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Abstract. We obtain upper bounds for the Castelnuovo-Mumford regularity of the fiber cones
which depend on the length of certain local cohomology modules. The bounds are the analogue
of the ones proved by Dung and Hoa for the associated graded module of a filtered module.
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1. INTRODUCTION

Let .A;m/ be a commutative Noetherian local ring, I an m-primary ideal, and M
a finitely generated A-module. A chain of submodules

M WM DM0 �M1 �M2 � �� � �Mn � �� �

is called an I -filtration if IMi �MiC1 for all i , and a good I -filtration if IMi D

MiC1 for all sufficiently large i . Thus fInM g is a good I -filtration. A module M
with a filtration is called a filtered module.

The associated graded module to the filtration M is defined by

G.M/D
M
n�0

Mn=MnC1:

We also say that G.M/ is the associated graded ring of the filtered module M .
This is a finitely generated graded module over the standard graded ring GI .A/ DL
n�0 I

n=InC1. In the particular case, when M is the I -adic filtration fInM g,
G.M/ is just the usual associated graded module GI .M/.

It is well known that the Castelnuovo-Mumford regularity is a measure for the
complexity of the structure of graded modules and several important invariants of
graded modules can be estimated by means of the Castelnuovo-Mumford regular-
ity (see e.g. [7], [9], [10], [3]). Therefore, bounding the Castelnuovo-Mumford
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regularity reg.GI .M// is an important problem. This problem has been studied by
Rossi-Trung-Valla [7] for the case M D A and I D m, Linh [6] for arbitrary finitely
generated A-modules with respect to an arbitrary m-primary ideal and by Dung-Hoa
[4] for good filtrations ofM , where bounds on reg.G.M// were given in terms of the
extended degree D.I;M/ of M with respect to I and r.M/, where

r.M/Dminft � 0jMnC1 D IMn for all n� tg:

Recently, Dung [2] and Dung-Hoa [4] gave bounds for reg.G.M// in terms of the
Hilbert coefficients.

Another important subject associated to I is the fiber cone Fq.M/D
L
n�0

Mn=qMn of M with respect to an ideal q containing I . Dung-Hoa [4] bounded for
reg.Fq.M// in terms of the dimension, r.M/ and of the extended degree D.I;M/.

The aim of this paper is to give upper bounds for reg.Fq.M// in terms of r.M/

and certain lengths associated to an M-superficial sequence for I , which are easier be
computed than D.I;M/. From that we can get upper bounds for reg.Fm.I //, which
is the same as the ones in [4, Corollary 3.4].

2. PRELIMINARIES

Definition 1 ([4, Definition 1.2]). Let MD fMng be a good I -filtration ofM . We
set

r D r.M/Dminft � 0jMnC1 D IMn for all n� tg:

In particular, in the I -adic case, r.fInM g/ D 0. Note that r is always finite,
MrCj D I

jMr for all j � 0, and r is the largest generating degree of the graded
module G.M/ as a graded module over GI .A/.

Let RD˚n�0Rn be a Noetherian standard graded ring over a local Artinian ring
.R0;m0/. Let E D˚n�0En be a finitely generated graded R-module of dimension
d . For 0� i � d , put

ai .E/D supfnjH i
RC
.E/n ¤ 0g

where RC D˚n>0Rn. The Castelnuovo-Mumford regularity of E is defined by

reg.E/Dmaxfai .E/C i j0� i � dg:

and the Castelnuovo-Mumford 1-regularity of E, is defined by

reg1.E/Dmaxfai .E/C i j1� i � dg:

We will write reg.G.M//( resp. reg.Fq.M//) to mean the Castelnuovo-Mumford
regularity of G.M/( resp. Fq.M/) being a graded module over the standard graded
ring GI .A/.

Definition 2. ([8, Definition 1.1]) An element x 2 I is called M-superficial ele-
ment for I if there exists a non-negative integer c such that .MnC1 WM x/\Mc DMn
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for all n� c and we say that a sequence of elements x1; : : : ;xr is an M-superficial se-
quence for I if, for i D 1;2; : : : ; r , xi is an M=.x1; : : : ;xi�1/M -superficial sequence
for I .

An element x 2 R1 is called filter-regular on E if .0 WE x/n D 0 for all n� 0.
From this one can show that .0 WE x/n D 0 for all n > reg.E/.

