INVERSION FORMULAS FOR GRAPHS

TANJA STOJADINOVIĆ

Received 04 September, 2014

Abstract

In this note we derive some combinatorial identities from inversion formulas in the completion of the dual of graph Hopf algebra. As a consequence some identities involving Stirling and Bell numbers are obtained.

2010 Mathematics Subject Classification: 16T30; 05A19
Keywords: graph, Hopf algebra, Stirling and Bell numbers

1. Introduction

The graph Hopf algebra \mathcal{E}, introduced by Schmitt [3] as the incidence Hopf algebra of graphs, is a well known example of a combinatorial Hopf algebra. It is also called chromatic Hopf algebra in [1], because of its relation with chromatic polynomials of graphs.

The graded Hopf algebra dual \mathcal{E}^{*} of the graph Hopf algebra \mathcal{E} is isomorphic to the polynomial Hopf algebra $k\left[\mathbb{G}_{\text {conn }}\right]$ generated by connected simple graphs. This determines the completion $\widehat{\mathscr{G}}^{*}$ of the graded dual of the graph Hopf algebra as the Hopf algebra of formal power series $k\left[\left[\mathbb{G}_{\text {conn }}\right]\right]$ in variables corresponding to connected graphs. For a class of graphs \mathscr{C} is defined the characteristic element $c(\mathscr{C}) \in \widehat{\mathscr{G}}^{*}$. We define elements which count the numbers of ordered and unordered decompositions of graphs onto subgraphs from the class ℓ. By using inversion formulas in the algebra $\widehat{\mathscr{G}}^{*}$ we obtain some combinatorial identities for graphs which are satisfied by these numbers. As a consequence, some numerical identities involving the Stirling numbers of the second kind and the ordered Bell numbers are obtained.

2. Hopf algebra of graphs $\boldsymbol{\mathcal { G }}$

For a graph Γ denote by $V(\Gamma)$ and $E(\Gamma)$ the sets of vertices and edges. All graphs considered are simple, i.e. without multiple edges and loops. By $|\Gamma|$ we denote the number of vertices of a graph Γ. Let $\left.\Gamma\right|_{I}$ be the induced subgraph of a graph Γ on the set of vertices $I \subset V(\Gamma)$.

[^0]For graphs Γ and $\Gamma_{1}, \ldots, \Gamma_{k}$, define $\binom{\Gamma}{\Gamma_{1}, \ldots, \Gamma_{k}}$ to be the number of ordered set partitions $I: I_{1} \sqcup \ldots \sqcup I_{k}=V(\Gamma)$ such that $\left.\Gamma\right|_{I_{j}}$ is isomorphic to Γ_{j} for all $j=$ $1, \ldots, k$.

2.1. Hopf algebras

For a detailed exposition of Hopf algebras see [5]. Fix a field k. A bialgebra \mathscr{H} is a vector space over k equipped with linear maps

$$
m: \mathscr{H} \otimes \mathscr{H} \rightarrow \mathscr{H} \text { and } \Delta: \mathscr{H} \rightarrow \mathscr{H} \otimes \mathscr{H}
$$

respectively the multiplication and comultiplication, such that the following properties are satisfied:
(1) (\mathscr{H}, m, u) is an associative algebra with the unit $u: k \rightarrow \mathscr{H}$
(2) $(\mathscr{H}, \Delta, \epsilon)$ is a coassociative coalgebra with the counit $\epsilon: \mathscr{H} \rightarrow k$
(3) Δ and ϵ are multiplicative morphisms (equivalently, m and u are comultiplicative morphisms). If there exists a bialgebra automorphism $S: \mathscr{H} \rightarrow \mathscr{H}$ such that

$$
m \circ(S \otimes I) \circ \Delta=m \circ(I \otimes S) \circ \Delta=u \circ \epsilon
$$

where $I: \mathscr{H} \rightarrow \mathscr{H}$ is the identity map, then \mathscr{H} is a Hopf algebra and S is its antipode. A Hopf algebra \mathscr{H} is graded if $\mathscr{H}=\bigoplus_{n \geq 0} \mathscr{H}_{n}$ and the multiplication and comultiplication respect this decomposition

$$
m\left(\mathscr{H}_{i} \otimes \mathscr{H}_{j}\right) \subset \mathscr{H}_{i+j}, \Delta\left(\mathscr{H}_{k}\right) \subset \sum_{i+j=k} \mathscr{H}_{i} \otimes \mathscr{H}_{j}
$$

