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Abstract. Let P > 3 be an integer and let (Uy) and (V},) denote the generalized Fibonacci and
Lucas sequences defined by Up =0,U; = 1; Vo =2,V; = P, and Uy4+1 = PU, — Uy—1,
Va+1 = PVy —Vy—1 for n > 1. The purpose of this study, assuming P is odd, is to determine
the values of n such that V;, = 500 and U,, = 50. Moreover, we solve the equations V;, = 5V, 00
and U, = 5U,,0O.
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1. INTRODUCTION

Let P and Q be nonzero integers such that P2 +4Q # 0. The generalized Fibon-
acci sequence (U,) and Lucas sequence (V},) are given recursively according to the
following relations for n > 1.

Up=0, Uy =1, Upt1 = PUy + QUn
and

Vo=2, V1 =P, Voy1 =PV, +0Vy_1.
Both sequences depend on the initial choice of pair (P, Q), hence we sometimes use
U, (P, Q) and V, (P, Q) in order to emphasize their dependence on the parameters
(P, Q). U, and V;, are called the nth generalized Fibonacci number and the nth gen-
eralized Lucas number, respectively. Furthermore, generalized Fibonacci and Lucas
numbers for negative subscripts are defined as

Un=—(-Q) "Upand V_, = (=Q) "V, (n = 1),

respectively. It is well known that

Un = (" =p")/(@—p) and V; =" + p"

where o = (P + /P2 +4Q) /2and B = (P —+/ P2 —|-4Q) /2, which are the roots

of the equation x2 — Px — Q = 0. The above formulas are known as Binet’s formulas.
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We will assume that P2 +40Q > 0. Special cases of the sequences (Uy,) and (V,,) are
known. For example, the generalized Fibonacci sequence (U, (1,1)) consist of the
familiar Fibonacci numbers, whereas its companion, (V},(1,1)) gives so called Lucas
numbers. When P =2 and Q =1, (U,) = (Py) and (V) = (Q) are the familiar
sequences of Pell and Pell-Lucas numbers. For more information about generalized
Fibonacci and Lucas sequences, see [8].

There has been much interest in when the terms of generalized Fibonacci and Lucas
sequences are perfect square(= ) or k0. When P is odd and Q = +1, by using
elementary arguments, many authors solved the equations U, = k[ and V;, = kO
for some specific values of k (see [2-4,9, 10]). Interested readers can also consult
[12] and [6] for a brief history of this subject.

In [6], the authors determined all indices n such that U, (P,1) = 50 and U, (P,1) =
5U(P,1)0 under some assumptions on P. When P is odd, the authors solved
the equation V, (P, 1) = 500. Moreover, they showed that the equation V,(P,1) =
5Vm (P, 1) has no solutions. In this study, using congruences, with extensive reli-
ance upon the Jacobi symbol, we determine that the five times square terms of the
generalized Fibonacci sequence (U, (P, Q)) for which P > 3 is odd and Q = —1
may occur only for n = 2 or 3. We obtain a similar result for the generalized Lu-
cas sequence (V, (P, Q)). Moreover, when P > 3 is odd and Q = —1, we solve the
equations V,, = 5V, and U, = 5U,, 1.

In section 2, we give some identities, lemmas, and theorems needed later. Then in
section 3, we present our main theorems. Throught this study, (z) will denote the
Jacobi symbol. Our method of proof is similar to that presented by Cohn, McDaniel
and Ribenboim [2-4, 9].

2. PRELIMINARY FACTS

From now on, we assume that Q = —1. We omit the proofs of the following two
lemmas, as they are based a straightforward induction.

Lemma 1. If n is even, then V, = £2 (mod P?) and if n is odd, then V,, = £nP
(mod P?).

Lemma 2. Ifn is even, then Uy = £5 P (mod P?)and ifn is odd, then U, = £1
(mod P?).

Lemma 3.
n=0 (mod 2) if 3| P,
n=0(mod 3)if3} P.

One can see the proofs of the following two theorems in [5].
Theorem 1. Let P > 3 be odd. If Vy, = kx? for some k| P withk > 1, thenn = 1.

