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INVERSION FORMULAS FOR GRAPHS
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Abstract. In this note we derive some combinatorial identities from inversion formulas in the
completion of the dual of graph Hopf algebra. As a consequence some identities involving Stirl-
ing and Bell numbers are obtained.
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1. INTRODUCTION

The graph Hopf algebra G , introduced by Schmitt [3] as the incidence Hopf al-
gebra of graphs, is a well known example of a combinatorial Hopf algebra. It is also
called chromatic Hopf algebra in [1], because of its relation with chromatic polyno-
mials of graphs.

The graded Hopf algebra dual G � of the graph Hopf algebra G is isomorphic to
the polynomial Hopf algebra kŒGconn� generated by connected simple graphs. This
determines the completion bG � of the graded dual of the graph Hopf algebra as the
Hopf algebra of formal power series kŒŒGconn�� in variables corresponding to connec-
ted graphs. For a class of graphs C is defined the characteristic element c.C/ 2 bG �.
We define elements which count the numbers of ordered and unordered decomposi-
tions of graphs onto subgraphs from the class C . By using inversion formulas in the
algebra bG � we obtain some combinatorial identities for graphs which are satisfied by
these numbers. As a consequence, some numerical identities involving the Stirling
numbers of the second kind and the ordered Bell numbers are obtained.

2. HOPF ALGEBRA OF GRAPHS G

For a graph � denote by V.� / andE.� / the sets of vertices and edges. All graphs
considered are simple, i.e. without multiple edges and loops. By j� j we denote the
number of vertices of a graph � . Let � jI be the induced subgraph of a graph � on
the set of vertices I � V.� /.
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For graphs � and �1; : : : ;�k; define
�

�
�1;:::;�k

�
to be the number of ordered set

partitions I W I1 t : : :t Ik D V.� / such that � jIj is isomorphic to �j for all j D
1; : : : ;k:

2.1. Hopf algebras

For a detailed exposition of Hopf algebras see [5]. Fix a field k. A bialgebra H is
a vector space over k equipped with linear maps

m WH ˝H !H and � WH !H ˝H ;

respectively the multiplication and comultiplication, such that the following proper-
ties are satisfied:

(1) .H ;m;u/ is an associative algebra with the unit u W k!H

(2) .H ;�;�/ is a coassociative coalgebra with the counit � WH ! k

(3) � and � are multiplicative morphisms (equivalently, m and u are comultiplic-
ative morphisms). If there exists a bialgebra automorphism S WH !H such that

mı .S˝I /ı�Dmı .I ˝S/ı�D uı �;

where I W H ! H is the identity map, then H is a Hopf algebra and S is its an-
tipode. A Hopf algebra H is graded if H D

L
n�0Hn and the multiplication and

comultiplication respect this decomposition

m.Hi ˝Hj /�HiCj ; �.Hk/�
X

iCjDk

Hi ˝Hj :

H is connected if dim.H0/D 1. A graded connected bialgebra H posses the anti-
pode S determined recursively as follows: S.h/D h for h 2H0, and .mı .S˝ I /ı
�/.h/D 0 for h 2Hi ; i > 0:

Example 1. Let X D fx1;x2; : : :g be a countable set with the rank function rk W
X !N and kŒX� be the polynomial algebra over a field k generated by X . Define
the comultiplication� W kŒX�! kŒX�˝kŒX� on variables by�.xn/D 1˝xnCxn˝
1;n � 1 and extend it algebraically to kŒX�. It turns kŒX� into a graded, connected
Hopf algebra over k. The antipode S W kŒX�! kŒX� is uniquely determined by
S.xn/D�xn for all n. The Hopf algebra kŒX� is called the polynomial Hopf algebra
generated by the set X .

Recall the definition of the graph Hopf algebra G , introduced in [3]. It is lin-
early spanned by all isomorphism classes of finite simple graphs. A graduation
G D

L
n�0Gn is given by the number of vertices. The space G is a Hopf algebra

with the multiplication defined by disjoint union of graphs �1 ��2 D �1t�2 and the
comultiplication

�.� /D
X

I�V.� /

� jI ˝� jV.� /nI : (2.1)
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The Hopf algebra G is graded, connected, commutative and cocommutative. The
antipode S W G ! G is determined by Takeuchi’s general formula

S.� /D
X
k�1

.�1/k
X

J1t:::tJkDV.� /

kY
jD1

� jJj
;

where the inner sum is over all ordered set partitions .J1; : : : ;Jk/ of the set of vertices
V.� /. A more combinatorial formula involving acyclic orientations on graphs is
obtained recently in [2].

G is algebraically isomorphic to the polynomial algebra kŒGconn� generated by the
family of all isomorphism classes of connected simple graphs.

Let G � D
L
n�0G �n be the graded dual of the Hopf algebra of graphs G . If we de-

note the value of ı 2 G � on � 2 G by hı;� i, the multiplication and comultiplication
on G � are determined by the identities

hı�;� i Dmı .ı˝�/ı�.� /;

h�.ı/;�1˝�2i D ı.�1�2/:

The Hopf algebra G � is commutative and cocommutative with the set of linear gen-
erators formed by all ı� , where

hı� ;�
0
i D

�
1; � D � 0

0; otherwise :

The following product formula holds

ı�1
� � �ı�k

D

X
j� jDn

 
�

�1; : : : ;�k

!
ı� ; (2.2)

where nD j�1jC � � �C j�kj. Note that taking duals is not an algebra morphism since
ı�1

ı�2
¤ ı�1�2

, but the restriction to connected graphs generates the algebra morph-
ism ˚ W kŒGconn�! G �. It is actually an isomorphism of Hopf algebras which is a
consequence of Schmitt’s work on Whitney systems [4].