\mathscr{H} is connected if $\operatorname{dim}\left(\mathscr{H}_{0}\right)=1$. A graded connected bialgebra \mathscr{H} posses the antipode S determined recursively as follows: $S(h)=h$ for $h \in \mathscr{H}_{0}$, and $(m \circ(S \otimes I) \circ$ $\Delta)(h)=0$ for $h \in \mathscr{H}_{i}, i>0$.

Example 1. Let $X=\left\{x_{1}, x_{2}, \ldots\right\}$ be a countable set with the rank function $r k$: $X \rightarrow \mathbb{N}$ and $k[X]$ be the polynomial algebra over a field k generated by X. Define the comultiplication $\Delta: k[X] \rightarrow k[X] \otimes k[X]$ on variables by $\Delta\left(x_{n}\right)=1 \otimes x_{n}+x_{n} \otimes$ $1, n \geq 1$ and extend it algebraically to $k[X]$. It turns $k[X]$ into a graded, connected Hopf algebra over k. The antipode $S: k[X] \rightarrow k[X]$ is uniquely determined by $S\left(x_{n}\right)=-x_{n}$ for all n. The Hopf algebra $k[X]$ is called the polynomial Hopf algebra generated by the set X.

Recall the definition of the graph Hopf algebra \mathcal{E}, introduced in [3]. It is linearly spanned by all isomorphism classes of finite simple graphs. A graduation $\mathscr{\mathcal { G }}=\bigoplus_{n \geq 0} \mathscr{E}_{n}$ is given by the number of vertices. The space \mathcal{E} is a Hopf algebra with the multiplication defined by disjoint union of graphs $\Gamma_{1} \cdot \Gamma_{2}=\Gamma_{1} \sqcup \Gamma_{2}$ and the comultiplication

$$
\begin{equation*}
\Delta(\Gamma)=\left.\left.\sum_{I \subset V(\Gamma)} \Gamma\right|_{I} \otimes \Gamma\right|_{V(\Gamma) \backslash I} \tag{2.1}
\end{equation*}
$$

The Hopf algebra $\mathscr{\mathscr { E }}$ is graded, connected, commutative and cocommutative. The antipode $S: \mathcal{G} \rightarrow \boldsymbol{\mathcal { E }}$ is determined by Takeuchi's general formula

$$
S(\Gamma)=\left.\sum_{k \geq 1}(-1)^{k} \sum_{J_{1} \sqcup \ldots \sqcup J_{k}=V(\Gamma)} \prod_{j=1}^{k} \Gamma\right|_{J_{j}}
$$

where the inner sum is over all ordered set partitions $\left(J_{1}, \ldots, J_{k}\right)$ of the set of vertices $V(\Gamma)$. A more combinatorial formula involving acyclic orientations on graphs is obtained recently in [2].
\mathcal{U} is algebraically isomorphic to the polynomial algebra $k\left[\mathbb{G}_{\text {conn }}\right]$ generated by the family of all isomorphism classes of connected simple graphs.