Theorem 2. Let P >3 be odd. If U, = kxzfor some k|P withk > 1, thenn =2
orn =6and3|P.

3|Uy &
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The proofs of the following two theorems can be found in [11].

Theorem 3. Letn € NU{0}, m,r € Z and m be a nonzero integer. Then

Uzmn+r = Uy (mod Up), 2.1)
Vomn+r = Vy (mod Uy,). (2.2)
Theorem 4. Letn € NU{0}, m,r € Z. Then
Uamn+r = (=1)" Uy (mod V), (2.3)
Vomn+r = (=1)"V, (mod V). (2.4)

Now we state the following theorem from [9].

Theorem 5. Let P > 3 be odd. If Vy, = x? for some integer x, then n = 1. If
= 2x2f0r some integer x, thenn =3, P = 3,27.

We state the following theorem due to Ribenboim and McDaniel [9].
Theorem 6. Let P > 3 be odd. If U, = x?, thenn =1 orn =6 and P = 3.
The following theorem can be obtained from Theorem 9 given in [4].

Theorem 7. Let P > 3 be odd, m,n > 1 be integers. The equation U, = 2U,, x>
has no solutions except for the casesn =6, m =3, P = 3,27.

The following two theorems can be obtained from Theorems 14 and 15 given in [4].

Theorem 8. The equation V,, = Vinx?, where P >3, and P is odd, andn >m >0
has only the trivial solution n = m.

Theorem 9. The equation V,, = 2Viux2, where P >3, and P is odd, and m,n >0
has no solutions.

Now we give some identities concerning generalized Fibonacci and Lucas numbers:

U_p =—Upyand V_, =V, (2.5)
Uzn = UpVn, (2.6)

Vop =VZ2-2, 2.7)

Van = Va (V7 =3). (2.8)

Usn = Un (P> =4 U +3) = Un(V;; = 1), (2.9)
VZ—(P?—4)U? =4, (2.10)

if P is odd, then 2|V, < 2|U, < 3|n, .11
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Vin|Va < m|n and n/m is odd,

Un|Uy < min.
Letm = 2%, n =2%1, k and [ are odd, a,b > 0, and d = (m,n). Then

Vyifa>b,

Um.Va) =1 | o12ifa <b.

Usp = Uy (P2 = 42U, +5(P? =4 U7 +5).
If 5|Uy, then from (2.15), we have

for some a > 0.

Von = Va(Vit —=5V2 4+ 5).
If 5| P and n is odd, then 5|V}, and therefore from (2.17), it follows that

for some a > 0.
From Lemma 1 and the identity (2.7), we have

5|Vn < 5| P and n is odd.
When P is odd, it is clear that
(%)
=—1.
Vaor

If Pisodd and r > 2, then Vor = —1 (mod P22_3) and thus

(P2-3)/2\ (P*-3 _
( Var )_( Var )_ '
—2 (mod P), ifr =1,

Var = { 2 (mod P), if r > 2.
If 34 P and P is odd, then V,r = —1 (mod 3) for r > 1 and therefore

()=

If 3| P and P is odd, then V,r = —1 (mod 3) for r > 2 and therefore

(2)-

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

2.17)

(2.18)

(2.19)

(2.20)

2.21)

(2.22)

(2.23)

(2.24)
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Let P be odd. Then

5 —1,if 5|P,
( ) = 1, if P2 =1 (mod 5), (2.25)
Var 1, if P2 = —1(mod 5),

for every r > 1.

Most of the properties above are well-known; properties between (2.5)—(2.10) can
be found in [8], [9], [10], [2]; properties between (2.11)—(2.14) can be found in [7],
[9], [10], [2]. Since the others are fairly easy to prove, we omit their proofs.

The following lemma can be proved by using (2.1).

Lemma 4.

2|n, if 5| P,
51Uy, & 4 3ln, if P2 =1 (mod 5),
5n, if P2 = —1 (mod 5).

3. MAIN THEOREMS
From now on, we assume that n and m are positive integers, P > 3, and P is odd.

Theorem 10. The equation Vy,, = 5x? has a solution only ifn = 1.

