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Abstract. We study algebraic invariants of the symmetric algebra Sym g (L) of the square-free
monomial ideal L = I,,—1 + J,—1 in the polynomial ring R = K[X1,..., Xn:Y1,..., Y], where
In—1 (resp. Jp—1) is generated by all square-free monomials of degree n — 1 in the variables
X1,...,Xpn (resp. Y1,....Yy). In particular, the dimension and the depth of Sympg(L) are
investigated by techniques of Grobner bases and theory of s-sequences.
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INTRODUCTION

Let R be a commutative noetherian ring and M be a finitely generated R-module
M =Rfi+--+Rfy. If (a;j),i =1,...,q, j = 1,..., p, is the matrix associated to
a free presentation of M, then Symg(M) = R[T1,...,Ty]/J, where J is generated
by the linear forms g; = Y°7_, a;;T; for j =1,.... p.

In [3], in order to study the symmetric algebra Symg(M), it is introduced the
concept of s-sequence for the generators f1,..., f; of M. We say that f1,..., f; is
an s-sequence for M if there exists a monomial order < for the monomials in the
variables T; with 71 < T < --- < T such that in<(J) = (J1T1,...,d4T4), with
di = (f1,..., fi—1) :R fi ideals of R.

The ideals I; are called the annihilator ideals of the sequence f1,..., fq. If M is
generated by an s-sequence, the standard algebraic invariants of M can be expressed
only by the ideals d; and in more cases the dimension can be computed in terms
of the annihilators ideal of the sequence. The crucial point is that we can easily
calculate the invariants, starting by the structure of the initial ideal in<(J) of J,
stated that it is 7 -linear, being T = {T1,..., T} the variables that correspond in the
presentation of symmetric algebra of M to the generators of M. A natural question
arises: if in<(J) is not linearly generated in the variables T7,...,T; and we write
in<(J)=Jp+ J*, where J* is the not linear part of i n<(J), what is the maximum
degree (with respect the variables 77,...,7y) of the monomial generators of J*?
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We are interested to check when J* is generated by monomials of minimum degree
(quadratic). Moreover, we are interested to describe explicitly a Grobner basis of J,
given the importance of the initial ideal in more open problems about the invariants
of Symg (M) ([2], [4], [5], [8D.

Now, let R = K[X1,...,Xn:Y1,...,Ym] be the polynomial ring on a field K in
two sets of variables and L be a mixed products ideal, as defined in [7]. In [6] the
authors selected the mixed products ideals that are generated by an s-sequence in
order to compute the value or a bound for standard invariants of the symmetric al-
gebra Sympg(L). The problem is open for ideals L that are not generated by an
s-sequence. In this paper we examine a first class of mixed products ideals not gen-
erated by an s-sequence. More precisely, we consider the ideal L = I, + J,—1 of
K[X1,...,Xn; Y1,...,Yy], with I,—1 (resp. J,—1) the monomial ideal of R gener-
ated by all square-free monomials of degree n — 1 in the variables X1,..., X, (resp.
Yi,....Y,).

The aim is to compute a Grobner basis of the relations ideal J of the symmetric
algebra Sym g(L) and to study some invariants of Sym g(L). More precisely, in sec-
tion 1 we give the structure of a Grobner basis of J with respect to the lexicographic
order <. It should be noted that we are able to compute the generators of in<(J)
not linear in the variables 77 ..., T, and to establish the degree. For n = m = 3, we
obtain the only case in which the not linear part of in<(J) is of degree two in the
variables 7;. In section 2, we compute the dimension and the depth of Sympg(L).
For the computation of the dimension, we inspire to the techniques used in the theory
of the s-sequences. More precisely, we consider the linear part J7, of in<(J) and
we apply the results given in [3] for computing dimension in terms of the annihilator
ideals of the monomial sequence generating L. Then we obtain that Sympg(L) is a
Cohen-Macaulay algebra.