Let $\mathscr{G}^{*}=\bigoplus_{n \geq 0} \mathscr{E}_{n}^{*}$ be the graded dual of the Hopf algebra of graphs \mathcal{G}. If we denote the value of $\bar{\delta} \in \mathcal{E}^{*}$ on $\Gamma \in \mathscr{\mathcal { E }}$ by $\langle\delta, \Gamma\rangle$, the multiplication and comultiplication on \mathcal{E}^{*} are determined by the identities

$$
\begin{gathered}
\langle\delta \eta, \Gamma\rangle=m \circ(\delta \otimes \eta) \circ \Delta(\Gamma) \\
\left\langle\Delta(\delta), \Gamma_{1} \otimes \Gamma_{2}\right\rangle=\delta\left(\Gamma_{1} \Gamma_{2}\right)
\end{gathered}
$$

The Hopf algebra \mathcal{E}^{*} is commutative and cocommutative with the set of linear generators formed by all δ_{Γ}, where

$$
\left\langle\delta_{\Gamma}, \Gamma^{\prime}\right\rangle=\left\{\begin{array}{c}
1, \quad \Gamma=\Gamma^{\prime} \\
0, \quad \text { otherwise }
\end{array}\right.
$$

The following product formula holds

$$
\begin{equation*}
\delta_{\Gamma_{1}} \cdots \delta_{\Gamma_{k}}=\sum_{|\Gamma|=n}\binom{\Gamma}{\Gamma_{1}, \ldots, \Gamma_{k}} \delta_{\Gamma} \tag{2.2}
\end{equation*}
$$

where $n=\left|\Gamma_{1}\right|+\cdots+\left|\Gamma_{k}\right|$. Note that taking duals is not an algebra morphism since $\delta_{\Gamma_{1}} \delta_{\Gamma_{2}} \neq \delta_{\Gamma_{1} \Gamma_{2}}$, but the restriction to connected graphs generates the algebra morphism $\Phi: k\left[\mathbb{G}_{\text {conn }}\right] \rightarrow \mathcal{E}^{*}$. It is actually an isomorphism of Hopf algebras which is a consequence of Schmitt's work on Whitney systems [4].

Theorem 1. The graded dual \mathscr{E}^{*} of the graph Hopf algebra \mathcal{G} is isomorphic to the polynomial Hopf algebra $k\left[\mathbb{G}_{\mathrm{conn}}\right]$ generated by connected simple graphs.

3. INVERSION FORMULAS

Let $\widehat{\mathscr{G}}^{*}$ be the completion of the graded dual \mathscr{E}^{*} of the graph Hopf algebra \mathscr{E}. Theorem 1 implies that $\widehat{\mathscr{G}}^{*}$ is isomorphic to the Hopf algebra of formal power series $k\left[\left[\mathbb{G}_{\text {conn }}\right]\right]$. Given an element $x \in \widehat{\mathscr{E}}^{*}$, by $[n] x$ we denote its n-th homogeneous summand.

For a class of graphs φ let $c(\mathscr{C})=\sum_{\Gamma \in \varphi} \delta_{\Gamma}$ be its characteristic element

$$
c(\bigodot)(\Gamma)=\left\{\begin{array}{cc}
1, & \Gamma \in \mathscr{C} \\
0, & \text { otherwise }
\end{array} .\right.
$$

Define

$$
u(\varphi)=\sum_{k \geq 0} c(\varphi)^{k}=\frac{\epsilon}{\epsilon-c(\varphi)} \text { and } \exp (c(\varphi))=\sum_{k \geq 0} \frac{1}{k!} c(\varphi)^{k}
$$

These elements have the following combinatorial meanings.
Lemma 1. The values $u(\smile)(\Gamma)$ and $\exp (c(\leftharpoonup))(\Gamma)$ are the numbers of all ordered and unordered decompositions of a graph Γ onto subgraphs from the class \mathcal{C}.