Theorem 1. The graded dual G � of the graph Hopf algebra G is isomorphic to
the polynomial Hopf algebra kŒGconn� generated by connected simple graphs.

3. INVERSION FORMULAS

Let bG � be the completion of the graded dual G � of the graph Hopf algebra G .
Theorem 1 implies that bG � is isomorphic to the Hopf algebra of formal power series
kŒŒGconn��. Given an element x 2bG �, by Œn�x we denote its n-th homogeneous sum-
mand.

For a class of graphs C let c.C/D
P
� 2C ı� be its characteristic element

c.C/.� /D

�
1; � 2 C

0; otherwise :
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Define

u.C/D
X
k�0

c.C/k D
�

�� c.C/
and exp.c.C//D

X
k�0

1

kŠ
c.C/k :

These elements have the following combinatorial meanings.

Lemma 1. The values u.C/.� / and exp.c.C//.� / are the numbers of all ordered
and unordered decompositions of a graph � onto subgraphs from the class C .

Proof. The n-th homogeneous summand of the k-power of the characteristic ele-
ment c.C/ is given by

Œn�c.C/k D
X

�1; : : : ;�k 2 C

j�1jC � � �C j�kj D n

ı�1
� � �ı�k

:

Therefore, for a graph � on n vertices we have by the product formula .2:2/

c.C/k.� /D
X

�1; : : : ;�k 2 C

j�1jC � � �C j�kj D n

 
�

�1 � � ��k

!
; (3.1)

which is precisely the number of all ordered decompositions of the graph � onto
k subgraphs from the class C . The lemma follows from definitions of u.C/ and
exp.c.C//. �

Theorem 2. Given a class C of simple graphs and a graph � on the vertex set
V ¤¿, then

c.C/.� /D
X

I1t:::tIkDV

.�1/k�1
kY

jD1

u.C/.� jIj /; (3.2)

c.C/.� /D
X

I1t:::tIkDV

.�1/k�1

k

kY
jD1

exp.c.C//.� jIj /; (3.3)

where the sums are over all ordered decompositions of V .

Proof. The statement follows from the inversion formulas

c.C/D
u.C/� �

u.C/
D

X
k>0

.�1/k�1.u.C/� �/k;

c.C/D log.�C .exp.c.C//� �//D
X
k>0

.�1/k�1

k
.exp.c.C//� �/k;

by calculating at the graph � . �
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For an integer n let ˛ D .i1; : : : ; ik/ˆ n be a composition, i.e. ij ;j D 1; : : : ;k are
positive integers and i1C�� �C ik D n. Denote by ˛.j /D ij the j -th part of ˛ and by
k.˛/D k the number of its parts. Let

�
n
˛

�
D

nŠ
i1Ši2Š���ikŠ

be the multinomial coefficient.
It counts the number of all ordered set partitions .I1; : : : ; Ik/ of the finite set V with
prescribed sizes of parts jI1j D i1; : : : ; jIkj D ik . Recall that a proper coloring of a
graph � with at most k colors is the map f W V.� /! Œk� such that there are no
monochromatic edges, i.e. f .v1/¤ f .v2/ if fv1;v2g is an edge of � . The chromatic
polynomial �.�;k/ counts the numbers of proper colorings of a graph � .

Theorem 3.X
I1t:::tIkDV.� /

.�1/k�1
kY

jD1

�.� jIj ; jIj j/D

�
1; � is discrete
0; otherwise ; (3.4)

where the sum is over all ordered set partitions .I1; : : : ; Ik/ of the vertex set V.� /.

Proof. Let C D fDngn>0 be the class of all discrete graphs. Note that
�

�
Di1
���Dik

�
is the number of all proper colorings of � with exactly k colors such that a color j
is taken ij times, for all j D 1; : : : ;k. Therefore, from .3:1/, we have that c.C/k.� /
counts the number of all proper colorings with exactly k colors and .u.C/��/.� /D
�.�; j� j/. We apply the inversion formula .3:2/ to obtain .3:4/. �

Recall that the Stirling number of the second kind�
n

k

�
D
1

kŠ

X
˛ˆnWk.˛/Dk

 
n

˛

!
is the number of all set partitions of an n-element set into k parts. The ordered Bell
number

F.n/D
X
˛ˆn

 
n

˛

!
counts the total number of ordered set partitions on an n-element set. The following
corollaries illustrate how Theorems 2 and 3 lead to some identities involving Stirling
and Bell numbers.

Corollary 1. The following identity holds for an integer nX
˛ˆn

.�1/k.˛/�1

k.˛/

 
n

˛

!
D 0: (3.5)

Proof. Let C D fD1g, where D1 is the graph on the single vertex. Then c.C/D
ıD1

and exp.ıD1
/.� /D 1 for any graph � . The identity follows from the inversion

formula .3:3/ applied on an arbitrary graph � on n¤ 1 vertices. �
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Note that the identity .3:5/ may be rewritten as
nX
kD1

.�1/k�1.k�1/Š

�
n

k

�
D 0:

Corollary 2. Given an integer n, the following identity holdsX
˛ˆn

.�1/k.˛/�1

 
n

˛

!
k.˛/Y
jD1

F.˛.j ///D 1:

Proof. Set � DDn into the formula .3:4/ and note that �.Dj ;j /D F.j /. �
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