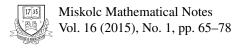


Miskolc Mathematical Notes Vol. 16 (2015), No 1, pp. 65-78 HU e-ISSN 1787-2413 DOI: 10.18514/MMN.2015.1325

A note on annihilators in distributive nearlattices

Ismael Calomino and Sergio Celani



HU e-ISSN 1787-2413

A NOTE ON ANNIHILATORS IN DISTRIBUTIVE NEARLATTICES

ISMAEL CALOMINO AND SERGIO CELANI

Received 10 September, 2014

Abstract. In this note we propose a definition of relative annihilator in distributive nearlattices with greatest element different from that given in [6] and we present some new characterizations of the distributivity. Later, we study the class of normal and p-linear nearlattices, the lattice of filters and semi-homomorphisms that preserve annihilators.

2010 Mathematics Subject Classification: 06A12; 03G10; 06D50

Keywords: distributive nearlattice, relative annihilator, prime ideal, semi-homomorphism

1. INTRODUCTION AND PRELIMINARIES

Abbott in [1] established a correspondence between the class of Tarski algebras, or implication algebras, and join-semilattices in which every principal filter is a Boolean lattice with respect to the induced order. There is an algebraic structure that generalizes the class of Tarski algebras: *nearlattices*. A nearlattice is a join-semilattice in which every principal filter is a lattice. The class of nearlattices forms a variety that has been studied in [9] and [11] by Cornish and Hickman, and in [4], [6] and [7] by Chajda, Kolařík, Halaš and Kühr. In [2] the authors showed that the axiom systems given in [11] and [4] are dependent and that the variety of nearlattices is 2-based. An important class of nearlattices is the class of *distributive nearlattices*. Recently in [3], a full duality between distributive nearlattices with greatest element and certain topological spaces with a distinguished basis was developed.

It is well known that the notion of distributivity in a lattice can be characterized in different ways, for example, a lattice A is distributive if and only if the lattice Fi(A) of all filters of A is distributive. Another way is through some special subsets, called *annihilators*. In a lattice A, the *annihilator of a relative to b* is defined as the set $\langle a,b \rangle = \{x \in A : x \land a \leq b\}$. In [12], Mandelker studied the properties of relative annihilators and characterized the distributivity of a lattice in terms of its relative annihilators. To be more precise, a lattice A is distributive if and only if $\langle a,b \rangle$ is an ideal of A for all $a, b \in A$. These results were generalized by Varlet to the

© 2015 Miskolc University Press

Both authors were partially supported by PIP 112-201101-00636 CONICET.

class of distributive semilattices ([14]) and subsequently to the variety of distributive nearlattices by Chajda and Kolařík ([6]).

The main aim of this paper is to propose a definition of relative annihilator in distributive nearlattices with greatest element different from that given in [6]. In Section 2 we introduce the relative annihilators and we develop new characterizations. In Section 3 we present the class of normal and p-linear nearlattices. In Section 4 we study the lattice of filters of a distributive nearlattice. Finally, in Section 5 we characterize the semi-homomorphisms that preserve annihilators.

Given a poset $\langle X, \leq \rangle$, a set $Y \subseteq X$ is called *increasing* if it is closed under \leq , i.e., if for every $x \in Y$ and every $y \in X$, if $x \leq y$ then $y \in Y$. Dually, $Y \subseteq X$ is said to be *decreasing* if for every $x \in Y$ and every $y \in X$, if $y \leq x$ then $y \in Y$. The complement of a subset $Y \subseteq X$ will be denoted by X - Y. For each $Y \subseteq X$, the increasing (decreasing) set generated by Y is $[Y] = \{x \in X : \exists y \in Y \ (x \leq y)\}$). If $Y = \{y\}$, then we will write [y) and (y] instead of $[\{y\})$ and $(\{y\}]$, respectively.

A *join-semilattice with greatest element* is an algebra $(A, \lor, 1)$ of type (2,0) such that the operation \lor is idempotent, commutative, associative and $x \lor 1 = 1$ for all $x \in A$. The binary relation \leq defined by $x \leq y$ if and only if $x \lor y = y$ is a partial order. In what follows, we shall write simply *semilattice*.

A *filter* of a semilattice A is a subset $F \subseteq A$ such that $1 \in F$, F is increasing and if $x, y \in F$ then $x \land y \in F$, whenever $x \land y$ exists. The set of all filters of A is denoted by Fi(A). Let X be a non-empty subset of A. The least filter containing X is called the *filter generated by* X and will be denoted by F(X). Note that if $X = \{a\}$ then $F(\{a\}) = [a)$, called the principal filter of a.

A subset *I* of *A* is called an *ideal* if *I* is decreasing and if $x, y \in I$ then $x \lor y \in I$. The least ideal containing *X* is called the *ideal generated by X* and will be denoted by I(X). We shall say that a non-empty proper ideal *P* is *prime* if for all $x, y \in A$, if $x \land y \in P$, whenever $x \land y$ exists, then $x \in P$ or $y \in P$. We will denote by Id(*A*) and *X*(*A*) the set of all ideals and prime ideals of *A*, respectively. Finally, we will say that a non-empty ideal *I* of *A* is *maximal* if it is proper and for every $J \in Id(A)$, if $I \subseteq J$ then J = I or J = A. We denote by Idm(*A*) the set of all maximal ideals of *A*. It is easy to prove that every maximal ideal is prime.

Definition 1. A *nearlattice* is a semilattice A such that for each $a \in A$ the principal filter $[a) = \{x \in A : a \le x\}$ is a bounded lattice.

The class of nearlattices forms a variety since every nearlattice A can be described as an algebra with one ternary operation: if $x, y, a \in A$, the element $m(x, y, a) = (x \lor a) \land_a (y \lor a)$ is correctly defined because $x \lor a, y \lor a \in [a]$ and [a] is a lattice, where \land_a denotes the meet in [a].

Proposition 1 ([2]). Let A be a nearlattice. The following identities are satisfied: (1) m(x, y, x) = x,

- (2) m(m(x, y, z), m(y, m(u, x, z), z), w) = m(w, w, m(y, m(x, u, z), z)),
- (3) m(x, x, 1) = 1.

Conversely, let $\langle A,m,1 \rangle$ be an algebra of type (3,0) satisfying the identities (1)– (3). If we define $x \lor y = m(x, x, y)$, then A is a semilattice and for each $a \in A$, [a) is a bounded lattice, where the meet of $x, y \in [a)$ is $x \land_a y = m(x, y, a)$. Hence A is a nearlattice.

Definition 2. Let *A* be a nearlattice. We call *A distributive* if the principal filter $[a) = \{x \in A : a \le x\}$ is a bounded distributive lattice for each $a \in A$.

Theorem 1 ([7]). Let A be a nearlattice. Then A is distributive if and only if satisfies either of the following identities:

(1) m(x,m(y,y,z),w) = m(m(x,y,w),m(x,y,w),m(x,z,w)),(2) m(x,x,m(y,z,w)) = m(m(x,x,y),m(x,x,z),w).

Theorem 2 ([10]). Let A be a distributive nearlattice. Let $I \in Id(A)$ and let $F \in Fi(A)$ such that $I \cap F = \emptyset$. Then there exists $P \in X(A)$ such that $I \subseteq P$ and $P \cap F = \emptyset$.

For distributive nearlattices we have the following lemma which characterizes the generated filters and can be deduced from the results given in [9].