Proof. The n-th homogeneous summand of the k-power of the characteristic element $c(\mathcal{C})$ is given by

$$
[n] c(C)^{k}=\sum_{\substack{\Gamma_{1}, \ldots, \Gamma_{k} \in \varphi \\\left|\Gamma_{1}\right|+\cdots+\left|\Gamma_{k}\right|=n}} \delta_{\Gamma_{1} \cdots \delta_{\Gamma_{k}} .}
$$

Therefore, for a graph Γ on n vertices we have by the product formula (2.2)

$$
c(\varkappa)^{k}(\Gamma)=\sum_{\substack{\Gamma_{1}, \ldots, \Gamma_{k} \in \mathcal{C}}}\left(\begin{array}{c}
\Gamma \tag{3.1}\\
\left|\Gamma_{1}\right|+\cdots+\left|\Gamma_{k}\right|=n \\
\Gamma_{1} \cdots \Gamma_{k}
\end{array}\right)
$$

which is precisely the number of all ordered decompositions of the graph Γ onto k subgraphs from the class φ. The lemma follows from definitions of $u(\zeta)$ and $\exp (c(C))$.

Theorem 2. Given a class ζ of simple graphs and a graph Γ on the vertex set $V \neq \varnothing$, then

$$
\begin{gather*}
c(\bigodot)(\Gamma)=\sum_{I_{1} \sqcup \ldots \sqcup I_{k}=V}(-1)^{k-1} \prod_{j=1}^{k} u(\leftharpoonup)\left(\left.\Gamma\right|_{I_{j}}\right), \tag{3.2}\\
c(\bigodot)(\Gamma)=\sum_{I_{1} \sqcup \ldots \sqcup I_{k}=V} \frac{(-1)^{k-1}}{k} \prod_{j=1}^{k} \exp (c(\bigodot))\left(\left.\Gamma\right|_{I_{j}}\right), \tag{3.3}
\end{gather*}
$$

where the sums are over all ordered decompositions of V.
Proof. The statement follows from the inversion formulas

$$
\begin{aligned}
& c(\bigodot)=\frac{u(\bigodot)-\epsilon}{u(\bigodot)}=\sum_{k>0}(-1)^{k-1}(u(\bigodot)-\epsilon)^{k}, \\
& c(\bigodot)=\log (\epsilon+(\exp (c(\leftharpoonup))-\epsilon))=\sum_{k>0} \frac{(-1)^{k-1}}{k}(\exp (c(\bigodot))-\epsilon)^{k},
\end{aligned}
$$

by calculating at the graph Γ.

For an integer n let $\alpha=\left(i_{1}, \ldots, i_{k}\right) \models n$ be a composition, i.e. $i_{j}, j=1, \ldots, k$ are positive integers and $i_{1}+\cdots+i_{k}=n$. Denote by $\alpha(j)=i_{j}$ the j-th part of α and by $k(\alpha)=k$ the number of its parts. Let $\binom{n}{\alpha}=\frac{n!}{i_{1}!i_{2}!\cdots i_{k}!}$ be the multinomial coefficient. It counts the number of all ordered set partitions $\left(I_{1}, \ldots, I_{k}\right)$ of the finite set V with prescribed sizes of parts $\left|I_{1}\right|=i_{1}, \ldots,\left|I_{k}\right|=i_{k}$. Recall that a proper coloring of a graph Γ with at most k colors is the map $f: V(\Gamma) \rightarrow[k]$ such that there are no monochromatic edges, i.e. $f\left(v_{1}\right) \neq f\left(v_{2}\right)$ if $\left\{v_{1}, v_{2}\right\}$ is an edge of Γ. The chromatic polynomial $\chi(\Gamma, k)$ counts the numbers of proper colorings of a graph Γ.

Theorem 3.

