Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 16 (2015), No. 2, pp. 721-728 DOI: 10.18514/MMN.2015.1357

ON SUBSEQUENTIAL CONVERGENCE OF BOUNDED
SEQUENCES

IBRAHIM CANAK AND UMIT TOTUR
Received 28 September, 2014

Abstract. In this paper we establish some Tauberian-like conditions in terms of the weighted
general control modulo of integer order to retrieve subsequential convergence of a sequence
from its boundedness.
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1. INTRODUCTION

Let p = (pn) be a sequence of nonnegative numbers with po > 0 and
n
Pn:ZZpk—>oo as n — oo.
k=0

The weighted means of a sequence (u,) of real numbers are defined by

1 n
o) () == o > pruk
k=0

for all nonnegative integers 7.

We define the weighted mean method as follows:

Definition 1. If lim,_, O,EB, (u) = s, then we say that (uy) is said to be limitable
to s by the weighted mean method (N, p,,) and we write u, — s(N, pn).

If p, =1 for all n, then the corresponding weighted mean method is the (C, 1)

method of Cesaro.

The sequence Au = (Auy) of the backward differences of (u;) is defined by

Auy = Uy —uUy—1, and Aug = ug forn = 0.

The identity
un — o i) ) = VO (Au), (1.1)
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where Vn(f’,l (Au) = P%, Y k=1 Px—1Aug, is known as the weighted Kronecker iden-
tity.
We define 0,%,) (1) and Vn(,";,) (Au) by

Iy (m—1)
- D PkO (w) .m=1
o)) =1 Py ,; k.p
un ,m = 0
and
L5 (m—1)
m—
(m) _ _ZPka, (Au) m=>1
Vn’n;) (Au) = n k—0 p
Vn(f)}(Au) ,m=0
respectively (see [4]).
P,
The weighted classical control modulo of (u,) is denoted by a),(,?g) u)=-"2 ! Auy,

n
and the weighted general control modulo of integer order m > 1 of (1) is defined by
opp () = w7y V) =0 (@™ @) (see [2]).
A new kind of convergence was defined by Dik [5] as follows.

Definition 2. A sequence u = (uy) is said to be subsequentially convergent if
there exists a finite interval /(u) such that all accumulation points of () are in (1)
and every point of (1) is an accumulation point of (u).

It is clear from the definition that subsequential convergence implies boundedness.
But the converse is not true in general. For example, ((—1)") is bounded, but it is not
subsequentially convergent. The converse implication is true under some conditions
imposed on the sequence.

The following theorem is a more general one stating that under which condition
bounded sequences are subsequential convergent.

Theorem 1 ([5]). Let (u,) be a bounded sequence. If Au, = o(1), then (uy) is
subsequentially convergent.

Throughout this paper, we write u, = o(1) or u, = O(1) rather than lim, u, =0
or (u,) is bounded for large enough #.

Example 1. Using Theorem 1, one can easily show that the sequence (u,) =
(sin 4/n) is subsequentially convergent. Indeed, the sequence (i) is bounded. From
the fact that

| Auy| = |Asin(v/n)| = |sin(v/n) —sin(vn—1)| < |/n—~n—1|

1
:\m’”“)’
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it follows that Au, = o(1). Thus by Theorem 1, the sequence (u,) is subsequentially
convergent.

Definition 3 ([9]). A sequence (u) is slowly oscillating if

k
Al—l>r?+h’£nn+lréllgé[kn] , 2 Auj|=0.
Jj=n+1

It is clear from Definition 3 that slow oscillation of (1) implies Auy, = o(1).

By Littlewood’s condition nAu, = O(1) [8] and slow oscillation of (u), Dik
et al. [0] obtained some Tauberian-like theorems to recover subsequential conver-
gence of (uy) from its boundedness. The condition nAu, = O(A;), where (Ay)
is an unbounded sequence, is used as a Tauberian-like condition for the recovery of
subsequential convergence of (u) from its boundedness by Dik et al. [6]. Later in
[1], Canak and Dik introduced some Tauberian-like conditions a),(lml) (u) = O(4y),
where (A4 ) is an unbounded sequence, and slow oscillation of (Aoy, 1 (0™ (u))) for
recovering subsequential convergence of the sequence of (u) from its boundedness.