Lemma 1. Let A be a distributive nearlattice. Let $X \subseteq A$ be a non-empty subset. Then

$$F(X) = \{ a \in A : \exists x_1, ..., x_n \in [X] \; \exists x_1 \land ... \land x_n \; (x_1 \land ... \land x_n = a) \}.$$

A filter *H* is said to be *finitely generated* if H = F(X) for some finite non-empty subset *X* of *A*. We will denote by Fi_f(*A*) the set of all finitely generated filters of *A*.

Recall that if *A* is a distributive nearlattice, then $\langle Fi(A), \leq, \overline{\wedge}, \{1\}, A \rangle$ is a bounded distributive lattice, where the least element is $\{1\}$, the greatest element is *A*, and for all $G, H \in Fi(A)$ we have that $G \leq H = F(G \cup H)$ and $G \overline{\wedge} H = G \cap H$.

Theorem 3 ([4,9]). *Let A be a nearlattice. The following conditions are equivalent:*

- (1) A is distributive.
- (2) $\langle Fi(A), \forall, \overline{\wedge}, \{1\}, A \rangle$ is a bounded distributive lattice.
- (3) $\langle \operatorname{Fi}_{f}(A), \leq, \overline{\wedge}, \{1\}, A \rangle$ is a bounded distributive lattice.

A function $h: A \rightarrow B$ between distributive nearlattices is a

semi-homomorphism if h(1) = 1 and $h(a \lor b) = h(a) \lor h(b)$ for all $a, b \in A$. A *homomorphism* is a semi-homomorphism h such that for all $a, b \in A$, if $a \land b$ exists, then $h(a \land b) = h(a) \land h(b)$. In [3] it was shown that there exists a duality between semi-homomorphisms of distributive nearlattices and certain binary relations.

2. Relative annihilators

In this section we will develop new characterizations of the distributivity of a nearlattice through relative annihilators and relative maximal ideals.

Definition 3. Let *A* be a semilattice. For $a, b \in A$, the *annihilator of a relative to b* is the set

$$a \circ b = \{ x \in A : b \le x \lor a \}.$$

Let A be a semilattice. Let $a, b \in A, I \in Id(A)$ and $F \in Fi(A)$. We introduce the following subsets of A:

$$I \circ b = \{x \in A : \exists i \in I \ (b \le x \lor i)\},\$$

$$a \circ F = \{x \in A : \exists f \in F \ (f \le x \lor a)\}.$$

Let $X, Y \subseteq A$. We denote by $X \circ Y$ the set

$$X \circ Y = \bigcup \{a \circ b : (a,b) \in X \times Y\}.$$

Remark 1. Note that $a \circ b = (a] \circ b = a \circ [b] = (a] \circ [b]$ for all $a, b \in A$.

The following theorem characterizes distributive nearlattices.

Theorem 4. Let A be a nearlattice. The following conditions are equivalent:

- (1) A is distributive.
- (2) $a \circ b \in Fi(A)$ for all $a, b \in A$.
- (3) $I \circ b \in Fi(A)$ for all $I \in Id(A)$ and $b \in A$.
- (4) $a \circ F \in Fi(A)$ for all $F \in Fi(A)$ and $a \in A$.
- (5) $I \circ F \in Fi(A)$ for all $I \in Id(A)$ and $F \in Fi(A)$.

Proof. (1) \Rightarrow (2) It is obvious that $1 \in a \circ b$. Let $x, y \in A$ such that $x \leq y$ and $x \in a \circ b$. Then, $x \lor a \leq y \lor a$ and $b \leq x \lor a$. So, $b \leq y \lor a$ and $y \in a \circ b$. Let $x, y \in a \circ b$ such that $x \land y$ exists. Then, $b \leq x \lor a$ and $b \leq y \lor a$, i.e., $x \lor a, y \lor a \in [b]$. Since [b] is a bounded distributive lattice, $b \leq (x \lor a) \land_b (y \lor a) = (x \land y) \lor a$. Then, $x \land y \in a \circ b$ and $a \circ b \in Fi(A)$.

 $(2) \Rightarrow (3)$ Let $b \in A$ and $I \in Id(A)$. We note that $i \circ b \subseteq I \circ b$ for all $i \in I$. It is easy to prove that $1 \in I \circ b$ and that $I \circ b$ is increasing. Let $x, y \in I \circ b$ such that $x \land y$ exists. Then there exist $i_1, i_2 \in I$ such that $b \leq x \lor i_1$ and $b \leq y \lor i_2$. Let $i = i_1 \lor i_2 \in I$. So, $b \leq x \lor i$ and $b \leq y \lor i$. Since $x, y \in i \circ b$ and $i \circ b \in Fi(A)$, we have that $x \land y \in i \circ b \subseteq I \circ b$. Therefore, $I \circ b \in Fi(A)$.

 $(3) \Rightarrow (4)$ Let $a \in A$ and $F \in Fi(A)$. It follows easily that $1 \in a \circ F$ and that $a \circ F$ is increasing. Let $x, y \in a \circ F$ such that $x \wedge y$ exists. Then there exist $f_1, f_2 \in F$ such that $f_1 \leq x \lor a$ and $f_2 \leq y \lor a$. So, $x \lor a, y \lor a \in F$. Since $x \lor a, y \lor a \in [a]$, $(x \lor a) \land_a (y \lor a)$ exists and $(x \lor a) \land_a (y \lor a) \in F$. As $(x \lor a) \land_a (y \lor a) \leq x \lor a$ and $(x \lor a) \land_a (y \lor a) \leq y \lor a$, we have $x, y \in a \circ ((x \lor a) \land_a (y \lor a))$. By Remark 1, $a \circ ((x \lor a) \land_a (y \lor a)) = (a] \circ ((x \lor a) \land_a (y \lor a))$ and by hypothesis $(a] \circ ((x \lor a) \land_a (y \lor a)) = (a) \circ ((x \lor a) \land_a (y \lor a))$.

 $(y \lor a)) \in Fi(A)$. Then $x \land y \in a \circ ((x \lor a) \land_a (y \lor a))$, but as $(x \lor a) \land_a (y \lor a) \in F$ we have that $x \land y \in a \circ F$. So, $a \circ F \in Fi(A)$.

 $(4) \Rightarrow (5)$ Let $I \in Id(A)$ and $F \in Fi(A)$. It is easy to see that $1 \in I \circ F$ and that $I \circ F$ is increasing. Let $x, y \in I \circ F$ such that $x \wedge y$ exists. Then there exist $(i_1, f_1), (i_2, f_2) \in I \times F$ such that $x \in i_1 \circ f_1$ and $y \in i_2 \circ f_2$, i.e., $f_1 \leq x \lor i_1$ and $f_2 \leq$ $y \lor i_2$. Let $i = i_1 \lor i_2 \in I$. On the other hand, $x \lor f_1, y \lor f_2 \in F$ and $(x \lor f_1) \land_{x \wedge y}$ $(y \lor f_2)$ exists in $[x \land y)$. It follows that $(x \lor f_1) \land_{x \wedge y} (y \lor f_2) \in F$. We consider $i \circ F$. We note that $(x \lor f_1) \land_{x \wedge y} (y \lor f_2) \leq x \lor i$ and $(x \lor f_1) \land_{x \wedge y} (y \lor f_2) \leq y \lor i$. So, $x, y \in i \circ F$. By hypothesis $i \circ F \in Fi(A)$ and $x \land y \in i \circ F$, i.e., there exists $f \in F$ such that $f \leq (x \land y) \lor i$. Then $x \land y \in i \circ f$ and $x \land y \in I \circ F$. Thus, $I \circ F \in Fi(A)$.