$$
\sum_{I_{1} \sqcup \ldots \sqcup I_{k}=V(\Gamma)}(-1)^{k-1} \prod_{j=1}^{k} \chi\left(\left.\Gamma\right|_{I_{j}},\left|I_{j}\right|\right)=\left\{\begin{array}{l}
1, \quad \Gamma \text { is discrete } \tag{3.4}\\
0, \quad \text { otherwise }
\end{array}\right.
$$

where the sum is over all ordered set partitions $\left(I_{1}, \ldots, I_{k}\right)$ of the vertex set $V(\Gamma)$.
Proof. Let $\ell=\left\{D_{n}\right\}_{n>0}$ be the class of all discrete graphs. Note that $\binom{\Gamma}{D_{i_{1}} \cdots D_{i_{k}}}$ is the number of all proper colorings of Γ with exactly k colors such that a color j is taken i_{j} times, for all $j=1, \ldots, k$. Therefore, from (3.1), we have that $c(\leftharpoonup)^{k}(\Gamma)$ counts the number of all proper colorings with exactly k colors and $(u(\leftharpoonup)-\epsilon)(\Gamma)=$ $\chi(\Gamma,|\Gamma|)$. We apply the inversion formula (3.2) to obtain (3.4).

Recall that the Stirling number of the second kind

$$
\left\{\begin{array}{c}
n \\
k
\end{array}\right\}=\frac{1}{k!} \sum_{\alpha \models n: k(\alpha)=k}\binom{n}{\alpha}
$$

is the number of all set partitions of an n-element set into k parts. The ordered Bell number

$$
F(n)=\sum_{\alpha \models n}\binom{n}{\alpha}
$$

counts the total number of ordered set partitions on an n-element set. The following corollaries illustrate how Theorems 2 and 3 lead to some identities involving Stirling and Bell numbers.

Corollary 1. The following identity holds for an integer n

$$
\begin{equation*}
\sum_{\alpha \models n} \frac{(-1)^{k(\alpha)-1}}{k(\alpha)}\binom{n}{\alpha}=0 . \tag{3.5}
\end{equation*}
$$

Proof. Let $\mathscr{C}=\left\{D_{1}\right\}$, where D_{1} is the graph on the single vertex. Then $c(\mathscr{C})=$ $\delta_{D_{1}}$ and $\exp \left(\delta_{D_{1}}\right)(\Gamma)=1$ for any graph Γ. The identity follows from the inversion formula (3.3) applied on an arbitrary graph Γ on $n \neq 1$ vertices.

Note that the identity (3.5) may be rewritten as

$$
\sum_{k=1}^{n}(-1)^{k-1}(k-1)!\left\{\begin{array}{l}
n \\
k
\end{array}\right\}=0
$$

Corollary 2. Given an integer n, the following identity holds

$$
\left.\sum_{\alpha \models n}(-1)^{k(\alpha)-1}\binom{n}{\alpha} \prod_{j=1}^{k(\alpha)} F(\alpha(j))\right)=1
$$

Proof. Set $\Gamma=D_{n}$ into the formula (3.4) and note that $\chi\left(D_{j}, j\right)=F(j)$.

References

[1] M. Aguiar, N. Bergeron, and F. Sottile, "Combinatorial hopf algebras and generalized dehn-sommerville relations," Compositio Mathematica, vol. 142, pp. 1-30, 2006, doi: 10.1112/S0010437X0500165X.
[2] B. Humpert and J. L. Martin, "The incidence hopf algebra of graphs," SIAM J. on Discrete Math., vol. 26, no. 2, pp. 555-570, 2012, doi: 10.1137/110820075.
[3] W. R. Schmitt, "Incidence hopf algebras," J. Pure Appl. Algebra, vol. 96, no. 3, pp. 299-330, 1994, doi: 10.1016/0022-4049(94)90105-8.
[4] W. R. Schmitt, "Hopf algebra methods in graph theory," J. Pure Appl. Algebra, vol. 101, no. 1, pp. 77-90, 1995, doi: 10.1016/0022-4049(95)90925-B.
[5] M. E. Sweedler, Hopf algebras, ser. Mathematics Lecture Notes Series. New York: Benjamin, 1969.

Author's address

Tanja Stojadinović

Belgrade University, Faculty of Mathematics, Studentsi $\operatorname{trg} 16,11000$ Belgrade, Serbia
E-mail address: tanjas@matf.bg.ac.rs

[^0]: Author is supported by Ministry of Science of Republic of Serbia, project 174034.