1. GROBNER BASES OF RELATION IDEALS

In [3] the notion of s-sequence is introduced for finitely generated modules in a
noetherian ring R.

Foreveryi =1,...,q,weset Mi_1 = Rfi+---+ Rfi—1and J; = M;_1 :g f; be
the colon ideal. We set 4o = (0). Since M;/M;_1 >~ R/J;, so d; is the annihilator
of the cyclic module R/J;. d; is called annihilator ideal of the sequence f1,..., fy.

Let (ajj), fori =1,...,q, j = 1,..., p, be the relation matrix of M. The sym-
metric algebra Sym g (M) has a presentation R[T1,...,T4]/J, with J =(g1,...,8p)
where g; = Z?zlaijT,- for j =1,...,p.

We consider S = R[T1,...,T,] as a graded ring by assigning to each variable 7;
degree 1 and to the elements of R degree 0.

Let < be a monomial order on the monomials of S in the variables 7; such that
Ty < Ty < --- < T,. With respect to this term order, if f =) aoT%, where T% =
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T ~--T;‘q and o = (1,....0q) € N9, we put in<(f) = agT*, where T* is the
largest monomial in f such that ay # 0.

So we define the monomial ideal in<(J) = ({in<(f)|f € J}). In general we have
(I171,42T3,...,44Ty) € in<(J) and the two ideals coincide in degree 1.

The sequence fi,..., fy is an s-sequence for M if

(JlTl,Jsz,...,JqTq) = il’l<(J).

If R is a polynomial ring over a field and fi,..., f; are monomials of R, then we
have a criterion to be s-sequences. Set f;; = [f,f—lf,] for i # j, where [f;, f;] is
the greatest common divisor of the monomials f; and Jj. J is generated by g;; =
JijTj— fjiT; for 1 <i < j <g. The monomial sequence fi,..., fy is an s-sequence
if and only if g;;, for 1 <i < j <g¢, is a Grobner basis for J for a term order that
agrees with the order of the variables in S = R[T7, ..., T4]. Note that the annihilator
ideals of the monomial sequence f1,..., f; are the ideals d; = ( f1;, f2i,.... fi—1,i)
fori =1,...,q ([3D.

Now we consider the polynomial ring R = K[X1,...,Xn;Y1,..., Y] over a field
K in two sets of variables and the class of monomial ideals of mixed products of
R=K[X1,....Xn;Y1,.... Yn]:

L == [k.]r +Isjt,

where I (resp. J,) is the monomial ideal of R generated by all the square-free
monomials of degree k (resp. r) in the variables X1q,..., X, (resp. Y1,...,Ym).

In [6] the authors investigate in which cases these monomial ideals are generated
by an s-sequence. The system of generators of L is an s-sequence only in the follow-
ing cases:

DL=0I11Jn,2)L=0LJn,3) L= 1Jn+1hJn-1,9)L=Jn+1J1.

Set Ip = Jo = R, then we have the following case forr =0ands =0 L = I + J;
with 1 <k <inf{n,m}. We study this class of square-free monomial ideals for k =
n—1landn =m,then R = K[X1,...,.X;Y1,.... Y, Jand L = [, + J—1.

Since the property to be an s-sequence may depend on the order of the sequence,
in the sequel we will suppose L = (f1, f2,..., fan) Where f1 < fo < -+ < fa2, with
respect to the monomial order <., on Xq,..., Xy, Y1,..., Y, and X1 < Xp <--- <
Xy <Y1 <Y< <Yy,

J is generated by g;; = fi; T — f;i T; for 1 <i < j <2n. The monomial sequence
J1,..., f2n 1s an s-sequence if and only if g;; for 1 <i < j <2n is a Grobner basis
for J in K[X1,...,Xn:Y1,....Yu;T1,...,Tap], with X1 < Xp <+ < X, < Y1 <
Yo <o <Y, <T1 <Ty << Ty,

Theorem 1 ([0]). Let R = K[X1,...,Xy] be the polynomial ring over a field K
and Iy with 2 <k <n. The ideal I}, is generated by an s-sequence if and only if
k=n—1.
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Theorem 2. Let R = K[X1,..., Xn:Y1,...,Yy] be the polynomial ring over a field
Kand L = I,_1 + Jy—1. L is not generated by an s-sequence for any n # 2.