 $(5) \Rightarrow (1)$ Let $a \in A$ and $x, y, z \in [a)$. We know that the inequality $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$ always holds. We prove the other inequality. As $(x \lor y) \land (x \lor z) \le y \lor x$ and $(x \lor y) \land (x \lor z) \le z \lor x$ then $y, z \in x \circ ((x \lor y) \land (x \lor z))$. By Remark 1, $x \circ ((x \lor y) \land (x \lor z)) = (x] \circ [(x \lor y) \land (x \lor z))$ and by hypothesis $(x] \circ [(x \lor y) \land (x \lor z)) \in Fi(A)$. So, $y \land z \in (x] \circ [(x \lor y) \land (x \lor z))$, i.e., there exist $i \in (x]$ and $f \in [(x \lor y) \land (x \lor z))$ such that $y \land z \in i \circ f$. So, $f \le (y \land z) \lor i$. It follows that $(x \lor y) \land (x \lor z) \le x \lor (y \land z)$ and [a) is a bounded distributive lattice. \Box

In lattice theory, a lattice is distributive if and only if every proper ideal is an intersection of prime ideals. Here we present a generalization of this characterization.

Theorem 5. Let A be a nearlattice. The following conditions are equivalent:

- (1) A is distributive.
- (2) Every proper ideal of A is an intersection of prime ideals.

Proof. (1) \Rightarrow (2) See Corollary 2.9 of [3].

 $(2) \Rightarrow (1)$ Let $a, b \in A$. We prove that $a \circ b \in Fi(A)$. It is easy to see that $1 \in a \circ b$ and that $a \circ b$ is increasing. Let $x, y \in a \circ b$ such that $x \wedge y$ exists. Let $Q = ((x \wedge y) \vee a)$ and suppose that $b \notin Q$. So, Q is a proper ideal and by hypothesis we have that $Q = \bigcap \{P \in X(A) : Q \subseteq P\}$. Then there exists $P \in X(A)$ such that $(x \wedge y) \vee a \in P$ and $b \notin P$. So, $x \wedge y \in P$ and $a \in P$. As P is prime, $x \in P$ or $y \in P$. Suppose that $x \in P$. Then $x \vee a \in P$ and since $x \in a \circ b$, i.e., $b \leq x \vee a$, we have that $b \in P$ which is a contradiction. The same reasoning applies when $y \in P$. Then $b \in Q$ and $b \leq (x \wedge y) \vee a$. Therefore, $x \wedge y \in a \circ b$ and $a \circ b \in Fi(A)$. It follows from Theorem 4 that A is distributive.

We study a new characterization of distributive nearlattices in terms of the notion of relative maximal ideal with respect to a set.

Definition 4. Let A be a semilattice. Let S be an increasing subset of A. An ideal I of A is called a *relative maximal ideal with respect to S*, when I is maximal among all the ideals which are disjoint to S.

Lemma 2. Let A be a semilattice. Let $I \in Id(A)$ and $F \in Fi(A)$. Then I is a relative maximal ideal with respect to F if and only if $(H \circ F) \cap I \neq \emptyset$ for all $H \in Id(A)$ such that $H \not\subseteq I$.

Proof. Suppose that *I* is a relative maximal ideal with respect to *F*. Let $H \in Id(A)$ such that $H \not\subseteq I$. We consider the ideal $I \lor H$. Since *I* is a relative maximal ideal with respect to *F* and $I \subseteq I \lor H$ then $(I \lor H) \cap F \neq \emptyset$, i.e., there exist $f \in F, i \in I$ and $h \in H$ such that $f \leq i \lor h$. So, $i \in h \circ f$ and $i \in H \circ F$. Therefore, $(H \circ F) \cap I \neq \emptyset$.

Assume that $(H \circ F) \cap I \neq \emptyset$ for all $H \in Id(A)$ such that $H \not\subseteq I$. Suppose that I is not a relative maximal ideal with respect to F. Then there exists $J \in Id(A)$ such that $I \subset J$ and $J \cap F = \emptyset$. Since $J \not\subseteq I$, by hypothesis we get $(J \circ F) \cap I \neq \emptyset$. Then there exist $i \in I$ and $(j, f) \in J \times F$ such that $i \in j \circ f$, i.e., $f \leq i \lor j$. As $i \in I \subset J$ and $i \lor j \in J$, we have that $f \in J$. So, $J \cap F \neq \emptyset$ which is a contradiction.

Theorem 6. Let A be a nearlattice. The following conditions are equivalent:

(1) A is distributive.

(2) Every relative maximal ideal I with respect to $a \circ b$ is prime for all $a, b \in A$.

Proof. (1) \Rightarrow (2) Let $a, b \in A$ and $I \in Id(A)$ such that I is a relative maximal ideal with respect to $a \circ b$. We prove that I is prime. Let $x, y \in A$ such that $x \wedge y$ exists and $x \wedge y \in I$. Suppose that $x \notin I$ and $y \notin I$. Let $I_x = I \lor (x]$ and $I_y = I \lor (y]$. Then $I_x \cap a \circ b \neq \emptyset$ and $I_y \cap a \circ b \neq \emptyset$, i.e., there exist $f_1, f_2 \in a \circ b$ and $i_1, i_2 \in I$ such that $f_1 \leq x \lor i_1$ and $f_2 \leq y \lor i_2$. Let $i = i_1 \lor i_2 \in I$. So, $x \lor i, y \lor i \in a \circ b$ and $(x \lor i) \land_i (y \lor i)$ exists in [i). From Theorem 4, it follows that $a \circ b \in Fi(A)$ and $(x \lor i) \land_i (y \lor i) = (x \land y) \lor i \in a \circ b$. On the other hand, as I is an ideal, $(x \land y) \lor i \in I$. Thus, $I \cap a \circ b \neq \emptyset$ which is a contradiction. Then I is prime.

 $(2) \Rightarrow (1)$ By Theorem 4, it is sufficient to prove that $a \circ b \in Fi(A)$. It is easy to see that $1 \in a \circ b$ and that $a \circ b$ is increasing. Let $x, y \in a \circ b$ such that $x \wedge y$ exists. Suppose that $x \wedge y \notin a \circ b$. Then $(x \wedge y] \cap a \circ b = \emptyset$. We consider the following family

$$\mathcal{F} = \{I \in \mathrm{Id}(A) : (x \wedge y] \subseteq I \text{ and } I \cap a \circ b = \emptyset\}.$$

So, $\mathcal{F} \neq \emptyset$. By Zorn's Lemma there exists a maximal element $M \in \mathcal{F}$. It is not difficult to show that M is a relative maximal ideal with respect to $a \circ b$. So, $x \land y \in M$ and by hypothesis M is prime. Then $x \in M$ or $y \in M$. Thus, $M \cap a \circ b \neq \emptyset$ which is a contradiction. Therefore, $x \land y \in a \circ b$ and $a \circ b \in Fi(A)$.

3. NORMAL AND P-LINEAR NEARLATTICES

Let *A* be a semilattice and $a \in A$. From Definition 3 we have the following relative annihilator

$$a^{\mathsf{T}} = a \circ 1 = \{ x \in A : x \lor a = 1 \},\$$

called the *annihilator of a*. We have the following result.