Proof. Assume that V,, = 5x2 for some integer x. Since 5|V}, it follows from
(2.19) that 5| P. This implies by Theorem 1 that n = 1. This completes the proof. [J

Theorem 11. There is no integer x such that V, =5 Vi x2.

Proof. Assume that V,, = 5V,,x2. Then by (2.19), it is seen that 5| P and 7 is odd.
Moreover, since V;;,|V;, there exists an odd integer ¢ such that n = m¢ by (2.12).
Since n and ¢ are odd and n = m¢t, m is also odd. Hence, we have from Lemma 1
that

V, = +nP (mod P?)and V,, = +mP (mod P?).
This implies that
+nP = +5mPx? (mod P?),
ie.,
n = 5mx? (mod P).
Using the fact that 5| P, it follows that 5|n. Firstly, assume that 5|z. Then t = 5s for

some positive odd integer s and therefore n = mt = 5ms. By (2.17), we immediately
have

Vn = VSms = Vms(V;fls _SVrrzzs +5)‘
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Since ms is odd and 5| P, it follows that 5|V}, s by (2.19) and therefore

Vins (Vs —5V2 +5 _ 2
Vm 5 ’

Clearly,
(Vins/ Vin, (Vs —5V,2s +5)/5) = 1.
This implies that
Vips —5V.2o+5=5b%

for some b > 0. But the integral points on 5Y2 = X# —5X? 4+ 5 are immediately
determined by using MAGMA [1] to be (X,xY) = (0,1), which gives Vs = 0,
which is impossible. Secondly, assume that 5 } ¢. Since n = mt and 5|n, it is seen
that 5|m. Then we can write m = 5"a with 5 } a and r > 1. By (2.18), we obtain

Vin = Vsrg = 5V5r71a(501 + 1)
for some positive integer a;. Thus, we conclude that
Vin = Varg = S’Va(Sal + 1)(5az +1)...(5a, + 1)

for some positive integers a; with 1 <i <r.Let A = (5a; + 1)(5a2 + 1)...(5a, + 1).
Thus, we have V,,, = 5"V, A, where 5 } A. In a similar manner, we see that

Vi =Vsrqr =5" Var (5b1 +1)(5b3 + 2)...(5b, + 1)

for some positive integers b; with 1 < j <r. Thus, we have V,, = 5" V,; B, where
5} B. As a consequence, we get

5 Var B =55V, Ax?,
implying that
Var B = 5V, Ax>.
By Lemma 1, it is seen that
+atPB = +5a PAx? (mod P?),
ie.,
atB = 5aAX? (mod P).

Since 5| P, it follows that 5|at B. However, this is impossible since 5 } a, 5 ¢ ¢, and
5} B. This completes the proof. 0

Theorem 12. If P > 3 is odd, then the equation U, = 5x? has the solution n =2

when 5| P and n = 3 when P? =1 (mod 5). The equation U, = 5x? has no solutions
when P? = —1 (mod 5).
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Proof. Assume that U, = 5x? for some integer x. Now we distinguish three cases.

Case [ : Let 5| P. Then by Theorem 2, we see that n = 2 or n = 6 and 3| P. But, it
can be easily shown that for the case when n = 6 and 3| P, the equation U, = 5x?
has no solutions.
Case I] : Let P2 =1 (mod 5). Since 5|U,, it follows from Lemma 4 that 3|n.
Hence, n = 3m for some positive integer m. Assume that m is even. Then m = 2s
for some positive integer s and therefore n = 6s. And so by (2.6), we get U, = Ugs =
UssVas = 5x2. Clearly, (Usg, V35) = 2 by (2.14) and (2.11). Then either