Proof. Forn =2, L =11+ J1 = (X1,...,X»,Y1,...,Yy) is generated by an s-
sequence for any admissible term order, since L is generated by a regular sequence
([3D.

Forn>2letL=1,_1+Jy—1 = (fl,fz,...,fn)+(fn+1,fn+2,...,f2n),where
fi< fa<-< fpand fu+1 < fut+2 <+ < fan withrespect to the monomial order
<Jex- L is generated by an s-sequence & G ={g;; = fi;T; — f;;iTi| 1<i<j =<

2n} is a Grobner basis for J < S(gij.gn1) g 0 for all i, j,h,l € {1,...,2n} and
gij # gn1- We consider a lexicographic Grobner basis for J with respect to the order
on the variables 71 < 15 < +++ < Ty,

The generators of L are the following: f; = X1---Xu—1, fo = X1-- Xn—2Xn,

=X Xn, far1=Y1Yu1, fnr2o=Y1YuoVu, ..., fon =Y2--- Yy

One has S(gin.g2.n+1) = —[jr:l:,]};:fl]TzTn — —[}:2,;7}21’1{:11]T1Tn+1 =

Yi-- Y 11T, —X2---Xn_2X,%T1 Tyn+1. By the structure of the generators of L
there is no gs; € G whose initial term with respect to the admissible order on the
variables 71 < Tp < -+ < T, divides the terms of S(g1,,82,n+1). It follows that
it is not possible to get a standard expression of S(g1,.,82.n+1) With respect G with
remainder 0. Hence G is not a Grobner basis for J. It follows that L can not be
generated by an s-sequence ([3], Lemma 1.2). In fact, from the theory of Grobner
bases, suppose that f1,..., f2, is a monomial s-sequence with respect to some ad-
missible term order <, then f1,..., f2,, is an s-sequence for any other admissible
term order, and as a consequence it is an s-sequence for the lexicographic order, that
is a contradiction. O

The main result of this section gives the structure of the Grobner basis of the
relation ideal J of the symmetric algebra Symg(L).

Theorem 3. Let R = K[X1,...,Xn:Y1,.... Y] be the polynomial ring over a field
Kand L = I,,_1 4+ Jy—1. A Grobner basis for J is the set

BG(J) ={gij = fi;Tj— fjiTi.1 <i <j =2n}US$,
where § = U';;%H, with Hy = g, =3 Hix, where Hyg, = {S(g1k,. gij)li <i <

ki, j=n+1,...,2n} and H; = U'Ié,=t+2Htkt where Hy, = {S(g1k,.h)|h €
Ht—lkt_lv kt—l <kt}

Proof. Let L = In—1+ Jp—1 = (f1..... fu) + (fu+1..., fon) and G = {g;; =
fiiTi — fjiTi| 1 <i<j <2n}, where f;; = [f,f—lf,] fori # j and [f;, f;] is the
greatest common divisor of the monomials f; and f;. By the Theorem 2 L is not gen-
erated by an s-sequence, then G & BG(J) and there are S-polynomials S(g;j, gk1)
that have not a standard expression with respect G with remainder 0. Let g;;, gx; € G,
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it is known that S(g;;,gx1) = %TJ T — %T, T;. Knowing the structure

of the monomials fi,..., f2,, we are able to compute the S-polynomials of G that do
not reduce to 0 modulo G and using Buchberger algorithm we construct the elements
of BG(J)\ G. Then for j =n+1,...,2n we compute S(gk,,gij) Withi <k and
ki1=3,...,n:

S(g13.82j) = fiT2T3s — 81 X Th T;
S(g14.82j) = fiTaTa— 82 X T T;
S(g15,827) = fiTaTs — 84 X 2T T;
S(gin,&n—1,n+1) = fiTu—1Tn —S(Zié)X,%TlTj,

where 81,85, .. .,8(11—1) are the generators of the Veronese ideal of degree n — 3 in

the variables X1,X;,.3..,Xn_1. Being f1 = X1 Xn—1, o= X1 Xn—2Xn, fu=
XoXn,s fnv1 =Y1 Y1, far2 =Y1-YnoYu, ..., fon = Yo+ Yy, it follows
that there is no g5; € G whose initial term divides the terms of these S-polynomials.
Then S(g1k,.&ij) € BG(J) for j =n+1,...,2n,i <ky and ky = 3,...,n. Set
Hig, = {S(g1k,-8ij) | j=n+1,....2n,i <kp } for ky =3,...,n. Now we
continue to compute the S-polynomials S(g1k,,S(g1k,.&ij)) Withi < ki <kj and
ko=4,....n,j=n+1,....2n:

S(g14.5(213.82.n41)) = far1 T2 T3 T4 — 1 X3 TE Tt
S(g14.5(813.82.n42)) = fut2T2T3Ta = y2 X3 T2 Ty 12
S(g14,5(813,82,2n)) = fznT2T3T4—J/(Z:}‘)X3T12T2n

and so on up to kp = n:

S(g1n-S(€1.n-1.8n-2.n+1)) = fat1Tn—2Tn-1Tn =1 X3 T Tn 41
S(g1n.S@G1n—-1.8n—2.n+2) = far2Tn2Tn 1 Tn =2 X3 T Ty 2
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372
S(g1n. S(gl,n—l ) gn—2,2n)) = fonTn—2Tn-1Th— V(n—él‘) Xn Tl Top,
n_

where y1,y2,..., Y-ty are the generators of the Veronese ideal of degree n — 4 in
the variables X1, X»,..., Xn—1. The terms of these S-polynomials are not divided by
the initial term of any gs; € G, then S(g1x,.S(g1k,,8ij)) € BG(J) fori <ky <k»
andky =4,....n, j =n+1,....2n. Set Hyp, = {S(g1ky>Mk,) |k, € Hig,}. Con-
tinuing the computation of the S-polynomials one obtains:

H3k3 = {S(g1k3,hk2)|hk2 € H2k2} fork, < ks, k3 =5,...,n

Hn—3kn_3 = {S(glkn_3vhkn_4)|hkn_4 € Hn—4kn_4} for kn—4 < kn—3, kn—3 =
n—1,n

Hy ok = S(&1ky—ns M) Mkyy_3 € Hy_3g,_5} for kpy—3 < kp—2, kn—2 =n.

Set 8 = \JjZ1 H, with Hy = U}, =3 Hik, where Hyg, = {S(g1k,.8ij)li <i <
ki, j=n+1,..2n} and H = Uy, 1o Hik, where Hy, = {S(g1k,.h)|h €
H;_1k,_,» ki—1 <k;}. Then elements of & do not reduce to 0 modulo G. Moreover
by construction no term of an element 4 of & is divisible by the initial term of an
element of 8 \ {h}. Set B = G U &, it follows that BG(J) 2 B.

In order to show that BG(J) = B we must prove that for all g,k € B the S-
polynomial S(g, /) reduces to 0 modulo B.

Let’s start to prove that all the S-polynomials S(g;;,gpn1), withi, j,h,l €{1,...,2n},
has a standard expression with respect to B with remainder 0. We have:

Jifin g Jnifji
Iy, — LR
[fij fnil [fij fhil
Let’s find a standard expression of S(g;;,gp;), foralli, j.h,l € {1,....n—1}.