70

Lemma 3. Let A be a distributive nearlattice. Let $a, b \in A$ and $I \in Id(A)$. Then

- (1) $I \cap a \circ b = \emptyset$ if and only if there exists $Q \in X(A)$ such that $I \subseteq Q$, $a \in Q$ and $b \notin Q$.
- (2) $I \cap a^{\mathsf{T}} = \emptyset$ if and only if there exists $Q \in X(A)$ such that $I \subseteq Q$ and $a \in Q$.
- (3) $I \cap a^{\mathsf{T}} = \emptyset$ if and only if there exists $U \in \text{Idm}(A)$ such that $I \subseteq U$ and $a \in U$.
- (4) $U \in \text{Idm}(A)$ if and only if for all $a \in A$, $a \notin U$ if and only if $U \cap a^{\mathsf{T}} \neq \emptyset$.

Proof. (1) Let $J \in Id(A)$ such that $J \cap a \circ b = \emptyset$. Let $H = I(J \cup \{a\})$. We prove that $H \cap [b] = \emptyset$. If $x \in H \cap [b]$ then there exists $j \in J$ such that $x \leq j \lor a$ and $b \leq x$. So, $b \leq j \lor a$ and $j \in a \circ b$ which is a contradiction. Then $H \cap [b] = \emptyset$ and by Theorem 2 there exists $Q \in X(A)$ such that $J \subseteq Q$, $a \in Q$ and $b \notin Q$.

The other direction is immediate.

(2) It follows from (1).

(3) If $I \cap a^{\mathsf{T}} = \emptyset$ then there exists $Q \in X(A)$ such that $I \subseteq Q$ and $a \in Q$. We consider the family

$$\mathcal{Z} = \{ R \in \mathrm{Id}(A) - \{A\} : I \subseteq R \text{ and } a \in R \}.$$

So, $Z \neq \emptyset$ because $Q \in Z$. Then, by Zorn's Lemma, there exists a maximal element $U \in Z$. It is clear that U is proper. We prove that U is a maximal ideal. Let $b \in A$ such that $b \notin U$. If $U \cap b^{\mathsf{T}} = \emptyset$ then $H = I(U \cup \{b\})$ is a proper ideal. Otherwise, if $1 \in H$ then there exists $p \in U$ such that $p \lor b = 1$, i.e., $p \in U \cap b^{\mathsf{T}}$ which is a contradiction. So $U \subset H$ and $H \in Z$, which is a contradiction because U is maximal. Then $U \cap b^{\mathsf{T}} \neq \emptyset$ and there exists $c \in U$ such that $c \lor b = 1$. Therefore, H = A and U is maximal.

Suppose that $I \cap a^{\mathsf{T}} \neq \emptyset$. Then there exists $i \in I$ such that $i \lor a = 1$. So, there exists $U \in \text{Idm}(A)$ such that $I \subseteq Q$ and $a \in Q$. Then $i \lor a = 1 \in U$, which is a contradiction because U is maximal.

(4) Let $U \in \text{Idm}(A)$. Suppose that $a \notin U$. As U is maximal, $I(U \cup \{a\}) = A$. Then $1 \in I(U \cup \{a\})$, i.e., there exists $p \in U$ such that $p \lor a = 1$. So, $p \in a^{\intercal}$ and $U \cap a^{\intercal} \neq \emptyset$.

If $U \cap a^{\mathsf{T}} \neq \emptyset$ and $a \in U$ then there exists $p \in U$ such that $p \lor a = 1$. Thus, $1 \in U$ which is a contradiction.

Conversely, let $I \in Id(A)$ such that $U \subset I$. Then there exists $a \in I$ such that $a \notin U$. So, $U \cap a^{\mathsf{T}} \neq \emptyset$, i.e., there exists $p \in U$ such that $p \lor a = 1$. Since $U \subset I$, we have that $p \in I$ and $a \lor p = 1 \in I$. Therefore, I = A and U is maximal.

We recall that a bounded distributive lattice is *normal* if each prime ideal contains a unique minimal prime ideal. This concept was introduced by Cornish in [8] and extended to the class of distributive semilattices in [13]. Now, we introduce a generalization of this notion.

Definition 5. Let *A* be a distributive nearlattice. We say that *A* is *normal* if each prime ideal is contained in a unique maximal ideal.

We say that *A* is *p*-linear if the family of prime ideals which contain a prime ideal is a chain.

Remark 2. We note that every normal nearlattice is p-linear.

Remark 3. If A is a bounded distributive lattice then the Definition 5 is equivalent to saying that every prime filter contains a unique minimal filter, which is a concept dual to the definition given by Cornish in [8].

The following results characterize normal nearlattices through annihilators.

Lemma 4. Let A be a distributive nearlattice. The following conditions are equivalent:

- (1) A is normal.
- (2) For every $P \in X(A)$ and for all $a, b \in A$ with $a \lor b = 1$, $P \cap a^{\mathsf{T}} \neq \emptyset$ or $P \cap b^{\mathsf{T}} \neq \emptyset$.

Proof. (1) \Rightarrow (2) Let $P \in X(A)$ and $a, b \in A$ such that $a \lor b = 1$. Suppose that $P \cap a^{\mathsf{T}} = \emptyset$ and $P \cap b^{\mathsf{T}} = \emptyset$. So, by Lemma 3, there exist $U_1, U_2 \in \text{Idm}(A)$ such that $P \subseteq U_1, P \subseteq U_2, a \in U_1$ and $b \in U_2$. Since A is normal, $U_1 = U_2$. Then $a, b \in U_1$, but $a \lor b = 1 \in U_1$ which is a contradiction. Thus, $P \cap a^{\mathsf{T}} \neq \emptyset$ or $P \cap b^{\mathsf{T}} \neq \emptyset$.

(2) \Rightarrow (1) Let $P \in X(A)$ and $U_1, U_2 \in \text{Idm}(A)$ such that $P \subseteq U_1$ and $P \subseteq U_2$. If $U_1 \neq U_2$ then there exists $a \in U_1$ such that $a \notin U_2$. As U_2 is maximal, $I(U_2 \cup \{a\}) = A$. Then $1 \in I(U_2 \cup \{a\})$, i.e., there exists $b \in U_2$ such that $a \lor b = 1$. On the other hand, by Lemma 3, $P \cap a^{\mathsf{T}} = \emptyset$ and $P \cap b^{\mathsf{T}} = \emptyset$, which contradicts the assumption.

Lemma 5. Let A be a distributive nearlattice. The following conditions are equivalent:

(1) A is normal.

(2) For all $a, b \in A$, $(a \lor b)^{\mathsf{T}} = F(a^{\mathsf{T}} \cup b^{\mathsf{T}})$.

(3) For all $a, b \in A$ with $a \lor b = 1$, $F(a^{\mathsf{T}} \cup b^{\mathsf{T}}) = A$.

