u)$$

and

$$\sigma_{n,p}^{(1)}\left(\frac{P_{n-1}}{p_n}\Delta V_{n,p}^{(0)}(\Delta u)\right) = \frac{P_{n-1}}{p_n}\Delta V_{n,p}^{(1)}(\Delta u).$$

are proved by Totur and Çanak [10]. For a sequence $u = (u_n)$, we define

$$\left(\frac{P_{n-1}}{p_n}\Delta\right)_m u_n = \left(\frac{P_{n-1}}{p_n}\Delta\right)_{m-1} \left(\frac{P_{n-1}}{p_n}\Delta u_n\right) = \frac{P_{n-1}}{p_n}\Delta\left(\left(\frac{P_{n-1}}{p_n}\Delta\right)_{m-1}u_n\right)$$

where $\left(\frac{P_{n-1}}{p_n}\Delta\right)_m u_n = u_n$, and $\left(\frac{P_{n-1}}{p_n}\Delta\right)_m u_n = \frac{P_{n-1}}{p_n}\Delta u_n$.

where $\left(\frac{n}{p_n}\Delta\right)_0 u_n = u_n$, and $\left(\frac{n}{p_n}\Delta\right)_1 u_n = \frac{n}{p_n}\Delta u_n$. A different representation of the weighted general control modulo of integer order $m \ge 1$ of a sequence (u_n) is given by the identity

$$\omega_{n,p}^{(m)}(u) = \left(\frac{P_{n-1}}{p_n}\Delta\right)_m V_{n,p}^{(m-1)}(\Delta u)$$
(3.1)

in ([10]).

We note that any (P_n) with $\lim_{n\to\infty} \frac{P_n}{n} = 1$ is regularly varying of index 1.

Lemma 1. Let (P_n) be regularly varying of index $\alpha > -1$. If (u_n) is limitable to s by the weighted mean method (\overline{N}, p_n) and slowly oscillating, then (u_n) converges to s.

Proof. Assume that (P_n) be regularly varying of index $\alpha > -1$. If (u_n) is slowly oscillating, then $(V_{n,p}^{(0)}(\Delta u))$ is slowly oscillating (see [3]). Since $u_n \to s(\overline{N}, p_n)$ and $(V_{n,p}^{(0)}(\Delta u))$ is slowly oscillating, the proof is completed by [2, Theorem 6].

4. Proofs

In this section, proofs of theorems and corollaries are given.

Proof of Theorem 2. By (2.3), it follows that the sequence $\left(\sum_{j=1}^{n} \frac{p_j A_j}{P_{j-1}}\right)$ is slowly oscillating. Indeed,

$$\begin{split} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^{k} \frac{p_j A_j}{p_{j-1}} \right| &\le \max_{n+1 \le k \le [\lambda n]} \sum_{j=n+1}^{k} \left| \frac{p_j A_j}{p_{j-1}} \right| \\ &\le \sum_{j=n+1}^{[\lambda n]} \frac{p_j |A_j|}{p_{j-1}} \le \frac{1}{P_n} \sum_{j=n+1}^{[\lambda n]} p_j |A_j| \\ &= \frac{P_{[\lambda n]} - P_n}{P_n} \frac{1}{P_{[\lambda n]} - P_n} \sum_{j=n+1}^{[\lambda n]} p_j |A_j| \\ &\le \frac{P_{[\lambda n]} - P_n}{P_n} \frac{1}{(P_{[\lambda n]} - P_n)^{\frac{1}{p}}} \left(\sum_{j=n+1}^{[\lambda n]} p_j |A_j|^p \right)^{\frac{1}{p}} \\ &= \frac{(P_{[\lambda n]} - P_n)^{1 - \frac{1}{p}}}{P_n} \left(\sum_{j=n+1}^{[\lambda n]} p_j |A_j|^p \right)^{\frac{1}{p}} \\ &= \frac{(P_{[\lambda n]} - P_n)^{\frac{1}{q}}}{P_n} \left(\sum_{j=n+1}^{[\lambda n]} p_j |A_j|^p \right)^{\frac{1}{p}} , \\ &= \frac{(P_{[\lambda n]} - P_n)^{\frac{1}{q}}}{(P_n)^{\frac{1}{q}}} \left(\frac{P_{[\lambda n]}}{P_n} \frac{1}{P_{[\lambda n]}} \sum_{j=0}^{[\lambda n]} p_j |A_j|^p \right)^{\frac{1}{p}} , \end{split}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. Taking lim sup of both sides as $n \to \infty$, we get

$$\limsup_{n} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^{k} \frac{p_j A_j}{P_{j-1}} \right|$$