If [in<(gij).in<(gn)] = 1, then S(gij.gn1) = fin&ijTh— fjigmTi-
If [in<(gij).in<(gn1)] # 1, we apply () to obtain a standard expression for the
S-polynomials S(g;j,gns). It results:

S(gij.&n) = T;T; . (%)

S(gij-gi1) = —fji» fiilgnTi

S(gij.g1j) = fji. f1lgii T;

S(gij,glk) = [fji,fkl](—[fi;(}kl]giln - _[ﬁjj.;_;lk]gjkn) or
S(gij» &) = Uis Tell (e 8t Te = 17 e 8k 1)

Hence all the S-polynomials S(g;;,gp;) reduce to 0 with respect to B. It remains
to prove that the elements of B \ G reduce to 0 with respect to B. If the elements



COMPUTING GROBNER BASES 783

of B have initial terms coprime, then they reduce to 0 with respect to B. Otherwise
we observe that by the structure of the elements of & it follows that the initial terms
of the elements of § are y;, X:T; T; with y;, a generator of the Veronese ideal of
degree k in the variables X1, X»,...,Xp—1 forn+1<j <2n,0<k <n-—-3,0<
t<n—-1,0<s<n-3k+t=n—-1s=t—-1

Let f,g € B, let d be the greater common divisor of in<(f) and in<(g), ¢ be
the greater common divisor of the no initial terms of f and g. In order to prove
that S( f, g) reduces to 0 with respect to B for all f,g € B, we start to consider the
elements of B of the form g;; € G and g1m st = S(g1m,8&st) € Hik,. We have the
following cases:

—if T} is a variable of d, then S(g;;,g1m,s¢) reduces to O by the elements of B
gis and g1, fori <s;

—if T} is a variable of d and T; is a variable of ¢, then S(g;;,g1,si) reduces to 0
by the element g15 € B;

— if no variable T7,...,T>, is in d and c, then S(g;;,g1m,s:) reduces to 0 by the
elements of B g1; and g11m,st; = S(g1/.S(g1¢,8sm)) € Hog, fors <t < j.

For the elements of the form g1, ;x = S(g1/.81x) € G and g1m,st = S(g1m. &st) €
H 1, , we have the following cases:

—if Ty, T; are variables of d and Tj is a variable of ¢, then S(g1;,1x.&1;,:1) reduces
to O by gx, € B fork <t;

— if Ty is a variable of d and T}, T} are variables of ¢, then S(g1;k.81,,1x) Te-
duces to O by gj; € B for j <t;

— if Ty is a variable of ¢ then S(g1; k.8g1¢,mk) reduces to 0 by gz, g1, € B for
j<tl<m.

The same argument is applied for the S-polynomials of the elements of all H
for j > 1. The assertion follows.

Corollary 1. Let R = K[X1,...,Xn;Y1,..., Y] be the polynomial ring over a
field K and L = 11 + Jyp—1.
The presentation ideal of Sym g (L) admits a lexicographic Grobner basis of degree
<n-—1in the variables Ty, ..., Tsy.

Corollary 2. Let R = K[X1,...,Xn;Y1,...,Yy] be the polynomial ring over a
field K and L = I,,_1 + Jy—1. Then we have:
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1) The presentation ideals of Sym(I,—1) and Sym(Jy—1) have a linear Gribner
basis respectively in the variables Uy,..., U, and V1,...,Vy, which correspond to
the generators of I,—1 and J,—1 respectively.

2) The presentation ideal of Sym(I,—1 + Ju—1) has a Grobner basis not linear in
the variables Ty, ..., Tay, which correspond to the generators of L = I,—1 + Jy—1.

Proof. 1) Since I,—; and J,_; are generated by an s-sequence, there exist a
monomial order < in the variables Uy, ..., U, with U; <1 --- <1 U, and a monomial
order <, in the variables V1,...,V;, with V] <5 --- <5 V}, such that the presentation
ideals of Sym(I,—1) and Sym(J,—1) have a linear Grobner basis respectively in the
variables Uy,..., Uy and Vy,...,V, .

