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ON THE SATURATION EFFECT FOR LINEAR
SHAPE-PRESERVING APPROXIMATION IN SOBOLEV SPACES
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Abstract. We show that if a linear finite-dimensional operator defined in Sobolev space pre-
serves k-monotonicity then the error of approximation of the operator does not decrease with the
increase of smoothness of approximated functions. In other words, there is a saturation effect for
linear finite-rank operators defined in Sobolev space and preserving k-monotonicity.
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1. INTRODUCTION

In various applications of computer-aided geometric design it is necessary to ap-
proximate functions preserving such properties as monotonicity, convexity, concav-
ity, etc. The part of the approximation theory, which is devoted to these kind of
problems, is known as the theory of shape preserving approximation (see e.g. [3,9]
for a survey).

A continuous function f :[0,1] — R is said to be k-monotone, k > 1, on [0, 1] if
and only if for all choices of k + 1 distinct #g,...,#; in [0,1] the inequality
[to,....tx] f = 0 holds, where [tg,...,1]f denotes the k-th divided difference of
fat0<ty<t; <...<tr <1. Note that 2-monotone functions are just convex
functions.

Let AX denote the set of all k-monotone functions defined on [0,1]. If f is a
real-valued and k-times continuously differentiable function defined on [0, 1], then
feakiff f®@)=>0,re(0,1].

Let Wo(f )[0, 1] be the Sobolev space of all real-valued, (k — 1)-times differenti-
able functions whose derivative of order (k — 1) is absolutely continuous and whose
derivative of order k is in L°°[0, 1], || f [loo := €S8 supy¢[o, 171/ (X)|-

It is said that a linear operator L of o(f )[O,l] into Wo(f )[0,1] preserves

k-monotonicity, if L(A¥) c Ak,
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Recall that a linear operator mapping a linear normed space into a linear space of
finite dimension # is called an operator of finite rank n.

Let D' denote the i-th differential operator, D' f(x) =d’ f(x)/dx?, and D® = I
is the identity operator. Denote ex (x) = xK, k =1,2,....

Denote B := (wP10,1]: | D* floo < 1}

Let k > 1. The main goal of the paper is to estimate the asymptotic value of relative
linear n-width

inf sup |~ Lnf oo
L,(A%)CA fEBgé)

where infimum is taken over all linear continuous operators L, of Wo(f ) [0, 1] into

Wo(clf) [0,1] of finite rank n, such that L, (A¥) ¢ A and D¥ L, e; = D¥e;. Note that

some estimates of shape-preserving n-widths have been obtained in papers [4, 7, &].
T. Popoviciu [12] proved in 1937 that Bernstein operators

Bpf(x):=)_f (;—) Cpx!(1—x)"
i=0

preserve k-monotonicity of approximated functions, i.e. if f is k-monotone on [0,1],
then By f is k-monotone on [0,1] as well. However, it is well known [2, 1 3] that the
order of approximation by Bernstein operators is low. In this paper we present the
example of k-monotonicity preserving operator with the optimal order of approxim-
ation n=2 (k > 2).

2. LEMMAS

Lemma 1. Ler L : W0, 1] — wi¥[0, 1] be such that
(1) L(A%) c Ak;

(2) Dk Le, = D¥ey,.
it f e w0, 1] satisfies | D¥ floo < 1, then | D¥Lf]|oo < 1.

Proof. Forevery f € Wo(ok) [0, 1] such that | D¥ f]|sc < 1, we have
1
D )] = 1= D¥er(x)

for almost all x € [0,1]. Since L(A¥) c A¥, for almost all x € [0, 1] the following
inequality holds:
1
IDELS ()| < ;D  Leg(x).
Therefore, we have

1
ID¥Lf lloo < 1711 D* Leg oo
It follows from DX Le; = D¥ey that | DKL ||oo < 1. O
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Lemma 1 says that if L : Wo(f ) [0,1] — Wo(f ) [0, 1] satisfies conditions (i) and (ii)
then L preserves the ball BC(,];), i.e. L(Bgf,)) - Bg.f).