Uss = 2a?, Vs = 10b? (3.1)

or

Uss = 10a?, Va5 = 2b? (3.2)
for some positive integers a and b. Assume that (3.1) is satisfied. Since 5|Vag, it
follows from (2.19) that 5| P. But this contradicts the fact that P2 = 1(mod5). Now
assume that (3.2) is satisfied. Then by Theorem 5, we have 3s = 3 and P = 3,27.
Therefore s = 1. If P = 3, then U3 = P2 —1 = 8 = 10a?, which is impossible.
If P =27, then U3 = P2 —1 =272 —1 = 10a?, which is also impossible. Now
assume that m is odd. Then by (2.9), we get Us;,, = Uy, ((P2 —HU,, + 3) . Clearly,
(Um.,(P?2—4)U2 +3) = 1 or 3. Then it follows that (P? —4)U2 + 3 = wa? for
some w € {1,3,5,15}. Since (P2 —4)U2 +3 = Vo + 1 by (2.7) and (2.10), it is
seen that V2, + 1 = wa?. Assume that m > 1. Thenm = 4g+1=2"a+ 1 with a
odd and r > 2. Thus,

wa? = Vo +1=1—V,=—(P?>=3) (mod Var)

by (2.4). This shows that
w) _ (—1\(P>-3
Vor | \ Var Vor )’

By using (2.23), (2.24), and (2.25), it can be seen that (Vi) — 1 forw =3,5,15.
2r

—1 P2-3
Moreover, (V ) = —1and ( v ) = 1Dby (2.20) and (2.21), respectively. Thus,
2r 2r

() - (7) ()

Vaor Vor Vaor ’

which is impossible. Therefore m = 1 and thus n = 3.

Case [ 1] :Let P2 = —1 (mod 5). Since 5|U,, it follows that 5|n by Lemma 4. Thus
n = 5t for some positive integer ¢. Since P2 = —1 (mod 5), it is obvious that 5| P2 —

4 and therefore there exists a positive integer A such that P2 —4 = 54. By (2.15), we
get Uy = Us; = U; (P2 —4)2U} +5(P? —4)U? +5) .. Substituting P? —4 = 54

we get
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into the preceding equation gives U, = Us; = 5U; (542U + 5AU? 4+ 1). Let B =
A2U} + AU?. As a consequence, we have
U, = Us; = 5U;(5B + 1) = 5x2,
implying that
U;(5B+1) = x2.

It can be easily seen that (U;, 5B + 1) = 1. This shows that U; = a? and 5B 4 1 = b?
for some a,b > 0. By Theorem 6, we see that the only possible values of ¢ and P
in which U; =a?aret =1ort =6and P =3.If t = 1, then n = 5 and therefore
we get U, = Us; = Us = P*—3P2 41 = 5x2. With MAGMA [ 1], we get P = 2,
which is impossible since P is odd. If t = 6, then n = 30. A simple computation
shows that there is no integer x such that Uzg = 5x2 for P = 3. ]

Theorem 13. Let P > 3 and m > 1. The equation U, = 5 U x? has no solutions
in any of the following cases:

(i): P2 =—1 (mod 5);
(ii): P isodd and 5| P;
(iii): P> =1 (mod 5), nis odd, and P is odd;
(iv): P2 =1 (mod 5), n is even, and P is odd.

Proof. Assume that U, = 5U,,x? for some x > 0. Since U,,|Uy, it follows that
m|n by (2.13). Thus, n = mt for some ¢ > 0. Since n # m, we have t > 1.
Case [ : Let P? = —1 (mod 5). It is obvious that 5| P?2 — 4. On the other hand, since
5|Uy,, it follows that 5|n by Lemma 4. Dividing the proof into two subcases, we have
Subcase (i) : Assume that 5|¢. Then ¢t = 55 for some s > 0 and therefore n = mt =
5ms. By (2.15), we obtain

Un = Usms = Upms (P —4)?Upy + 5(P2 = UL +5) = 5Upnx>.  (33)
Since 5| P2 —4, it is seen that 5|(P2 —4)2U,} .+ 5(P%—4)U2, + 5. Also, we have
(P2 —4)2Up 4+ 5(P2—HUZ,+ 5=V —3V2 +1 by (2.10). Rearranging the
equation (3.3), we readily obtain

X% = Ums/ Un) (Vims —3Vims +1)/5).
where (Ups/ Um. (Vins —3V;2s +1) /5) = 1. Hence, V,r —3V,2 + 1= 5b? for some

b > 0. But the integral points on 5Y2 = X# —3X?2 4 1 are immediately determined
by using MAGMA [1]tobe (= X,£Y) = (2, 1), which gives V5 = 2, implying that
ms = 0, which is impossible.