2) It follows by Corollary 1. U

2. STUDYING STANDARD INVARIANTS

In this section, we shall compute the dimension and the depth of the symmetric
algebra Sympg (L), with L the mixed product ideal L = Ip,—1 + Ju—1.

In order to apply the theory of s-sequences, at the beginning we prove the main
result concerning the annihilator ideals of the monomial sequence that generates L.

Proposition 1. Let R = K[X1,..., Xn:Y1,...,Ys] be the polynomial ring over a
field K and L = I,,—1 4+ Ju—1 = (f1,..., fan). Then the annihilator ideals of the
sequence f1,..., fan are:

(Xn—i+1) fori=2,...,n
d1 =(0),d; = I, fori=n+1
(In-1.Y2n—i+1) fori=n+2,....2n

Proof. Set fij = [f,f—lf,] fori < j and i,j = 1,...,2n. Then the annihilator

ideals of the monomial sequence f1,..., fan are d; = (f1i. f2i..... fi—1,;) fori =
1,...,2n. Fori = 1 we have J; = (0) and by the structure of these monomials it fol-
lows d2 = (f12) = (Xp—1), I3 = (f13./23) = (Xn-2), ... . dp-1 =

(frn=1,-s Ja—2.n—1) = (X2), Ju = (J1n, f2ns--os fu—10) = (X1), dny1 =
(frn+1. fon+1ee s fon+) = (f1.-o0 fo) = In—1. vz = (frn+2. - - futb1n2)
= (f1oeos o Yn1) = Un—1.Yn-1), ... don = (f12n,... f2n—1,20n) =
(f1,...» fu. Y1) = (In—1, Y1). Hence the assertion follows. O

Proposition 2. Let R = K[X1,..., Xn; Y1,...,Yy] be the polynomial ring over a
field K and L = I,_1 + Jy—1 forn > 3. Then

in<(J) = (I2Ta, ..., d2nTon) + (I X, T{T))
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wheren+1<j<2n,0<k<n-30<t<n-—1,0<s<n-—2 such that k +
t=n—1,s=t—1,and I ,i is the square-free Veronese ideal generated by all the
monomials of degree k in the variables X1,..., X,—1.

Proof. Tt is known that the initial ideal of J is given by in<(J) = ({in<(f)|f €
BG(J)}). One has BG(J) ={gij = fi;T; — fjiT;,1 =i <j <2n}U& as in
Theorem 3. By the structure of the monomials fi,..., f>, that generate L we de-
duce the linear forms g;; = f;;T; — fjiT;,1 <i < j < 2n and then we compute
in<(g;j) = fijTj forl1 <i <j <2n:

Xn—1T2,.... XoTy—1. X1Tn, Yu—1Tn+v2..... Y1Ton, In—1T;, j=n+1,...,2n}.
It remains to compute the initial terms of the element of §. By the structure of
the S-polynomials of § (see Theorem 3) we obtain that the initial term of these
S-polynomials are the elements of the set {/ ,2 X} TP T}, where [ ,2 is the ideal gener-
ated by the square-free monomials of degree k in the variables Xy,..., X,—1 and
j=n+1,....2n, k+t=n—-1,s=t—-1,k=0,....n =3, t =2,....n—1,
s =1,...,n—2. Then the initial ideal of J is:

+( X T T)).

Using Proposition 1 we can write in<(J) = (d27%,...,d2nT2,) + ({IIQXlz T T;|
n+1<j<2n0<k<n-30<t<n—-10<s<n—-2k+t=n—-1,s=
t—1}). d

Now, we recall some general results about an ideal I = (HT1,...,H:Ty) C
R[Ty,...,T¢], where R is a noetherian ring and Hi,..., H; are ideals of R. We

say that I is linear in the variables 77,...,Ts, or T-linear. For T -linear ideals we
have:

Proposition 3 ([3], Lemma 2.3). Let I = (HT1,...,H;Ty) be a T-linear ideal
of R[Ty,...,Tt]. Then

I = ﬂ (H;, +...+Hir,T1,...,?i] ...,?,‘,,...,Tt),
1<r<t

withl <i; <...<i,<t.

