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Abstract. In the present paper, we prove a best proximity point theorem for multivalued non-
self-contractive type mappings which is a generalization of recent best proximity point theorems
and some famous fixed point theorems.
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1. INTRODUCTION

Let A, B be nonempty subsets of a metric space (X,d) and T : A — B be a non-
self-mapping. Clearly, the set of fixed points of 7" can be empty. Therefore, it is of
primary importance to seek an element x that in some sense is closest to 7'x. That is,
if there is no solution to the fixed point equation 7x = x, one tries to determine an
approximate solution x subject to the condition that the distance between x and T x
is minimal. A classical best approximation theorem was introduced by Fan [4]. It
states that if A is a non-empty compact convex subset of a Hausdorff locally convex
topological vector space X and T : A — X is a continuous mapping, Then there exists
x € A such that d(x,Tx) = d(Tx, A). Recently, there have been many subsequent
extensions of Fan’s theorem, see [7, 8, 12] and references therein. A point x € A is
called a best proximity point for 7" if distance of x to T x is equal to the distance of
A to B. In fact best proximity point theorems have been studied to find necessary
conditions such that the minimization problem,

mind(x,T x) (1.1)
x€A

has at least one solution. Investigation of several variants of contractions for the
existence of a best proximity point can be found in [2,3,5,9-11, 13, 14].

In this article, we consider a classes of multivalued non-self-mapping which called
(¢, 0) contractive mappings and we present some best proximity point theorems for
these classes of non-self-mappings in metric spaces.

© 2015 Miskolc University Press
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Let A and B be two nonempty subsets of a metric space. We will use the follow-
ing notations:

d(A,B) =inf{d(x,y):x € A,y € B},
Ao={xe€ A:d(x,y)=d(A,B) forsome y e B},
Bo={yeB:d(x,y)=d(A,B) forsome ye A},

D(x,B) =inf{d(x,y):y € B}, VxeX,
H(A, B) = max{sup D(x, B), sup D(y, A)}.
x€eA y€EB

Let A and B be nonempty subsets of a metric space (X,d). Assume that 7 : A —
28 is a multivalued non-self-mapping. A point x € A is said to be a fixed point of
T if x € Tx. In case AN B = &, the multifunction 7 has not fixed point. Then
D(x,Tx) > 0 for all x € A. Therefore, we can explore to find necessary conditions
so that the minimization problem

min D(x,Tx) (1.2)
x€A

has at least one solution. Since D(x,Tx) > d(A, B) for all x € A, the optimal solu-
tion to the problem (1.2) is obtained in some points of A for which the value d(A4, B)
is attained. A point x € A is called a best proximity point of a multivalued non-self-
mapping T, if D(x,Tx) = d(A, B). We note that if d(A4, B) = 0, then we get a fixed
point of 7.

Definition 1 ([11]). Let (A, B) be a pair of nonempty subsets of a metric space
(X,d) with Ay # @. Then the pair (A, B) is said to have the P-property iff

d(x1.y1) = d(A,B) -
{d(xz,h) =d(A,B) = d(x1,x2) = d(y1,y2),

where x1,x2 € Aand y1,y2, € B

Definition 2 ([15]). Let (A, B) be a pair of nonempty subsets of a metric space
(X,d) with Ag # @. Then the pair (A, B) is said to have the weak P -property iff

d(x1,y1) = d(A,B)

= d(x1, <d(y1, ,
d(x2,y2) = d(A,B) (x1.x2) =d(y1,y2)

where x1,x; € A and y1,y; € B.

Definition 3. We say that ¢ : [0, co[— [0, 00[ is a (c)-comparison function if and
only if the following conditions hold:
(i) ¢ is a nondecreasing function,
(ii) for any 7 > 0, Y 0> o @™ (¢) is a convergent series.
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In what follows, we will denote:

O =1{0:]0,+00)* = [0,400) :
0 is continuous and 0(t1,15,13,14) = 0 < t112t3t4 = 0}.
Example 1. The following functions belong to ® :
(D 9(1‘1,l2,l3,l4) = Lmin{tl,tz,t3,t4},L >0
(2) 0(t1,12.13,14) = t1t2t3l4,
(3) O(t1,12,13,14) = In(1 +11121314),
(4) 0(t1,12,13,14) = exp(t11213t4) — 1.

The notion of almost (¢, #)-contraction for single valued non-self mapping was
introduced by Bessem Samet as follows.

Definition 4 ([10]). A mapping T : A — B is said to be an almost (¢, 8)-contraction
if and only if there exist ¢ € @ and 6 € ® such that, for all x,y € A4,

d(Tx.Ty) < ¢(d(x.7)) +6(d(y.Tx)~d(4, B).d(x.Ty)
—d(A,B),d(x,Tx)—d(A,B),d(y,Ty)—d(A, B))
He proved the following result.