Proof. (1) \Rightarrow (2) Let $a, b \in A$. Note that the inclusion $F(a^{\mathsf{T}} \cup b^{\mathsf{T}}) \subseteq (a \lor b)^{\mathsf{T}}$ always holds. Let us prove the other inclusion. Suppose that there exists $x \in (a \lor b)^{\mathsf{T}}$ such that $x \notin F(a^{\mathsf{T}} \cup b^{\mathsf{T}})$. So, by Theorem 2, there exists $P \in X(A)$ such that $x \in P$ and $P \cap F(a^{\mathsf{T}} \cup b^{\mathsf{T}}) = \emptyset$. Since $a^{\mathsf{T}}, b^{\mathsf{T}} \subseteq F(a^{\mathsf{T}} \cup b^{\mathsf{T}})$, we have that $P \cap a^{\mathsf{T}} = \emptyset$ and $P \cap b^{\mathsf{T}} = \emptyset$. Then, by Lemma 3, there exist $U_1, U_2 \in \text{Idm}(A)$ such that $P \subseteq U_1, P \subseteq U_2, a \in U_1$ and $b \in U_2$. As A is normal, $U_1 = U_2$ and $a, b \in U_1$. Also, $x \in U_1$. Then $x \lor (a \lor b) = 1 \in U_1$ which is a contradiction. Therefore, $(a \lor b)^{\mathsf{T}} = F(a^{\mathsf{T}} \cup b^{\mathsf{T}})$.

 $(2) \Rightarrow (3)$ It is immediate.

 $(3) \Rightarrow (1)$ Let $P \in X(A)$ and $U_1, U_2 \in \text{Idm}(A)$ such that $P \subseteq U_1$ and $P \subseteq U_2$. Suppose that there exists $a \in U_1$ such that $a \notin U_2$. Since U_2 is maximal, there exists $b \in U_2$ such that $a \lor b = 1$. Then $F(a^{\mathsf{T}} \cup b^{\mathsf{T}}) = A$. Let $x \in P$. Hence, $x \in F(a^{\mathsf{T}} \cup b^{\mathsf{T}})$ and there exists $x_1, ..., x_n \in a^{\mathsf{T}} \cup b^{\mathsf{T}}$ such that $x_1 \land ... \land x_n$ exists and $x_1 \land ... \land x_n = x$.

72

So, $x_1 \wedge ... \wedge x_n \in P$ and by the primality of P there exists $x_i \in \{x_1, ..., x_n\}$ such that $x_i \in P$. If $x_i \in a^{\mathsf{T}}$ then $x_i \in U_1$ and $x_i \vee a = 1 \in U_1$, which is a contradiction because U_1 is proper. If $x_i \in b^{\mathsf{T}}$, we arrive at a contradiction. Thus, $U_1 \subseteq U_2$ and consequently $U_1 = U_2$. Therefore, A is normal.

Corollary 1. Let A be a distributive nearlattice. The following conditions are equivalent:

- (1) A is normal.
- (2) The application $\rho : A \to Fi(A)$ defined by $\rho(a) = a^{\mathsf{T}}$ is a homomorphism of *distributive nearlattices*.

Proof. It follows from Lemma 5.

Theorem 7. Let A be a distributive nearlattice. The following conditions are equivalent:

- (1) A is p-linear.
- (2) For every $P \in X(A)$ and for all $a, b \in A$, $P \cap a \circ b \neq \emptyset$ or $P \cap b \circ a \neq \emptyset$.
- (3) For all $a, b \in A$, $F((a \circ b) \cup (b \circ a)) = A$.

Proof. (1) \Rightarrow (2) Let $P \in X(A)$ and $a, b \in A$. Assume that $P \cap a \circ b = \emptyset$ and $P \cap b \circ a = \emptyset$. By Lemma 3 there exist $Q_1, Q_2 \in X(A)$ such that $P \subseteq Q_1, a \in Q_1$, $b \notin Q_1, P \subseteq Q_2, b \in Q_2$, and $a \notin Q_2$. As A is p-linear, $Q_1 \subseteq Q_2$ or $Q_2 \subseteq Q_1$. If $Q_1 \subseteq Q_2$ then $a \in Q_2$, which is impossible. If $Q_2 \subseteq Q_1$, then $b \in Q_1$ which is a contradiction. Thus, $P \cap a \circ b \neq \emptyset$ or $P \cap b \circ a \neq \emptyset$.

 $(2) \Rightarrow (3)$ Suppose that there exist $a, b \in A$ such that $F((a \circ b) \cup (b \circ a)) \neq A$. Then there exists $c \in A$ such that $c \notin F((a \circ b) \cup (b \circ a))$. Since $F((a \circ b) \cup (b \circ a)) \in Fi(A)$, by Theorem 2 there exists $P \in X(A)$ such that $c \in P$ and $P \cap F((a \circ b) \cup (b \circ a)) = \emptyset$. So, $P \cap a \circ b = \emptyset$ and $P \cap b \circ a = \emptyset$ which is impossible. Thus, $F((a \circ b) \cup (b \circ a)) = A$.

(3) \Rightarrow (1) Let $P, Q_1, Q_2 \in X(A)$ such that $P \subseteq Q_1$ and $P \subseteq Q_2$. If Q_1 and Q_2 are incomparable, then there exist $a, b \in A$ such that $a \in Q_1 - Q_2$ and $b \in Q_2 - Q_1$. Let $x \in P$. Since $A = F((a \circ b) \cup (b \circ a))$, there exist $x_1, ..., x_n \in (a \circ b) \cup (b \circ a)$ such that $x_1 \land ... \land x_n$ exists and $x_1 \land ... \land x_n = x$. So, $x_1 \land ... \land x_n \in P$ and by the primality of P there exists $x_i \in \{x_1, ..., x_n\}$ such that $x_i \in P$. If $x_i \in a \circ b$, then $b \le x_i \lor a$. As $x_i, a \in Q_1$, we have $x_i \lor a \in Q_1$ and $b \in Q_1$ which is a contradiction. Similarly, if $x_i \in b \circ a$ we arrive at a contradiction. Thus, Q_1 and Q_2 are comparable and A is p-linear.

4. The lattice of filters

In this section we study the structure of the lattice of filters of a distributive nearlattice. Recall that a Heyting algebra is an algebra $\langle A, \lor, \land, \Rightarrow, 0, 1 \rangle$ of type (2, 2, 2, 0, 0)such that $\langle A, \lor, \land, 0, 1 \rangle$ is a bounded distributive lattice and the operation \Rightarrow satisfies the following condition: $a \land b \le c$ if and only if $a \le b \Rightarrow c$ for all $a, b, c \in A$. The *pseudocomplement* of an element $a \in A$ is the element $a^* = a \Rightarrow 0$.

Let A be a distributive nearlattice. For each pair $F, H \in Fi(A)$ let us define the subset $F \triangleright H$ of A as follows:

$$F \vartriangleright H = \{a \in A : [a) \cap F \subseteq H\}$$

Theorem 8. Let A be a distributive nearlattice. Let $F, H \in Fi(A)$. Then

- (1) $F \triangleright H \in Fi(A)$.
- (2) $F \triangleright H = \{a \in A : \forall f \in F \exists h \in H \ (h \le a \lor f)\}.$
- (3) The structure $\langle Fi(A), \forall, \overline{\wedge}, \rhd, \{1\}, A \rangle$ is a Heyting algebra.

Proof. (1) Let $F, H \in Fi(A)$. We prove that $F \triangleright H \in Fi(A)$. Since $[1) \cap F = \{1\} \subseteq H$, then $1 \in F \triangleright H$. Let $a, b \in A$ such that $a \leq b$ and $a \in F \triangleright H$. Thus, $[b) \subseteq [a)$ and $[a) \cap F \subseteq H$. It follows that $[b) \cap F \subseteq H$, i.e., $b \in F \triangleright H$. Let $a, b \in F \triangleright H$ and suppose that $a \wedge b$ exists. By Theorem 3, the lattice Fi(A) is distributive and

$$[a \wedge b) \cap F = ([a) \leq [b)) \cap F$$
$$= ([a) \cap F) \leq ([b) \cap F)$$
$$\subseteq H.$$

Therefore, $a \land b \in F \triangleright H$ and $F \triangleright H \in Fi(A)$.