In this paper we prove that subsequential convergence of (u,) follows from its
boundedness under the condition given in terms of the weighted general control mod-
ulo of the oscillatory behavior of integer order of the sequence (u,).

2. MAIN RESULTS

The main theorem of this paper involves the concepts of a regularly varying se-
quence of index @ > —1 and slowly oscillating sequence.

Definition 4 ([7]). A positive sequence (R(n)) is said to be regularly varying of
index o > —1 if

R([An) ., B
Jim = =% 1>0, a>—l. 2.1)

The following theorems generalize some theorems in [1] that are exactly given
in terms of the weighted general control modulo of the oscillatory behavior of the
sequence (uy).

Theorem 2. Let (1) be a bounded sequence and

P n—1

n

= 0(n). (2.2)

Let (Ay) be a sequence such that

1 n
- 2 Pl Akl = 0(1).p> 1 23)
" k=0
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for some regularly varying sequence (Pp) of index a > —1. If
g7 () = O(Ap) (2.4)
then (uy) is subsequentially convergent.

Theorem 3. Let (1) be a bounded sequence and let (Py) be regularly varying

of index « > —1. If (Acr,g,l;, (@™ (u))) is slowly oscillating for some nonnegative
integer m, then (uy) is subsequentially convergent.

3. IDENTITIES AND A LEMMA

In this section, we present some identities and a lemma to be used in the proof of
the main theorems.
The identities

P,
— A0 = Vil (4w

n

and
P P
o) (”—IAV;?;(Au)) = LAV, (Au).
Pn Pn

are proved by Totur and Canak [10].
For a sequence u = (u,), we define

Py, Py, Py, P, Py,_
( n 1A) Uy = ( n IA) ( n lAun) _ n IA (( n 1A) un),
Pn m Pn m—1\ Dn Pn Pn m—1

where (%A) Uy = Uy, and (%A) Uy = Pg_l Auy,.
0 n 1

n

A different representation of the weighted general control modulo of integer order
m > 1 of a sequence (u,) is given by the identity

P,
o = (e

n

A) Vm=1 (Au) (3.1)

in ([10]).

We note that any (P,) with lim, o % = 1 is regularly varying of index 1.

Lemma 1. Let (Py) be regularly varying of index o > —1. If (u) is limitable to
s by the weighted mean method (N , pn) and slowly oscillating, then (uy,) converges
to s.

Proof. Assume that (P,) be regularly varying of index o > —1. If (uy) is slowly
oscillating, then (Vn(f’; (Au)) is slowly oscillating (see [3]). Since u,, — s(N, pn) and
(Vn(fB (Au)) is slowly oscillating, the proof is completed by [2, Theorem 6]. g
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4. PROOFS

In this section, proofs of theorems and corollaries are given.

Proof of Theorem 2. By (2.3), it follows that the sequence (Z;-’Zl I;j, il; ) is slowly
oscillating. Indeed,

koo k "
max p‘l—j E max Z p‘]—‘]
n+1<k<[An] Pt P n—i—lsks[/ln]j=n_i_1 Pi_q
[An] [An]
P/|A | Z
Z < pil4;]
jomi B P” j=n+1
[An]
P[)m]—Pn 1 Z
= Pil4;l
P P[An]_ " j=n+1
[An] i
< o =P l Do pilAl
Pa (Pian]— Pu)? \j=nt1
1
—1 / [An]
(Ppin)— Pn)' v
= [n]P . Y pilAP
n .
j=n+1
1 [An] )
(Ppn) — Pn)
= n]P . > opil4ilP | .
n .
j=n+1
1
1 A i
_ (Ppan)— Pn)s P[An] [Zn]p 4P
- J
(Pa)s n Pian ;2
1
1 1 A N
(P = Pn) 7 (Ppanp)? [an]p 4P
= j ’
(P)7  (Pa)p \ Plan [

where % + % = 1. Taking limsup of both sides as n — co, we get

k
, pj4;
limsup  max —
n n+1<k<[An] jont Pj_l
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o =