Theorem 1 ([10]). Let A and B be closed subsets of a complete metric space
(X,d) such that Ay is nonempty. Suppose that T : A — B satisfies the following
conditions:

(i) T is an almost (¢, 0)-contraction,
(ii) T(Ao) < Bo,
(iii) the pair (A, B) has the P -property.

Then, there exists a unique element x* € A such that
d(x*,Tx*)=d(A,B)
Moreover, for any fixed element xo € Ao, any iterative sequence {x,} satisfying
d(xp4+1,Txp) = d(A, B)
converges to x*.

Now, in the following we defined the notion of (¢, 8)- contraction for multivalued
mappings.
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Definition 5. A mapping T : A — 25 is said to be an almost (¢, §)-contraction if
and only if there exist ¢ € @ and 6 € ® such that, for all x,y € A,

H(Tx,Ty) < (p(d(x,y)) n e(D(y, Tx)—d(A, B), D(x,Ty)

—d(A,B),D(x,Tx)—d(A, B),D(y,Ty)—d(A, B))

2. MAIN RESULTS
Our first main result is the following theorem.

Theorem 2. Let A and B be closed subsets of a complete metric space (X,d)
such that Ay # @ and the pair (A, B) satisfies the weak P-property. Suppose that
T : A — 28 be a multi-valued almost (¢, 0)-contraction non-self mapping. If T (x)
is bounded and closed in B for all x € A, and T (x¢) C By for each xg € Ao, then T
has a best proximity point in A.

Proof. Select xg € Ag and yg € Txg € Bp. By the definition of the set By, we
can fined an element x; in Ag such that d(x1,y9) = d(A4,B). If yo € Tx1, then
d(A,B) < D(x1,Tx1) <d(x1,y0) =d(A, B), therefore D(x1,Tx1) =d(A, B) and
X1 is a best proximity point of T'. If yg ¢ Tx; and ¢ > 1 be given. Then

0< d(y(),T)Cl) < H(T.)C(),Txl) < qH(TX(),Txl),

Hence, there exists y; € T'x; such that
0 <d(yo,y1) < gH(Tx0, Tx1) = qp(d(x0. x1)) +q8(D(x1, Txo) — d(A, B),
D(xo,Txl)—d(A,B),D(xo,Txo)—d(A,B),D(xl,Txl)—d(A,B))
Since D(x1,Tx9) = d(A, B), we have
0 <d(yo.3) < ¢ (d(ro.x1)) +8(0. D(xo. Tx1) —d(4. B).

D(xo,TxO)—d(A,B),D(xl,Txl)—d(A,B)) 2.1)

ZW(d(Xo,Xl))-

One the other hand since y; € Tx; C By, there exists x, € Ag such that d(x2,y1) =
d(A, B). By using the weak P-property of (A, B) we obtain d(x2,x1) < d(yo,y1).
Now, put to = d(xg,x1), then zo > 0 and by (2.1) we have d(x1,x2) < g(tp). Since

(7 (qw(to))

@ is strictly increasing, (p(d(xl,xz)) < (p(q(p(to)). Set g1 = > 1. If

e\ d(x1 ,xz))
y1 € T x5 then x; is a best proximity point of 7. suppose that y; ¢ T x5, then

0<d(y1,Txz) < H(Tx1,Tx3) <qH(Tx1,Tx3).
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Therefore, there exits y, € T x5 such that
0<d(y2,y1) <q1H(Tx2,Tx1)

< 19 (d(x1,%2)) + 416( D (2, Tx1) —d(A. B), D(x1.Tx2)
—d(A,B),D(x1,Tx1)—d(A, B), D(x2, Tx2) —d(A,B))

Since D(x»,Tx1) = d(A, B), we have

0 <d(y2.1) < q19(dx1.%2)) +q16(0. D(x1. Tx) —d(A, B). D(x1.Tx1)
_d(A, B), D(x2, Tx2) —d(A, B))

= C]l‘ﬂ<d(x17x2)) = w(qw(to)).
(2.2)

Again, since y, € Txp C By, there exist x3 € Ay such that d(x3,y2) = d(A4, B).
By using the weak P-property of (A4, B) we obtain d(x3,x2) < d(y2,y1). Since

@ is in strictly increasing by using (2.2) we have (p(d(x3,x2)) < ¢%(qe(to)). Set

@2 (qw(to))

q>» = ———= > 1. If y, € T'x3 then x3 is a best proximity point of 7. Suppose
w(d(x3,x2)

that y, ¢ T x3 then we have,
0< d(yz, T)C3) < H(TXz, T.X3) < qu(sz, T)C3).