Proposition 4 ([3], Prop. 2.4). Let I = (H1T1,...,H;T;) be a T-linear ideal of
R[Ty,...,Ty]. Then

d =dim(R[Th,..., T;]/1) = maxi<r < {dim(R/(H;, + ...+ H;,)) + 1}

withl <i1 <...<i, <t.

In order to apply the previous results, let in<(J) = (d2772,...,d25T2n)+
(I,éX,ﬁ T{Tj) as in Proposition 2. We set J;, = (272, ...,d2,T2y) the linear part of
in<(J)and J* = (I X;T{T;), wheren4+1< j <2n,0<k <n—-3,0<t<n-—1I,
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0<s<n—-2suchthatk+t=n—-1,s=tr—1, and I,é is the square-free Veronese
ideal generated by all the monomials of degree k in the variables X1,..., X,—1.

Proposition 5. Let R = K[X1,...,Xn;Y1,...,Ys] be the polynomial ring over a
field K, L = 1,1+ Jy—1 and J;, C R[T1,...,T2y]. Then:

dim(R[Ty,...,Tan]/J1) = 21 +2.

Proof. Let J;, = (JlTl,...,JznTzn), dim(R[Tl,...,Tzn]/(JlTl,...,JznTzn)) =
max<y<2p{dim(R/(J;; +...+d;,.))+r, 1 <iy <...<i, <2n} by Proposition 3.
Forr =1,...,2n one computes:

dim(R/(Ji, +...+d;,))+r <2n+1forr <n,

dim(R/(Ji, +...+d;,)+r=2n—(mn—-1)]+n=2n+1forr =n,
dim(R/(Jj, +...+ i, )+r=2n—m—-1D]+n+1=2n+2forr =n+1,
dim(R/(Jj, +...+d;,)+r=Q2n—n)+n+2=2n+2forr =n+2,

dim(R/(Ji, +...+d;,)+r=2n—(mn+1)]+n+3=2n+2forr =n+3,

dim(R/(Ji, +...+d;,))+r =2n—(2n—-2)]+2n =2n+2 for r =2n.

Hence maxj<,<2p{dim(R/(J;, +...+ ;) +r} =2n+2. O
Using the Proposition 5 we state the following

Theorem 4. Let R = K[X1,...,Xn:Y1,....Y,] be the polynomial ring over a field
K, L=1I1,1+Jy—1and J C R[T1,...,Toy] be the relation ideal of Sympg(L).
Then:

1) dim(R[Ty,..., Tan]/in<(J)) =2n+1
2) depth(R[Th, ..., Ton]/in<(J)) =2n+1
3)pd(R[Th, ..., Tan]/in<(J)) =2n—1.

Proof. 1) Letin<(J) = Jr + J* as in Proposition 2. By the structure of the ideals,
ht(Jz, + J*) = ht(Jr) + 1. Hence one has

dim(R[Ty,...,Ta,]/in<(J)) = dim(R[Ty,....T2,]/(J + J*) =
dim(R[T1,...,Ton)) —ht(Jp) — 1 = dim(R[T4,...,To,]/J)—1=2n+2)—1=
2n 41 (by Proposition 5).
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2) ht(in<(J)) = ht(Jp) + 1 = dim(R[T1,...,T2,]) —dim(R[T1,..., T2,]/JL) +
1 =4n—(2n+2)+1=2n—1.Hence depth(in<(J)) < ht(in<(J)) =2n—1.