Denote z; := j/n, j =0,...,n. Let the linear operator My , : o(clf)[O, 1] —
Wi0,11, k = 2, n > 2, be defined by

k—1
1 2 -
Min f(x) =) 55! DL f(0) + x¥[20.21,22] DF 2 f
ol |

2n
—x
(k+1)!
if x € [20,21];

+ “1 (Ier 22,23 D52 f —[z0,21, 221072 ). @)

k—1
M () = Y 310= )" D My f(2))
=0 °

+ﬁ(x_zf) [2j.2j+1.2j+2]D f+(k+1)!(x—zj)

X ([Zj+1,Zj+2,Zj+3]Dk_2f - [Zj,Zj+1,Zj+2]Dk_2f), (2.2)

ifxe(zj,zj+1], j=12,...,.n=3;

k—1
1
M f(x) =3 3;(x =2n-2)' D' My f(2n2)
I=0

k+1
)+

2 _
+ F(x _Zn—Z)k[Zn—3aZn—2,Zn—1]Dk zf + (X —Zn—2

n
(k + 1)!
X <[Zn—252n—1,Zn]Dk_2f - [Zn—3»Zn—2,Zn—1]Dk_2f) , (2.3)

if x € (Zn—Z, Zn—l];

k—1
M ()= 3 31 0c= 20 ) D M f )
I=0 °

2 _
+ F(x _Zn—l)k[Zn—3,Zn—27 Zn—l]Dk 2f + ()C _Zn—l)k+1

n
(k+1)!

X ([Zn—Z,Z-n—l,Zn]Dk_zf — [Zn—3,Z-n—2,Zn—1]Dk_1f), 24)
if x € (zp—1,1].
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Lemma 2. Let k > 2 and let the operator My, : Wo(f) [0,1] — WO(Z,C)[O, 1] be
defined by (2.1), (2.2), (2.3), (2.4). Then

(1) Mk,,,(Ak) C Ak;
(2) D Mk nek D ek’
(3) there exists a real ¢ > 0 such that || f — My f lloo < cn™2 forall f € B(k)

Proof. Note that Dk My, f is a piecewise linear function and DM k.nf is linear
on[zj,zj41]foreach0<j <n—1.1f x € (z;,zj+1]. then

D¥My  f(x) =2(j +1—nx)[z),2j41,2j42) DF 2 f
+2(nx — j)lzj41.2j42.2j+31DF 2 £, j =0.1,....n =3, (2.5)

D¥My  f(x) =2(n—1—nx)[2n—3,2n—2,2n—1]D* 2 f
+2(nx —n+2)-[2Zn—2.2n-1.20]D* 2 f. j =n—2.  (2.6)

D*My  f(x) =21 —nx)-[2n—3,2n—2,20—1]D* 2 f
+2(nx —n+1)-[zn—2.2n—1.2a]D* 2 f. j=n—1. (2.7
If fe AK . then it follows from (2.5), (2.6), (2.7) that DkMk,nf > 0 on each
(xj.xj+1),j =0,....n—1,ie. My , f € AKX Therefore, Mk,n(Ak) c Ak,
A direct verification shows that DX M. k.n€k = Dkek.

Since f € Bé]é), the (k —2)-th derivative of f can be represented as

klf()

DF2f(x)=DF2f(0)+ — x4 / (x—1)+ D* f(r)dr,

where || D¥ f oo < 1 and y+ =y if y > 0, and O otherwise.
Take an arbitrary x € [0, ] (the case x € (zj,2j+1), j =1,...,n—3, can be
examined analogously), then

D*2 My, f(x) = D* 72 f(x)

_ 1 _ _
=x2[Z0,Z1,Z2]Dk 2f+§nx3 ([Zl,Z2,Z3]Dk 2f—[Z0,Z1,Zz]Dk 2f)