(2) Let $F, H \in Fi(A)$. Let $X = \{a \in A : \forall f \in F \exists h \in H \ (h \le a \lor f)\}$ and $a \in X$. We prove that $a \in F \triangleright H$, i.e., $[a) \cap F \subseteq H$. If $x \in [a) \cap F$, then $a \le x$ and $x \in F$. Since $a \in X$ and $x \in F$, there exists $h \in H$ such that $h \le a \lor x = x$. As H is a filter, $x \in H$. So, $a \in F \triangleright H$. Conversely, let $a \in F \triangleright H$ and $f \in F$. Then $a \lor f \in [a) \cap F$ and by hypothesis, $a \lor f \in H$. It follows that $a \in X$. Therefore, $F \triangleright H = X$.

(3) By Theorem 3, $\langle Fi(A), \forall, \overline{\wedge}, \{1\}, A \rangle$ is a bounded distributive lattice. Let $F, G, H \in Fi(A)$. We prove that $F \cap G \subseteq H$ if and only if $F \subseteq G \triangleright H$. Suppose that $F \cap G \subseteq H$ and let $a \in F$. If $x \in [a) \cap G$, then $a \leq x$ and $x \in G$. Therefore $x \in F \cap G$ and by hypothesis $x \in H$, i.e., $F \subseteq G \triangleright H$. Conversely, let $x \in F \cap G$. By hypothesis $F \subseteq G \triangleright H$, then $x \in G \triangleright H$. As $[x) \cap G \subseteq H$, we have that $x \in H$. \Box

Remark 4. As a particular case, we have $a \circ b = [a] \triangleright [b]$. Indeed

$$x \in a \circ b \quad \text{iff} \quad b \le x \lor a \qquad \text{iff} \quad [x \lor a) \subseteq [b) \\ \text{iff} \quad [x) \cap [a] \subseteq [b) \quad \text{iff} \quad x \in [a) \succ [b).$$

Then we can write the annihilator of *a* relative to *b* in terms of the binary operation \triangleright .

Note that if $F \in Fi(A)$, then $F^* = F \triangleright \{1\} = \{a \in A : [a) \cap F = \{1\}\}$. The following result describes the filter F^* in a different manner.

Proposition 2. Let A be a distributive nearlattice. Then for every $F \in Fi(A)$, $F^* = \{a \in A : \forall f \in F (a \lor f = 1)\}.$ *Proof.* Let $C = \{a \in A : \forall f \in F (a \lor f = 1)\}$ and $a \in C$. We prove that $[a) \cap F = \{1\}$. Let $x \in A$ such that $a \le x$ and $x \in F$. Then $x = a \lor x = 1$. Thus, $a \in F^*$. Conversely, let $a \in F^*$. Then $[a) \cap F = \{1\}$. Since $a \le a \lor f$ and $f \le a \lor f$ for every $f \in F$, and as F is a filter, $a \lor f \in [a] \cap F$. So, $a \lor f = 1$ for each $f \in F$. Therefore, $a \in C$ and $F^* = C$.

Remark 5. We note that $[a)^* = \{x \in A : x \lor a = 1\}$, i.e., $a^{\mathsf{T}} = [a)^*$.

We prove that the pseudocomplement of a subset X is the pseudocomplement of the filter generated by X. This result was proved for Tarski algebras in [5].

Theorem 9. Let A be a distributive nearlattice. Then for every subset $X \subseteq A$, we have $X^* = F(X)^*$.

Proof. Since $X \subseteq F(X)$, we have that $F(X)^* \subseteq X^*$. Conversely, let $x \in X^*$. We prove that for every $a \in F(X)$, $x \lor a = 1$. Suppose that there exists $a \in F(X)$ such that $x \lor a \neq 1$. Then there exist $x_1, ..., x_n \in [X]$ such that $x_1 \land ... \land x_n$ exists and $x_1 \land ... \land x_n = a$. So, there exist $y_1, ..., y_n \in X$ such that $y_i \leq x_i$ for all $i \in \{1, ..., n\}$. As $x \in X^*$, $x \lor y_i = 1$ for all $y_i \in \{y_1, ..., y_n\}$. Then $x \lor x_i = 1$ for all $x_i \in \{x_1, ..., x_n\}$. Since $x \lor a \neq 1$, by Theorem 2, there exists $P \in X(A)$ such that $x \lor a \in P$ and $1 \notin P$. Then $x_1 \land ... \land x_n \in P$ and as P is a prime ideal, there exists $x_i \in \{x_1, ..., x_n\}$ such that $x_i \in P$. On the other hand, $x \lor a \in P$ and $x \in P$. So, $x \lor x_i = 1 \in P$ which is a contradiction. Thus, $x \lor a = 1$ for all $a \in F(X)$ and consequently $x \in F(X)^*$.

5. Semi-homomorphisms preserving annihilators

Our next aim is to study a particular class of semi-homomorphisms: semi-homomorphisms preserving annihilators. We give some characterizations in terms of prime and maximal ideals.

Definition 6. Let *A*, *B* be two distributive nearlattices and let $h : A \to B$ be a semi-homomorphism. We say that *h* is a *semi-homomorphism preserving annihilators*, or T-*semi-homomorphism*, if $F(h(a^{T})) = h(a)^{T}$ for all $a \in A$.

Remark 6. We note that $F(h(a^{\mathsf{T}})) \subseteq h(a)^{\mathsf{T}}$ for all $a \in A$. If $x \in F(h(a^{\mathsf{T}}))$ then there exist $x_1, ..., x_n \in [h(a^{\mathsf{T}}))$ such that $x_1 \wedge ... \wedge x_n$ exists and $x_1 \wedge ... \wedge x_n = x$. As $x_1, ..., x_n \in [h(a^{\mathsf{T}}))$, there exist $y_1, ..., y_n \in h(a^{\mathsf{T}})$ such that $y_i \leq x_i$ for all $i \in$ $\{1, ..., n\}$. So, there exist $t_1, ..., t_n \in a^{\mathsf{T}}$ such that $h(t_i) = y_i$ for $1 \leq i \leq n$. Thus, $t_1 \vee a = \cdots = t_n \vee a = 1$ and since h is a semi-homomorphism, we have that $y_1 \vee h(a) =$ $\cdots = y_n \vee h(a) = 1$. Then $x \vee h(a) = [(y_1 \vee x_1) \wedge ... \wedge (y_n \vee x_n)] \vee h(a)$. As [x) is a bounded distributive lattice, $x \vee h(a) = (y_1 \vee x_1 \vee h(a)) \wedge ... \wedge (y_n \vee x_n \vee h(a)) = 1$. Therefore, $x \vee h(a) = 1$ and $x \in h(a)^{\mathsf{T}}$.

Let $h : A \to B$ be a semi-homomorphism between distributive nearlattices. In general, $h^{-1}(P) \notin X(A)$ for each $P \in X(B)$. Now, we prove that if P is maximal and h is a τ -semi-homomorphism, then $h^{-1}(P)$ is maximal and therefore prime.