$$\leq \limsup_{n} \frac{\left(P_{[\lambda n]} - P_{n}\right)^{\frac{1}{q}}}{\left(P_{n}\right)^{\frac{1}{q}}} \frac{\left(P_{[\lambda n]}\right)^{\frac{1}{p}}}{\left(P_{n}\right)^{\frac{1}{p}}} \limsup_{n} \left(\frac{1}{P_{[\lambda n]}} \sum_{j=0}^{[\lambda n]} p_{j} |A_{j}|^{\mathfrak{p}}\right)^{\frac{1}{p}}$$
$$= \lim_{n} \left(\frac{P_{[\lambda n]} - P_{n}}{P_{n}}\right)^{\frac{1}{q}} \lim_{n} \left(\frac{P_{[\lambda n]}}{P_{n}}\right)^{\frac{1}{p}} \limsup_{n} \left(\frac{1}{P_{[\lambda n]}} \sum_{j=0}^{[\lambda n]} p_{j} |A_{j}|^{\mathfrak{p}}\right)^{\frac{1}{p}}$$

Since (P_n) is regularly varying of index $\alpha > -1$, we have

$$\limsup_{n} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^{k} \frac{p_j A_j}{P_{j-1}} \right| \le C (\lambda^{\alpha} - 1)^{\frac{1}{q}} (\lambda^{\alpha})^{\frac{1}{p}}.$$

for some C > 0.

Finally, taking lim sup of both sides as $\lambda \rightarrow 1+$, we obtain

$$\lim_{\lambda \to 1^+} \limsup_{n} \max_{n+1 \le k \le [\lambda n]} \left| \sum_{j=n+1}^k \frac{p_j A_j}{P_{j-1}} \right| \le C \lim_{\lambda \to 1^+} (\lambda^{\alpha} - 1)^{\frac{1}{q}} (\lambda^{\alpha})^{\frac{1}{p}} = 0.$$

Slow oscillation of $\left(\sum_{j=1}^n \frac{p_j A_j}{P_{j-1}} \right)$ implies that $\frac{p_j A_j}{P_{j-1}} = o(1).$ Since $\omega_{n,p}^{(m)}(u) = (A_n)$ it follows from

 $O(A_n)$, it follows from

$$\omega_{n,p}^{(m)}(u) = \frac{P_{n-1}}{p_n} \Delta\left((\frac{P_{n-1}}{p_n} \Delta)_{m-1} V_{n,p}^{(m-1)}(\Delta u) \right) = O(A_n)$$

that

$$\Delta \sigma_{n,p}^{(1)}(\omega^{(m-1)}(u)) = \Delta \left((\frac{P_{n-1}}{p_n} \Delta)_{m-1} V_{n,p}^{(m-1)}(\Delta u) \right) = o(1).$$

Since (u_n) is bounded, $(\sigma_{n,p}^{(1)}(\omega^{(m-2)}(u)))$ is bounded for every nonnegative integer *m*. From the identity

$$\Delta\left((\frac{P_{n-1}}{p_n}\Delta)_{m-2}V_{n,p}^{(m-2)}(\Delta u)\right) = \frac{p_n(\frac{P_{n-1}}{p_n}\Delta)_{m-2}V_{n,p}^{(m-2)}(\Delta u)}{P_{n-1}} + \Delta\left((\frac{P_{n-1}}{p_n}\Delta)_{m-1}V_{n,p}^{(m-1)}(\Delta u)\right),$$

it follows that

$$\sigma_{n,p}^{(1)}(\omega^{(m-2)}(u)) = \Delta\left(\left(\frac{P_{n-1}}{p_n}\Delta\right)_{m-2}V_{n,p}^{(m-2)}(\Delta u)\right) = o(1), n \to \infty.$$

Continuing in this manner, we obtain that

$$\Delta \sigma_{n,p}^{(1)}(\omega^{(0)}(u)) = \Delta V_{n,p}^{(0)}(\Delta u) = o(1).$$

 $\langle \alpha \rangle$

Using (1.1), we have

$$\Delta u_n = \frac{p_n V_{n,p}^{(0)}(\Delta u)}{P_{n-1}} + \Delta V_n^{(0)}(\Delta u) = o(1).$$

have the proof.

By Theorem 1 we have the proof.

Corollary 1. Let (u_n) be a bounded sequence and (A_n) be a sequence such that

$$\frac{1}{n}\sum_{k=1}^{n}|A_{k}|^{\mathfrak{p}}=O(1),\ \mathfrak{p}>1.$$
(4.1)

If $\omega_n^{(m)} = O(A_n)$, then (u_n) is subsequentially convergent.

Proof. Take $p_n = 1$ for every nonnegative integer *n* in Theorem 2.

Corollary 1 was given by Çanak and Dik [1].