Subcase (i7) : Assume that 5 } ¢. Since 5|n, it follows that 5|m. Then we can write
m =5"awith5  a and r > 1. By (2.16), it is sen that Uy, = Usrq = 5Usr—1,(5a1 +
1) for some positive integer a;. Thus, we conclude that U, = Usrgy = 5" U, (5a1 +
1)(5a3 4+ 1)...(5a, + 1) for some positive integers a; with 1 <i <r. Let A = (5a; +
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1)(5a; + 1)...(5a, + 1). Then, we have U,, = 5"U, A, where 5  A. In a similar
manner, we get Uy, = Usrgy = 5" Uy (51 4+ 1)(5b2 4+ 1)...(5b, + 1) for some positive
integers b; with 1 <i <r. Let B = (5b1 4+ 1)(5b2 4+ 1)...(5b; + 1). Hence, we have
U, =5"U,: B, where 5 + B. As a consequence, we get

5"U;B=5-5"U,Ax?

ie.,
Uy B =5U,Ax>.

Since 5 t B, it follows that 5|U,;, implying that 5|at by Lemma 4. This contradicts
the fact that 5 } @ and 5 4 ¢. This concludes the proof of the case when P2 = —1
(mod 5).
Case /1 : Let P be odd and 5| P. Since 5|Uy, it is seen from Lemma 4 that n is even.
On the other hand, we have n = mt. So, we first assume that 7 is even. Then t = 2s
for some s > 0. By (2.6), we get U, = Uams = UpsVins = 5Umx?, implying that
(Ums/Um) Vins = 5x2. Clearly, d = (Ups/Um,Vimns) = 1 or 2by (2.14). If d =1,
then

Uns = Una®, Vs = 5b* (3.4)
or

Ums = SUna®, Vips = b> 3.5)

for some a,b > 0. If (3.4) holds, then the only possible value of ms in which Vs =
5b2 is 1 by Theorem 1, which contradicts the fact that m > 1. If (3.5) holds, then by
Theorem 5, we have ms = 1, which is impossible since m > 1.
If d =2, then

Upms = 2Uma®, Vs = 10b? (3.6)
or

Uns = 10Upa?®, Viys = 2b* (3.7)

for some a,b > 0. Suppose (3.6) holds. Then by Theorem 7, we get ms = 6, m = 3,
P =3,27. There is no integer b such that Vg = 1052 for the case when P = 3 or 27.
Suppose (3.7) holds. Then by Theorem 7, the only possible values of ms and P in
which Vs = 2b% are ms = 3 and P = 3,27. Since m > 1, it follows that m = 3 and
therefore we obtain Us = 10U3a?, which is impossible.

Now assume that 7 is odd. Since n = m¢t and n is even, it follows that m is even.
Hence, we have U, = £(n/2)P(mod P?) and Uy, = +(m/2)P (mod P?) by
Lemma 2. This shows that £5 P = :I:S%sz (mod P?),ie., 5= 5%)(2 (mod
P). Since 5| P, it is seen that 5|n. Dividing remainder of the proof into two subcases,
we have

Subcase (i) : Let 5|t. Then ¢t = 55 for some s > 0 and therefore n = mt = 5ms. By
(2.15), we obtain

Un = Usms = Upms (P?—4)*Ups + 5(P> =4 U, +5). (3.8)
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Since ms is even and 5| P, it is seen that 5|U,,s by Lemma 4. Also, we have (P2 —
42U +5(P2—4U2, +5=V1 —3V2 +1by (2.10). Hence, rearranging the
equation (3.8) gives

X% = Ums/Un) (Vs —3Vias +1) /5).