Then there is y3 € T x3 such that

0<d(ys3,y2) <q2H(Tx3,Tx2) < Q2<P<d(x3,x2))

+Q29<D(X3,TX2)—d(A,B),d(xz, Tx3)—d(A, B), D(x3,Tx3)
—d(A,B), D(x2,Tx2)—d(A, B))

Since D(x3,T x3) = d(A, B) we have

0 <d(y3.32) < ¢(d(x3.32)) + 420 (0.d(x2, T x3) — d(A, B). D(x3.Tx3)

—d(A, B), D(x2, Tx2) —d(A, B))

= m(d (X3,xz)) = ¢ (qe(to))

By continuing this process, for each n € N, we can find a sequences {x, } and {y, }
in Ag and By respectively, such that,
(1) yn € Tx, < By,
(2) d(xn+1,yn) = d(A, B)
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(3) d(Yn+1.yn) < @" ((W(lo))-
Since (A, B) satisfies the weak p-property, we conclude that

d(xp,Xn4+1) <d(Yn—1,¥n) VneN

we now have
d(xn.Xnt1) < d(Yn—1.yn) <" (qfﬂ(to)

Let m > n. Then
m—1 m—1 )
d(xn, xm) < Y d(xi,xip1) < ) §0’_1(W(l0))
i=n i=n

and so {x, } is a Cauchy sequence in A. Hence, there exists x* € 4 such that x,, — x*.
Similarly, by using (3) we can show that the sequence {y,} in B is Cauchy and hence
is convergent. Suppose that y, — y*. By the relation d (x,+1, y») = d(A, B), for all
n € N, we conclude that d(x*, y*) = d(A, B). Now we show that y* € Tx*. Since
yn € T xp, we obtain

lim D(y,,Tx™)
n—>oo
< lim H(Tx,,Tx*)
n—o0
< lim [(p(d(xn,x*)) +9(D(x*,Txn)
n—oo
—d(A,B),D(x,, Tx*)—d(A,B), D(xy,Txn)—d(A, B),
D(x*, Tx*) —d(A,B))]
_ . * _ . *
= 0-+6( Jim d(x*.yn) —d(4.B). lim (D(xn.Tx")
—d(A. B)). lim (D(x,,,Txn)—d(A,B)),D(x*,Tx*)—d(A,B))
n—>oo
—0+ 9(0, lim (D (xp. Tx*)
n—->oo
—d(A.B)). lim (D(xn,Tx,,)—d(A,B)),D(x*,Tx*)—d(A,B))
n—o0
=0.
Thus, we have
. *y\
nlgréoD(yn,Tx )=0.
Hence D(y*,Tx*) = 0. Since Tx™* is closed, We conclude that y* € Tx*. Now we
have,
d(A,B) < D(x*,Tx*) <d(x*,y*) =d(A,B),
which implies that D(x*,Tx*) = d(A, B), that is x* € A is a best proximity point
of T'. This completes the proof of theorem. O
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Taking ¢(¢) = at we have the following result which an extension of theorem 2.1

in[1].

Corollary 1. Let (A, B) be a pair of nonempty closed subsets of a complete metric
space (X, d) such that Ay # @ and (A, B) satisfies the weak P-property. Let T : A —
28 be a multivalued non-self-mapping, for which there exist a constant « € [0, 1) and
0 € O such that forall x,y € X

H(Tx,Ty) <ad(x,y)+ e(D(y,Tx) —d(A,B), D(x,Ty)
—d(A,B),D(x,Tx)—d(A, B), D(y,Ty) —d(A, B))

Suppose also that T (x) is bounded and closed in B for all x € A, and T (x9) € By
for each xg € Ao, then T has a best proximity point in A.

Example 2. Let X = N with the usual metric. Suppose 4 := {0,3,6,9} and B :=
{—1,2,5,8}. Then, A and B are nonempty and closed subsets of X and A9 = A4
and By = B. We note that, d(A4,B) = 1. It is easy to show that the pair (4, B)
has the weak P-property. Let T : A — 28 ba a mapping defined by 70 = {8} and
Tx = {5,8}, if x # 0. Consider the functions 0(¢1,%5,t3,14) = t1t2t3t4 and @(t) = %
for all > 0. Then T is (¢, #)- multivalued contraction. Thus 7 has a best proximity
point Note that x = 6 and x = 9 are best proximity point of 7'. It is interesting to
note that the non-self mapping T is not a non-self contraction.

Taking B = A in Theorem 2, we obtain the following result.

Corollary 2. Let (X,d) be a complete metric space, and A be a nonempty and
closed subset of X. Let T : A — 24 be an almost (¢,0)-contraction self-mapping.
Then T has a fixed point x € A.

Taking ¢(¢) = ot and 60(t1,12,13,24) = L min{ty,2,,13,24}, we obtain from Corol-
lary 2 the following result which is a generalization of Nadler fixed point theorem

[6].

Corollary 3. Let (X,d) be a complete metric space, and A be a nonempty closed
subset of X. Let T : A — 24 be a mapping such that there exist o € [0,1) and L > 0
such that, forall x,y € A,

H(Tx,Ty) <ad(x,y)+ Lmin{D(y,Tx),D(x,Ty),D(x,Tx),D(y,Ty)}
Then T has a unique fixed point x € A.
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