Proof of Theorem 3. Since (u_n) is bounded, then $(\sigma_{n,p}^{(1)}(\omega^{(m)}(u)))$ is bounded for every nonnegative integer *m*. Thus, we get

$$\sigma_{n,p}^{(1)}(\Delta\sigma^{(1)}(\omega^{(m)}(u))) = \frac{p_n(n\Delta)_m V_{n,p}^{(m)}(\Delta u)}{P_{n-1}} = o(1).$$

Since $(\Delta \sigma_{n,p}^{(1)}(\omega^{(m)}(u)))$ is slowly oscillating, applying Lemma 1 to the sequence $(\Delta \sigma_{n,p}^{(1)}(\omega^{(m)}(u)))$ we obtain that

$$\Delta \sigma_{n,p}^{(1)}(\omega^{(m)}(u)) = \Delta \left(\left(\frac{P_{n-1}}{p_n} \Delta \right)_m V_{n,p}^{(m)}(\Delta u) \right) = o(1).$$

Since $(\sigma_{n,p}^{(1)}(\omega^{(m-1)}(u)))$ is bounded for every nonnegative integer *m*, by the identity

$$\Delta\left(\left(\frac{P_{n-1}}{p_n}\Delta\right)_{m-1}V_{n,p}^{(m-1)}(\Delta u)\right) = \frac{p_n\left(\frac{P_{n-1}}{p_n}\Delta\right)_m V_{n,p}^{(m)}(\Delta u)}{P_{n-1}} + \Delta\left(\left(\frac{P_{n-1}}{p_n}\Delta\right)_m V_{n,p}^{(m)}(\Delta u)\right)$$

it follows that

$$\Delta \sigma_{n,p}^{(1)}(\omega^{(m-1)}(u)) = \Delta \left((\frac{P_{n-1}}{p_n} \Delta)_{m-1} V_{n,p}^{(m-1)}(\Delta u) \right) = o(1).$$

The rest of the proof is as in the proof of Theorem 2.

Corollary 2. Let (u_n) be a bounded sequence. If $(\sigma_{n,p}^{(1)}(\omega^{(m)}(u)))$ is slowly oscillating for some nonnegative integer m, then (u_n) is subsequentially convergent.

727

Proof. Proof follows from the fact that $\lim_{n} \Delta u_n = 0$ for every slowly oscillating sequence (u_n) .

Corollary 3. Let (u_n) be a bounded sequence. If $(\Delta \sigma_n^{(1)}(\omega^{(m)}(u)))$ is slowly oscillating for some nonnegative integer m, then (u_n) is subsequentially convergent.

Proof. Take $p_n = 1$ for every nonnegative integer *n* in Theorem 3.

Corollary 3 was given by Çanak and Dik [1].

REFERENCES

- [1] Çanak, İ. and Dik, M., "Some conditions under which subsequential convergence follows from boundedness," *Appl. Math. Lett.*, vol. 21, no. 9, pp. 957–960, 2008.
- [2] Çanak, İ and Totur, Ü., "Some Tauberian theorems for the weighted mean methods of summability," *Comput. Math. Appl.*, vol. 62, no. 6, pp. 2609–2615, 2011.
- [3] Çanak, İ. and Totur, Ü., "Tauberian theorems for the (J, p) summability method," Appl. Math. Lett., vol. 25, no. 10, pp. 1430–1434, 2012.
- [4] Çanak, İ and Totur, Ü., "An extended Tauberian theorem for the weighted mean method of summability," Ukrainian Math. J., vol. 65, no. 7, pp. 929–936, 2013.
- [5] Dik, F., "Tauberian theorems for convergence and subsequential convergence with moderately oscillatory behavior," *Math. Morav.*, vol. 5, pp. 19–56, 2001.
- [6] Dik, F., Dik, M. and Çanak, İ., "Applications of subsequential Tauberian theory to classical Tauberian theory," *Appl. Math. Lett.*, vol. 20, no. 8, pp. 946–950, 2007.
- [7] Karamata, J., "Sur certains "Tauberian theorems" de M. M. Hardy et Littlewood," *Mathematica*, vol. 3, pp. 33–48, 1930.
- [8] Littlewood, J. E., "The converse of Abel's theorem on power series," Proc. London. Math. Soc., vol. 9, pp. 434–448, 1911, doi: 10.1112/plms/s2-9.1.434.
- [9] Stanojević, Č. V., Analysis of Divergence: Control and Management of Divergent Process, ser. Graduate Research Seminar Lecture Notes, 1998.
- [10] Totur, Ü. and Çanak, İ., "Some general Tauberian conditions for the weighted mean method of summability," *Comput. Math. Appl.*, vol. 63, no. 5, pp. 999–1006, 2012, doi: 10.1016/j.camwa.2011.12.005.

Authors' addresses

İbrahim Çanak

Ege University, Department of Mathematics, 35100 Izmir, Turkey *E-mail address:* ibrahim.canak@ege.edu.tr

Ümit Totur

Adnan Menderes University, Department of Mathematics, 09010 Aydin, Turkey *E-mail address:* utotur@adu.edu.tr