[An]

ZPJ|A P

[An]

ijlA P

n]]O

P - P, P P
Elimsup( [An] ) ( [)Ln]? lim
n (Pn)q (Pp)r 1

1
Py — P\ o P
—lim [ M 7" ’ lim ( ~21 11rn sup
n Pn n Pn

Since (Py,) is regularly varying of index o > —1, we have

o |-

. p] J o o
1 E = <CA"=1)a(A ’
1mnsupn-i—lri1k<[)m] Pi—1 ( ) e

for some C > 0.
Finally, taking lim sup of both sides as A — 1+, we obtain

k
1 1
lim limsu max # <C hm AY—1Da(A%r =0.
A—1t n pn+1<k<[/1n] Z ( ) ( )

A .
Slow oscillation of Z piA ) implies that P L = 0(1). Since w, p)(u)
j—1

O(Ay), it follows from

o™ () = ((P il A)m_lv,,(";,—l)(Au)) = 0(4,)
Pn V4 ’

n

that

408" D) = A Py V0 a0 ) = 000,
Pn

Since (up) is bounded, (0,513, (@ ™=2) (1)) is bounded for every nonnegative integer

m. From the identity

pr(P=L Ay o VTP (Au)
Pn—l

P,
+A(( p 1A>m_lv,,<j';;“mu)),
n

A((P; L AV ”(Au))

it follows that

D) = a (7

A)m—an(,n;;_z)(Au)) = o(1).n — oo,

n
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Continuing in this manner, we obtain that
Ao (0@ () = AV, (Au) = o(1).
Using (1.1), we have

(0)
Vi p(A
Ay = PV A1) Ly Ay = o(1),
n—1
By Theorem 1 we have the proof. g
Corollary 1. Let (1) be a bounded sequence and (Ay) be a sequence such that
l n
;Z|Ak|*’= o), p> 1. 4.1)
k=1

If a),sm) = O(Ay), then (uy) is subsequentially convergent.
Proof. Take p, = 1 for every nonnegative integer n in Theorem 2. O

Corollary 1 was given by Canak and Dik [1].

Proof of Theorem 3. Since (u) is bounded, then (0,(,3 ™ (u))) is bounded for
every nonnegative integer m. Thus, we get

Pa(1A)mValy) (Au) _

oy (A0 (@ (wy) = =R
-

o(1).

Since (Aa,gfl), 0™ (u))) is slowly oscillating, applying Lemma 1 to the sequence
(AO',E}; (@' (u))) we obtain that

A0V (0™ () = A ((P nol A)mv,fj’;)(Au)) =o(1).

n

Since (o,g 11), (0™~ (u))) is bounded for every nonnegative integer m, by the identity

pu(B=L 2) V) (Au)
Pn—l

P,_
+A(( ; IA)mv,fj;)(Au)),

P
A(( ; IA)m_IV,,(jg—l)(Au)) -

n

n
it follows that

Ao (@™ V() = A ((P "L At V,f";‘”(Au)) =o(1).
5 p ’

n

The rest of the proof is as in the proof of Theorem 2. 0

Corollary 2. Let (uy) be a bounded sequence. If (0,53, (@™ (u))) is slowly oscil-

lating for some nonnegative integer m, then (Up) is subsequentially convergent.
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Proof. Proof follows from the fact that lim, Au, = 0 for every slowly oscillating
sequence (uy). O

Corollary 3. Let (u,) be a bounded sequence. If (Ao,gl) (0™ (w))) is slowly
oscillating for some nonnegative integer m, then (U, ) is subsequentially convergent.

Proof. Take p,, = 1 for every nonnegative integer n in Theorem 3. g

Corollary 3 was given by Canak and Dik [1].
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