For x 2 I , let x� and x0 denote the initial form in degree one componenet of
GI .A/ and Fm.I /, respectively. It is easy to see that x is M-superficial if and only if
.0 WG.M/ x

�/n D 0 for all n� 0. Further, if x1; : : : ;xd is an M-superficial sequence
for I , then .x1; : : : ;xd / is a minimal reduction of I with respect to M .

We denote the Hilbert function �R0
.En/ and the Hilbert polynomial of E by

hE .n/ and pE .n/, respectively. Writing pE .n/ in the form:

pE .n/D

d�1X
iD0

.�1/iei .E/

 
nCd �1� i

d �1� i

!
;

we call the numbers ei .E/ Hilbert coefficients of E.
We denote byHM.n/D �.M=MnC1/ the Hilbert-Samuel function of the filtration

M. This function agrees with a polynomial-called the Hilbert-Samuel polynomial
and denoted by PM.n/ for n� 0. We write

PM.n/D

dX
iD0

.�1/iei .M/

 
nCd � i

d � i

!
:

The coefficients ei .M/ are integers and they are called the Hilbert coefficients of
M. In particular, e0.M/ is the multiplicity of M (see [8, Section 1.3]). Note that
ei .M/D ei .G.M// for 0� i � d �1. When MDfInM g, we denote byHI;M .n/D
�.M=InC1M/ Hilbert-Samuel function of M with respect to I , ei .I;M/ are called
the Hilbert coefficients of M with respect to I , and we set e.I;M/D e0.I;M/.

We callHFq.M/.n/D �.Mn=qMn/ the Hilbert function of Fq.M/, its correspond-
ing polynomial is

pFq.M/.n/D

d�1X
iD0

.�1/iei .Fq.M//

 
nCd � i �1

d � i �1

!
:

The coefficients ei .Fq.M// are integers and they called the Hilbert coefficients of
Fq.M/(see [8, Section 5.2]).

We call HqM.n/D �.M=qMn/ the Hilbert-Samuel function of the filtration qM,
its corresponding polynomial is

p1qM.n/D

dX
iD0

.�1/iei .qM/

 
nCd � i

d � i

!
:
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The coefficients ei .qM/ are integers and they are called the Hilbert coefficients of
qM. Since �.M=Mn/C �.Mn=qMn/ D �.M=qMn/, then e0.M/ D e0.qM/ and
ei .Fq.M// D ei .M/C eiC1.M/� eiC1.qM/ for all 0 � i � d � 1 (see [8, Section
5.2]).

3. BOUNDS FOR THE CASTELNUOVO-MUMFORD REGULARITY OF Fq.M/

Throughout this paper, we assume that .A;m/ is a commutative Noetherian local
ring with an infinite residue field K D A=m, I is an m-primary and M D fMng is
a good I -filtration of a finitely generated module M of dimension d , the ideal q
containing I .

Definition 3 ([6, Definition]). An extend degree D.I;M/ of M with respect to I
is a numerical function satisfying the following properties:

(i) D.I;M/DD.I;M=L/C�.L/, where LDH 0
m.M/,

(ii) D.I;M/�D.I;M=xM/ for a generic element x 2 I nmI on M ,
(iii) D.I;M/D e.I;M/ if M is a Cohen-Macaulay A-module.

Any extended degree D.I;M/ will satisfy D.I;M/ � e.I;M/, with equality
holding if and only if M is a Cohen-Macaulay module.

In this section, we always assume that x1; : : : ;xd is an M-superficial sequence for
I . Set

B.x;M/D �.M=.x1; : : : ;xd /M/

and
�.x;M/Dmaxfh0.M=.x1; : : : ;xi /M/ j 0� i � d �1g;

where x denotes the superficial sequence x1; : : : ;xd . For a finitely generated module
N , h0.N /D �.H 0

m.N //D �.[n�0.0N Wm
n//.

The next result is proved in [3, Theorem 1.2], where the authors gave bounds for
reg.G.M// in terms of r.M/, B.x;M/ and �.x;M/.

Theorem 1 ([3, Theorem 1.2]).
(i) reg.G.M//� B.x;M/C�.x;M/C r.M/�1 if d D 1;

(ii) reg.G.M//� .B.x;M/C�.x;M/C r.M//C1/3.d�1/Š�1�d if d � 2.

The following two lemmas will be crucial in the proof of the main result of this
paper.