Lemma 6. Let A, B be two distributive nearlattices and let $h : A \to B$ be a T -semi-homomorphism. Then $h^{-1}(P) \in \mathrm{Idm}(A)$ for every $P \in \mathrm{Idm}(B)$.

Proof. Let $P \in \text{Idm}(B)$. Since h is a semi-homomorphism, $h^{-1}(P)$ is an ideal. As $h(1) = 1 \notin P$, we have that $h^{-1}(P)$ is proper. Let $a \in A$ such that $a \notin h^{-1}(P)$. Then $h(a) \notin P$ and as P is maximal, by Lemma 3, $P \cap h(a)^{\mathsf{T}} \neq \emptyset$. So, there exists $x \in A$ such that $x \in P \cap F(h(a^{\mathsf{T}})) \neq \emptyset$, i.e., there exist $x_1, ..., x_n \in [h(a^{\mathsf{T}}))$ such that $x_1 \wedge ... \wedge x_n$ exists and $x_1 \wedge ... \wedge x_n = x$. Thus, there exist $y_1, ..., y_n \in h(a^{\mathsf{T}})$ such that $y_i \leq x_i$ for all $i \in \{1, ..., n\}$. It follows that there exist $t_1, ..., t_n \in a^{\mathsf{T}}$ such that $h(t_i) = y_i$ for $1 \leq i \leq n$. Then $t_1 \lor a = ... = t_n \lor a = 1$ and since h is a semi-homomorphism, we have that $y_1 \lor h(a) = ... = y_n \lor h(a) = 1$. As

$$x = x_1 \land \dots \land x_n = (x_1 \lor y_1) \land \dots \land (x_n \lor y_n) \in P$$

and *P* is prime, there exists $i \in \{1, ..., n\}$ such that $x_i \lor y_i \in P$. So, $y_i = h(t_i) \in P$, i.e., $t_i \in h^{-1}(P)$ and $h^{-1}(P) \cap a^{\mathsf{T}} \neq \emptyset$. Conversely, it is easy to prove that if $h^{-1}(P) \cap a^{\mathsf{T}} \neq \emptyset$, then $a \notin h^{-1}(P)$. Therefore, by Lemma 3, $h^{-1}(P) \in \text{Idm}(A)$. \Box

Theorem 10. Let A, B be two distributive nearlattices and let $h : A \rightarrow B$ be a semi-homomorphism. Then the following conditions are equivalent:

- (1) h is a τ -semi-homomorphism.
- (2) For all $P \in X(B)$ and for every $Q \in X(A)$ such that $h^{-1}(P) \subseteq Q$, there exists $D \in X(B)$ such that $P \subseteq D$ and $Q \subseteq h^{-1}(D)$.
- (3) $\text{Idm}(A) \cap [h^{-1}(P)) \subseteq h^{-1}[X(B) \cap [P)]$ for all $P \in X(B)$.

Proof. (1) \Rightarrow (2) Let $P \in X(B)$ and $Q \in X(A)$ such that $h^{-1}(P) \subseteq Q$. Let us consider the ideal $H = I(P \cup h(Q))$. We note that H is a proper ideal. Indeed, if we assume otherwise, there exists $p \in P$ and $q \in Q$ such that $p \lor h(q) = 1$. So, $p \in h(q)^{\mathsf{T}} = F(h(q^{\mathsf{T}}))$. Then, there exist $x_1, ..., x_n \in [h(q^{\mathsf{T}}))$ such that $x_1 \land ... \land x_n$ exists and $x_1 \land ... \land x_n = p$. So, there exist $y_1, ..., y_n \in h(q^{\mathsf{T}})$ such that $y_i \leq x_i$ for all $i \in \{1, ..., n\}$. It follows that there exist $t_1, ..., t_n \in q^{\mathsf{T}}$ such that $h(t_i) = y_i$ for $1 \leq i \leq n$. Then $t_1 \lor q = ... = t_n \lor q = 1$ and since h is a semi-homomorphism, we have that $y_1 \lor h(q) = ... = y_n \lor h(q) = 1$. As $x = x_1 \land ... \land x_n = (x_1 \lor y_1) \land ... \land (x_n \lor y_n) \in P$ and P is prime, there exists $i \in \{1, ..., n\}$ such that $x_i \lor y_i \in P$. So, $y_i = h(t_i) \in P$, i.e., $t_i \in h^{-1}(P) \subseteq Q$ and since $q \in Q$, $t_i \lor q = 1 \in Q$ which is a contradiction. Therefore, H is a proper ideal and there exists $D \in X(B)$ such that $P \subseteq D$ and $Q \subseteq h^{-1}(D)$.

(2) \Rightarrow (3) Let $P \in X(B)$ and $Q \in \text{Idm}(A) \cap [h^{-1}(P))$. Then $Q \in X(A)$ and $h^{-1}(P) \subseteq Q$. By hypothesis, there exists $D \in X(B)$ such that $P \subseteq D$ and $Q \subseteq h^{-1}(D)$. Since $h^{-1}(D)$ is an ideal and Q is maximal, $Q = h^{-1}(D)$. So, $D \in h^{-1}[X(B) \cap [P)]$ and $\text{Idm}(A) \cap [h^{-1}(P)) \subseteq h^{-1}[X(B) \cap [P)]$.

 $(3) \Rightarrow (1)$ Let $a \in A$. We prove that $h(a)^{\mathsf{T}} \subseteq F(h(a^{\mathsf{T}}))$. Suppose that there exists $x \in h(a)^{\mathsf{T}}$ such that $x \notin F(h(a^{\mathsf{T}}))$. By Theorem 2, there exists $P \in X(A)$ such that

 $x \in P$ and $P \cap F(h(a^{\mathsf{T}})) = \emptyset$. Then,

$$P \cap h(a)^{\mathsf{T}} \neq \emptyset$$
 and $P \cap h(a^{\mathsf{T}}) = \emptyset$.

Thus, $h^{-1}(P) \cap a^{\mathsf{T}} = \emptyset$ and $h^{-1}(P) \in \mathrm{Id}(A)$. By Lemma 3, there exists $U \in \mathrm{Idm}(A)$ such that $h^{-1}(P) \subseteq U$ and $a \in U$. So, we get that

$$U \in \mathrm{Idm}(A) \cap [h^{-1}(P)) \subseteq h^{-1}[X(B) \cap [P)].$$

Then, there exists $D \in X(B)$ such that $P \subseteq D$ and $U = h^{-1}(D)$. Since $a \in U$, $h(a) \in D$ and $D \cap h(a)^{\mathsf{T}} = \emptyset$. On the other hand, $P \cap h(a)^{\mathsf{T}} \neq \emptyset$ and $P \subseteq D$. Thus, $D \cap h(a)^{\mathsf{T}} \neq \emptyset$ which is a contradiction. Therefore, $h(a)^{\mathsf{T}} \subseteq F(h(a^{\mathsf{T}}))$ and h is a T-semi-homomorphism.

It is possible to give another characterization of the T-semi-homomorphisms in normal nearlattices.

Proposition 3. Let A, B be two distributive nearlattices and let $h: A \to B$ be a semi-homomorphism. Suppose that B is normal. Then h is a τ -semi-homomorphism if and only if:

- (1) For all $P \in X(B)$ and for all $Q_1, Q_2 \in \text{Idm}(A)$, if $h^{-1}(P) \subseteq Q_1 \cap Q_2$ then $Q_1 = Q_2.$ (2) $h^{-1}(P) \in \text{Idm}(A)$ for every $P \in \text{Idm}(B)$.