By Proposition 2 one has depth(in<(J)) > 2n — 1 being {X,—1712,..., X1 Ty,
Yn-1Tn+2,...,Y1T2n, I,éX,t, T7T;} aregular sequence of 2n — 1 elements of in<(J),
wherek+t=n—1,s=t—1landn+1<j <2n. Onehas 2n—1 < depth(in<(J)) <
2n —1, hence the equality holds. If follows depth(in<(J)) = ht(in<(J)), then in<(J)
is Cohen-Macaulay that is equivalent to say that R[T7,...,T2,]/in<(J) is Cohen-
Macaulay.

Hence depth(R[T1,...,T2,]/in<(J)) = dim(R[T1,...,T2,]/in<(J)) =2n+ 1.

3) pd(R[T1,...,T2,]/in<(J)) = dim(R[T1,...,T2,]) — depth(R[T1,...,T2n]/
inc(J))=4n—2n+1)=2n-1. O

The following result holds for the the symmetric algebra Symg(L).

Theorem 5. Let R = K[X1,...,Xn;Y1,....Yn], L = In—1 + Ju—1 C R,
Sympg(L)=S/J with S = R[T1,...,Tay].
Then:
1)dim(Sympg(L)) =2n+1
2) depth(Sympg(L)) =2n + 1.
3)pd(Sympg(L)) =2n—1.

Proof. 1) dim(Symg(L)) =dim(S/in<(J)) =2n+ 1.

2) One has depth(Sym g (L)) > depth(in<(J)) = 2n + 1. On the other hand
depth(Sympg(L)) <dim(Sympg(L)) = 2n + 1. The thesis follows.

3) pd(Sympg(L)) = pd(S/J) = dim(S) —depth(S/J) =4n—2n+1) =2n—
1. O

Corollary 3. Let R = K[Xy,....Xn:Y1,....Yy], L =1,—1+ Jo—1 C R. Then
Sympg(L) is Cohen-Macaulay.

Example 1. R= K[Xl,Xz,X3;Y1,Y2,Y3]
L=0L+J,=(X1X2,X1X3,X2X3,Y1Y>,Y1Y3,Y2Y3)

Set f1 = X1X2, fo2=X1X3, f3=X2X3, fa =113,

fs =Y1Y3, fe = YaY3, where f1 < --- < f¢ with respect to the lex order and
X1<X2<X3<Y1 <Y2<Y3.
G={Xo2To—X3T1,X1T5—X3T1, X1 X2T4—Y1Y2T1, X1 X2T5—Y1Y3T1, X1 X2T¢—
Y2Y3T, X115 — X212, X1 X3Ty — Y1 Y212, X1 X3T5 — Y1Y312, X1 X316 — Y2 Y313,
Xo X3Ty—Y1Y2T3, X2 X3T5—Y Y313, X2 X3T6—Y2Y313,Y2T5—Y3T4,Y1Te— Y314,
Y1Te¢ — Y2 T5} is a set of generators for J.
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BG(J) =G U{S5(g13.824),5(g13.825).5(813,826)}:
where

S(g13.824) = Y1Y2To T3 — X3T1 Ty;

S(g13.825) = V1Yo T3 — X311 Ts;

S(g13.826) = Y1Y2To T3 — X311 T.
The annihilator ideals are

d2 = (X2);

I3 = (X1);

da = (X1X2, X1X3,X2X3) = I2;

d5 = (X1X2,X1X3, X2X3,Y2) = (12, Y2);

d6 = (X1X2,X1X3,X2X3,Y1) = (I2,Y1).

Moreover in<(J) = Jg + J*, with

JL = ((X2)T2, (X1) T3, (X1 X2, X1X3, X2 X3) T4, (X1 X2, X1 X3, X2 X3,Y2)T5,
(X1X2.X1X3,X2X3.Y1)T6) and J* = (X3T1 T4, X3T1T5, X311 Ts).
By direct calculations, one obtains:

dim(Sympg(L)) = depth(Sympg(L)) =7

pd(Symg(L)) = 5.

We are helped by the software CoCoA ([ 1]) for computing examples and formulating
results.
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