-/ 1)1 D fleyds
_ /01 [x2((zo—1)1 —2(z1 =1+ + (22— 1)4)
+ %nx3 (Z1—=0)+—2(z2— 1)+ + (23 —1)+)
_ %nx3 (Zo—1)4+—2(z21—1)4 + (22 —1)4) — (x —1)1 | D¥ fdt,
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and we can obtain
|D*2My o f(x) = D* 72 f(x)| <an™2, x € [zj,2j41), j = 1,...,n =3,
for some a > 0. In the same way it can be shown that
|D* 2 My f(x) = D* 72 f(x)| <n 7%, x € [2n—2.2n—1] and x € [2p—1.1].
Therefore, for every f € Bé’é) and any x € [0, 1]
| DF72 f () = DX My f(0)] < can ™2 (2.8)
If £k = 2 then the propqsition (3) of Lemma 2 is proved.
Let k > 3. Since D' (M, f — f)(0) = 0 holds fori =0,...,k —3, we have
D! (Mg f = 1)) = D' (M f = O+ [ DI i f = 01

_ /0 DI My f— ) (0)di

for all x € [0, 1]. Then
1 k—1—i
n2(k—1—i)

We have used the fact that if f € Loo[0, 1] and there exists a real a € R such that

| f| < a on[0,1], then
X tp—l 1 xp

5/[ / |f(t)\dty...dty <a—

o Jo 0 p!

X tp—1 1
/ / [ f(t)dty ... dty
0o Jo 0
The proposition (3) of Lemma 2 follows from (2.9) with i = 0. ]

|D' My f = £)(x)| < (2.9)

for every p € N.

3. THE MAIN RESULT

Theorem 1. Let k € N. Then

n2 k=2,

3.1
n~l k=1, G-D

i}clf « sup ”f_Lnf”ooxi
L, (AF)CA feB®

where infimum is taken over all linear continuous operators L, of Wo(ok ) [0, 1] into
Wo(clf) [0, 1] of finite rank n, such that

(1) Ln(4%) C A%;

(2) D¥L,e; = D¥ey.
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Proof. We have (by definition)

inf - sup |f = Lo f oo = inf inf  swp [f—Laflloor
La(A)CAK ¢ po) n Lp(af)ca feB®)

Ly WE[0,1] > X,
3.2)
where the first infimum is taken over all n-dimensional subspaces X, of Wo(clf )[O, 1],
and the second one is taken over all continuous linear operators L, of Wo(éc ) [0,1] into
X, satisfying L, (A¥) ¢ A¥ and D¥L,,e; = D¥ey.
Since f € Bc(,]f,), it follows from Lemma 1 that L, f € Bgé). Then Eq. (3.2) implies

inf sup |lf —Lnflleo =1nf sup inf [l f —glleo-
Lay(AK)cAk o p) Xn rep® geBENX,

It was shown in the paper of Konovalov [6] that

2k
l,k

WV

. . n- 2,
inf sup inf lf—glloo <3 _
Xn feBE geBEnx, n 1

To complete the proof it is sufficient to show that there exists a linear finite-
dimensional method, that is optimal for n-widths (3.1). If kK = 2, then as it follows

from Lemma 2, the linear operator My, : Wo(clf )[O, 1] —> Wo(f )[O, 1] satisfies the con-
ditions of Theorem and it is optimal for n-width (3.1). If kK = 1, then the piecewise
linear interpolation method with breakpoints z;, j = 0,...,n, is optimal for n-width
(3.1). O

Theorem 1 shows that the shape-preserving property of operators is negative in
the sense that the error of approximation of such operators does not decrease with
the increase of smoothness of approximated functions. In other words, there is a
saturation effect for linear finite-rank operators preserving k-monotonicity. For the
first time the problem was mentioned by Ronald A. De Vore in his paper [1]. It
is worth noting that non-linear approximation preserving k-monotonicity does not
have this shortcoming [10]. On the other hand, for sequences of linear operators
preserving k-monotonicity (as well as intersections of cones) there are [5, | 1] simple
convergence conditions (Korovkin type results).
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