where ((Ums/Um) . (Vins —3V;25 +1) /5) = 1. This implies that V3 —3V,2 +1 =
5b? for some b > 0. But the integral points on 5Y2 = X* —3X?2 + 1 are immediately
determined by using MAGMA [1] to be (£X,£Y) = (2,1), which gives V;;;s = 2,
implying that ms = 0, which is impossible.
Subcase (ii) : Let 5 }t ¢. Since 5|n, it follows that 5|m. Then we can write m =
5"a with 5 4 @ and r > 1. By (2.16), it is sen that Uy, = Usrqy = 5Usr—1,(5a1 + 1)
for some positive integer a1. Thus, we conclude that U, = Usry = 5" Uy (5a1 +
1)(5a3 4+ 1)...(5a, + 1) for some positive integers a; with 1 <i <r.Let A = (5a1 +
1)(5a3 +1)...(5ar + 1). Then, we have U, = 5" U, A, where 5 } A. In a way similar,
we get Uy, = Usrqy = 5" Ugt (5b1 +1)(5b2 + 1)...(5b, 4 1) for some positive integers
b; with 1 <i <r. Let B = (5b1 +1)(5b3 + 1)...(5b; + 1). Hence, we have U, =
5"Ugs B, where 5 } B. Substituting the new values of U, and Uy, into U,, = 5U,, x>
gives

5"Ug B =5-5"Uy Ax?
ie.,

Uat B = 5U, Ax?.

On the other hand, since a is even and at is even, it follows from Lemma 2 that
Uy = :I:az—’P (mod P?)and U, = +5 P (mod P?). Hence, we have

t
j:%PB = iS%Psz (mod P?),

implying that

—B =5-—Ax~ (mod P~).

2 2
Since 5| P, it follows that 5 |“2—’B, which shows that 5|atB. This contradicts the fact
that 5} a,5 4 b, and 5 4 B. This concludes the proof for the case when 5| P.
Case 1] : Let P2 =1 (mod 5), n is odd, and P is odd. Then, both m and ¢ are
odd. Since 5|Uy, it follows immediately from Lemma 4 that 3|n. Using the fact that
n = mt, we have
Subcase (i) : Assume that 3|m. Since ¢ is odd, we can write = 4g £ 1 for some
q>0.1ft =49+ 1,thent =2-2"a + 1 with a odd and r > 0. And so by (2.3),
we get Uy = Upr = Uzoramam = —Uy (mod Var), implying that 5Upx%=-Uy,
(mod Var). Since (Up, Var) = 1 by (2.14), it follows that 5x2 = —1 (mod Var),

5 —
=1 by (2.25) and = —1 by (2.20). If

Vor Vor

t = 4q—1, then by (2.1), we get Uy = Upyag—1) = U22mg—m = —Upm (mod Uzp,).

This shows that 5U,,,x% = —U,, (mod Us,,), implying that 5x2 = —1 (mod V,,) by

which is impossible since
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(2.6). Since 3|m, it is seen by (2.12) that V3|V,,. Hence, we obtain 5x2 = —1 (mod
V3),ie., 5x2 = —1 (mod P?—3). But this is impossible since

(<P2—5 3)/2) B ((sz)/z) B (_?1) -

—1 P25
(rmm) =0 =

Subcase (ii) : Assume that 3 } m. Since n = m¢t and 3|n, it follows that 3| and
therefore ¢t = 3s for some s > 0. Then by (2.9), we get

Un = Usms = Uns ((P2_4)U3,5 +3) = SUmXZ,

and

implying that

(Uns/Um) (P> =4 U2, +3) = 5x2.
Clearly,

d= (Ums/Um»((P2—4)Un2,s +3) =1lor3.

If d = 1, then either

Uns = Una®, (P2 —4U2, +3 =5b2 (3.9)
or

Uns = 5Upa®, (P> —4)U? +3=b? (3.10)
for some a,b > 0. Suppose (3.9) holds. Then by (2.10), we get V,,%S —1=15b% and
this gives by (2.7) that Va5 = 5b% — 1. Since ms > 1 is odd, ms = 4¢q £ 1 for
some ¢ > 0. Thus ms = 2-2"a 4+ 1 with @ odd and r > 0. By using (2.4), we get
5b%2 —1 = Vaus = —Vip = —V, (mod Vyr). This shows that 5b%> — 1 = —(P? —2)
(mod V,r), implying that 56%> = —(P2 —3) (mod V,r). By using (2.20), (2.25), and