Proof. \Rightarrow) Suppose that h is a τ -semi-homomorphism. By Lemma 6, we only need to prove (1). Let $P \in X(B)$ and $Q_1, Q_2 \in \text{Idm}(A)$ such that $h^{-1}(P) \subseteq Q_1 \cap$ Q_2 . Suppose that there exists $a \in Q_1$ such that $a \notin Q_2$. Since Q_2 is maximal, there exists $b \in Q_2$ such that $a \lor b = 1$. Then $h(a \lor b) = h(a) \lor h(b) = h(1) = 1$. As B is normal, by Lemma 4, we have that $P \cap h(a)^{\mathsf{T}} \neq \emptyset$ or $P \cap h(b)^{\mathsf{T}} \neq \emptyset$, and since h is T -semi-homomorphism, $P \cap F(h(a^{\mathsf{T}})) \neq \emptyset$ or $P \cap F(h(b^{\mathsf{T}})) \neq \emptyset$. If $P \cap F(h(a^{\mathsf{T}})) \neq \emptyset$, then there exists $x \in P$ such that $x \in F(h(a^{\mathsf{T}}))$, i.e., there exist $x_1, \dots, x_n \in [h(a^{\mathsf{T}}))$ such that $x_1 \wedge \dots \wedge x_n$ exists and $x_1 \wedge \dots \wedge x_n = x$. So, there exist $y_1, ..., y_n \in h(a^{\mathsf{T}})$ such that $y_i \leq x_i$ for all $i \in \{1, ..., n\}$. It follows that there exist $t_1, \dots, t_n \in a^{\mathsf{T}}$ such that $h(t_i) = y_i$ for $1 \le i \le n$. Then, $t_1 \lor a = \dots = t_n \lor a = 1$ and since h is a semi-homomorphism, we have that $y_1 \lor h(a) = ... = y_n \lor h(a) = 1$. As $x = x_1 \land ... \land x_n = (x_1 \lor y_1) \land ... \land (x_n \lor y_n) \in P$ and P is prime, there exists $i \in \{1, ..., n\}$ such that $x_i \lor y_i \in P$. So, $y_i = h(t_i) \in P$ and $t_i \in h^{-1}(P) \subseteq Q_1 \cap Q_2$. Since $a, t_i \in Q_1$, we have that $t_i \lor a = 1 \in Q_1$, which is a contradiction because Q_1 is maximal. If $P \cap F(h(b^{\intercal})) \neq \emptyset$, we get also a contradiction. Therefore, $Q_1 \subseteq Q_2$ and consequently $Q_1 = Q_2$.

⇐) Let $a \in A$. We prove that $h(a)^{\intercal} \subseteq F(h(a^{\intercal}))$. Suppose that there exists $x \in$ $h(a)^{\mathsf{T}}$ such that $x \notin F(h(a^{\mathsf{T}}))$. Then there exists $P \in X(B)$ such that $x \in P$ and $P \cap F(h(a^{\mathsf{T}})) = \emptyset$, i.e., $P \cap h(a)^{\mathsf{T}} \neq \emptyset$ and $P \cap F(h(a^{\mathsf{T}})) = \emptyset$. Since B is normal, there exists a unique $Q \in \text{Idm}(B)$ such that $P \subseteq Q$. We note that $h(a) \notin Q$. Indeed, if $h(a) \in Q$ then $h(a)^{\mathsf{T}} \cap Q \neq \emptyset$ and there exists $x \in Q$ such that $h(a) \lor x = 1 \in Q$,

which is a contradiction. Since $a \notin h^{-1}(Q)$ and by (2) we have $h^{-1}(Q) \in \text{Idm}(A)$, then, by Lemma 3, $h^{-1}(Q) \cap a^{\mathsf{T}} \neq \emptyset$, i.e., $Q \cap F(h(a^{\mathsf{T}})) \neq \emptyset$. On the other hand, since $P \cap F(h(a^{\mathsf{T}})) = \emptyset$ then $h^{-1}(P) \cap a^{\mathsf{T}} = \emptyset$ and, by Lemma 3, there exists $U \in \text{Idm}(A)$ such that $h^{-1}(P) \subseteq U$ and $a \in U$. Then $h^{-1}(P) \subseteq h^{-1}(Q) \cap U$ and by (1), we have $h^{-1}(Q) = U$, which is a contradiction because $a \in U$ and $a \notin h^{-1}(Q)$. Therefore, $h(a)^{\mathsf{T}} = F(h(a^{\mathsf{T}}))$ and h is a T -semi-homomorphism.

REFERENCES

- [1] J. C. Abbott, "Semi-boolean algebra," Mat. Vestnik, no. 4, pp. 177–19, 1967.
- J. Araújo and M. Kinyon, "Independent axiom systems for nearlattice," *Czechoslovak Mathematical Journal*, no. 61, pp. 975–992, 2011.
- [3] S. Celani and I. Calomino, "Stone style duality for distributive nearlattices," *Algebra Universalis*, vol. 71, no. 127–153, 2014.
- [4] I. Chajda, R. Halaš, and J. Kühr, Semilattice Structures. Heldermann Verlag, Research and Exposition in Mathematics, 2007.
- [5] I. Chajda, R. Halaš, and J. Zedník, "Filters and annihilators in implication algebras," Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., no. 37, pp. 41–45, 1988.
- [6] I. Chajda and M. Kolařík, "Ideals, congruences and annihilators on nearlattices," Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 46 (2007), ., no. 46, pp. 25–33, 2007.
- [7] I. Chajda and M. Kolařík, "Nearlattices," Discrete Math., pp. 4906–4913., 2008.
- [8] W. H. Cornish, "Normal lattices," Australian Mathematical Society. Journal. Series A. Pure Mathemathics and Statistic, vol. 14, pp. 200–215, 1972.
- [9] W. H. Cornish and R. C. Hickman, "Weakly distributive semilattices," Acta Math. Acad. Sci. Hungar., vol. 32, pp. 5–16, 1978.
- [10] R. Halaš, "Subdirectly irreducible distributive nearlattices," *Miskolc Mathematical Notes*, pp. 141– 146, 2006.
- [11] R. C. Hickman, "Join algebras," Communications in Algebra, vol. 8, pp. 1653–1685, 1980.
- [12] M. Mandelker, "Relative annihilators in lattices," Duke Math. J., vol. 37, pp. 377–386, 1970.
- [13] Y. S. Pawar and A. D. Lokhande, "Normal semilattices," *Indian J. pure appl. Math.*, vol. 29, pp. 1245–1249, 1998.
- [14] J. C. Varlet, "Relative annihilators in semilattices," Bull. Austral. Math. Soc., vol. 9, pp. 169–185, 1973.

Authors' addresses

Ismael Calomino

CONICET and Departamento de Matemáticas, Facultad de Ciencias Exactas, Univ. Nac. del Centro, Pinto 399, 7000 Tandil, Argentina

E-mail address: calomino@exa.unicen.edu.ar

Sergio Celani

CONICET and Departamento de Matemáticas, Facultad de Ciencias Exactas, Univ. Nac. del Centro, Pinto 399, 7000 Tandil, Argentina

E-mail address: scelani@exa.unicen.edu.ar