Lemma 1. We have
(i) e0.M/D e.I;M/� B.x;M/;

(ii) je1.M/j � B.x;M/.B.x;M/C�.x;M/C r.M/�1/;
(iii) jei .M/j � .B.x;M/C�.x;M/C r.M/C1/3iŠ�iC1 if i � 2.
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Proof. (i) By [1, Proposition 11.4(iii)], e0.M/ D e.I;M/. Let J D .x1; : : : ;xd /
and J 0 D .x1; : : : ;xd�1/. By [8, Proposition 2.1], we have

e0.M/ D e0.M=J 0M/D e0.M=JM/��.J 0M W xd=J
0M/

D �.M=JM/��.J 0M W xd=J
0M/:

Then (i) is clear.
(ii)-(iii) From the Grothendieck-Serre formula

hG.M/.n/�pG.M/.n/D

dX
jD0

.�1/jH
j
GC
.G.M//n;

it follows that hG.M/.n/D pG.M/.n/ for all n > reg.G.M//. Then

�.M=MmC1/D

dX
iD0

.�1/iei .M/

 
mCd � i

d � i

!
(3.1)

for allm� reg.G.M//. For short, we set r D r.M/, B DB.x;M/, � D �.x;M/ and
ei D ei .M/.

If d D 1, by Theorem 1 (i), we can put mD BC�C r �1 into the equality (3.1),
it leads to

e1 D .BC�C r/e0��.M=MBC�Cr/

We know that Mn D I
n�rMr for n� r and Mr ¤ 0,

�.M=MBC�Cr/

� �.Mr=IMr/C�.IMr=I
2Mr/C�� �C�.I

BC��1Mr=I
BC�Mr/� BC�;

so

e1 � .BC�C r/e0� .BC�/� .BC�C r/B � .BC�/� B.BC�C r �1/:

On the other hand, since r � 0,

�e1 D �.BC�C r/e0C�.M=MBC�Cr/� �.BC�C r/C�.M=I
BC�CrM/

� �.BC�C r/CB.BC�C r/� B.BC�C r �1/;

where the second inequality is due to [4, Lemma 1.7(i)]. Hence je1j � B.BC �C
r �1/ and the case d D 1 is settled.

Assume that d � 2. Next, we denoteM=H 0
m.M/ byM and the filtration M=H 0

m.M/

ofM by M. LetN DM=x1M , NDM=x1M and x denote the superficial sequence
x2; : : : ;xd . Then ei .M/D ei .M/D ei .N/ for all i < d .

Note that 0 � r.M/ � r , �.x;N / � � and B.x;N / � B . By the inductive hypo-
thesis, we get

je1j �B.BC�Cr�1/ and jei j � .BC�CrC1/
3iŠ�iC1 for 2� i � d �1:

(3.2)
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It remains to show the inequality for ed . Set �D .BC �C rC 1/3.d�1/Š�1. By
Theorem 1, we get reg.G.M// � ��d . Since reg.G.M// � r � 0, � � d , we can
take mD ��d in the equality (3.1), this implies that

jed j D j�.M=M��dC1/� e0

 
��d Cd

d

!
�

d�1X
iD1

.�1/iei

 
��d Cd � i

d � i

!
j

�maxf�.M=M��dC1/;e0

 
�

d

!
gC

d�1X
iD1

jei j

 
�� i

d � i

!
Since

��
d

�
� �d , maxf�.M=M��dC1/;e0

��
d

�
g � B�d by [4, Lemma 1.7(i)] and (i).

From (3.2) we see that

je1j

 
��1

d �1

!
� B.BC�C r �1/�d�1;

and
d�1X
iD2

jei j

 
�� i

d � i

!
�

d�1X
iD2

.BC�C rC1/3iŠ�iC1�d�i � �d�1
d�2X
iD0

1

2i
< 2�d�1:

Since B.BC�C r �1/C2 < .BC�C rC1/2 � �, we finally obtain

jed j � B�
d
C�d D .BC1/.BC�C rC1/3dŠ�d � .BC�C rC1/3dŠ�dC1:

�

Lemma 2. We have

a0.Fq.M//�maxfreg.G.qM//; r.M/g:

Proof. Set r D r.M/. First, we have the exact sequence of GI .A/-modules

0 �!˚n>rFq.M/n �!˚n>rG.qM/n �!˚n>rqMn=IMn �! 0:

Thus a0.˚n>rFq.M/n/ � a0.˚n>rG.qM/n/. On the other hand, from the exact
sequence 0!˚n>rFq.M/n! Fq.M/!˚n�rFq.M/n! 0, we get

a0.Fq.M//�maxfa0.˚n>rFq.M/n/; rg:

From the injective map˚n>rG.qM/n!G.qM/, we get

a0.˚n>rG.qM/n/� a0.G.qM//� reg.G.qM//:

Therefore, we can conclude that a0.Fq.M//�maxfreg.G.qM//; rg:

�

Next, we give the main result of this paper. The techniques we use are similar to
that in [4, Theorem 3.3], where we replace D.I;M/ by B.x;M/ and �.x;M/.
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Theorem 2. We have
(i) reg.Fq.M//� 2B.x;M/.B.x;M/C�.x;M/C r.M//C r.M/�1 if d D 1;

(ii) reg.Fq.M//� .B.x;M/C�.x;M/C r.M/C2/2CB.x;M/2�3 if d D 2;
(iii) reg.Fq.M//� .B.x;M/C�.x;M/C r.M/C2/3.d�1/Š�1�d if d � 3.

Proof. We proceed by induction on d . Set B D B.x;M/;� D �.x;M/ and r D
r.M/.

Let d D 1. Then a1.Fq.M//C 1 � e0.Fq.M//C r � 1 by [6, Lemma 2.2]. It is
proved in [8, Section 5.2] that

ei .Fq.M//D ei .M/C eiC1.M/� eiC1.qM/

for all 0� i � d �1. In virtue of r.qM/� rC1, we get

e0.Fq.M// � je0.M/jC je1.M/jC je1.qM/j

� BCB.BC�C r �1/CB.BC�C r/D 2B.BC�C r/

by Lemma 1, thus a1.Fq.M//C 1 � 2B.B C �C r/C r � 1. By Theorem 1 and
Lemma 2, we get a0.Fq.M//� BC�C r . Hence

reg.Fq.M// � maxfBC�C r;2B.BC�C r/C r �1g
D 2B.BC�C r/C r �1:

Now let d � 2. By [5, Proposition 2.2], we can choose x1 such that x�1 2 I=I
2 is a

filter-regular element on G.M/ and x01 2 I=mI is a filter-regular element on Fq.M/.
Then

Fq.M/=x01Fq.M/Š
M

qM
˚ .˚n�1

Mn

qMnCx1Mn�1
/;

and

Fq.M=x1M/D˚n�0
Mn

qMnCx1M \Mn
:

Let

K D˚n�1
qMnCx1M \Mn

qMnCx1Mn�1
:

Then we have an exact sequence of GI .A/-module:

0 �!K �! Fq.M/=x01Fq.M/ �! Fq.M=x1M/ �! 0: (3.3)

By [4, Lemma 1.3(ii)], we get x1M \Mn D x1Mn�1 for all n > reg.G.M//. Then
K has finite length and reg.K/� reg.G.M//. The exact sequence (3.3) implies

reg.Fq.M/=x01Fq.M// D maxfreg.K/; reg.Fq.M=x1M//g

� maxfreg.G.M//; reg.Fq.M=x1M//g:

By [9, Proposition 3.2], we get

reg.Fq.M//Dmaxfa0.Fq.M//; reg.Fq.M/=x01Fq.M//g;
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so that

reg.Fq.M//�maxfa0.Fq.M//; reg.G.M//; reg.Fq.M=x1M//g:

Note that r.M=x1M/ � r , B.x;M=x1M/ � B and �.x;M=x1M/ � �, where x de-
notes the superficial sequence x2; : : : ;xd .

If d D 2, by the inductive hypothesis, we have

reg.Fq.M// � maxf.BC�C rC2/2�2;.BC�C rC1/2�2;
2B.BC�C r/C r �1g

< .BC�C rC2/2CB2�3

from Theorem 1.
If d � 3,

reg.Fq.M// � maxf.BC�C rC2/3.d�1/Š�1�d;.BC�C rC1/3.d�1/Š�1�d;

.BC�C rC2/3.d�2/Š�1�d C1g

D .BC�C rC2/3.d�1/Š�1�d:

�

The following result can be also deduced from [4, Corollary 3.4].

Corollary 1. Let .A;m/ be a Cohen-Macaulay ring and I a m-primary ideal of
A. Then

(i) reg.Fm.I //� 2e.I;A/
2�1 if d D 1;

(ii) reg.Fm.I //� 2e.I;A/
2C4e.I;A/C1 if d D 2;

(iii) reg.Fm.I //� .e.I;A/C2/
3.d�1/Š�1�d if d � 3.
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