(2.21), it is seen that
-1 5 P2-3
1= =—1,
VZV Vzr Vzr

a contradiction. Suppose (3.10) holds. It can be easily seen by combining two equa-
tions that b2 = 3 (mod 5), which is impossible.
If d = 3, then either

Ums = 3Uma®, (P2 —4)U2 +3 = 15h> (3.11)

or

Uns = 15Upa?, (P2 —4)UZ, +3 = 3b? (3.12)
for some a,b > 0. If we combine two equations given in (3.11), then we readily
obtain b = 2 (mod 3), which is impossible. Suppose (3.12) holds. Then by (2.10),
we get Vn%s —1 = 3b2 and this gives by (2.7) that Vs = 3b% —1. Since ms > 1
is odd, ms = 4q + 1 for some ¢ > 0. Thus ms = 2-2"a £+ 1 with a odd and r > 0.
By using (2.4), we get 3b2 —1 = Vaps = —Vip = —V> (mod Var). This shows that
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3b2 —1 = —(P?—-2) (mod Var), implying that 36> = —(P2 —3) (mod Var). By
(2.23), (2.24), (2.20), and (2.21), it is seen that

(Y (3 (PP 3
A\ Var )\ Var Vor )
a contradiction.

Case IV : Let P2 =1 (mod 5), n is even, and P is odd. Since n = mt, we divide
the proof into two subcases:

Subcase (i) : Assume that ¢ is even. Then ¢ = 2s for some s > 0. Hence, we imme-
diately have U,/ Uy, = Uss/ U = (Ums/ Um) Vins = 5x2. Clearly,

d = (Ums/Um,Vins) =1or2by (2.14). If d = 1, then

Upms = Una?, Vips = 5b (3.13)

or
Uns = 5Una®, Vips = b* (3.14)

for some a,b > 0. Suppose (3.13) is satisfied. Since 5|V}, it follows from (2.19)
that 5| P, which contradicts the fact that P2 = 1 (mod 5). Now suppose (3.14) is
satisfied. By Theorem 5, the only possible value of ms in which Vs = b? is 1,
which is impossible since m > 1.
If d =2, then

Uns = 2Upna?, Vips = 10b? (3.15)
or

Uns = 10Upa®, Vips = 2b* (3.16)
for some a, b > 0. Obviously, (3.15) is not satisfied because of the same reason given
above for (3.13). If (3.16) holds, then it is seen by Theorem 5 that the only possible
values of ms and P in which Vs = 2b? are ms = 3 and P = 3,27. But this is
impossible since P2 = 1 (mod 5).
Subcase (i7) : Assume that ¢ is odd. Since ¢ > 1, we can write ¢t = 4 + 1 for some
q > 0ort =4q + 3 for some g > 0. On the other hand, since n is even and n = mt,
it follows that m is even. Therefore we can write m = 2"a with a odd and r > 0.
Assume that ¢ = 4¢g + 1. Then n = mt = 4gm +m = 2-2"tkp + m with b odd.
Hence, we get

5Umx? = Uy = Upyrikpym = —Un (mod Vyrix)
by (2.3). Since (U, Vor+x) = (Uarg, Vorex) = 1 by (2.14), it follows that
5x2 = —1 (mod Vor+ti).

) =1 and ( -1 ) = —1by (2.25) and (2.20),

V2r+k or+k
respectively. Now assume that = 4¢ + 3. Then we have n = mt = 4gm + 3m. And
so by (2.1), we get

5Umx2 =U, = U4qm+3m = Usy (mod Uzpy).

This is impossible. Because (
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By using (2.6) and (2.9), we readily obtain
5x2 = Vnzz—l (mod Vi),

which implies that
5x2 = —1(mod V).
Using the fact that m = 2"a with a odd, we have

5x2 = —1 (mod Vary),
implying that
5x2 = —1 (mod Var)

—1
) =1 and (V ) = —1 by (2.25) and

2r

5
by (2.12). But this is impossible since (V
2r
(2.20), respectively. This completes the proof.
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