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Abstract. The main purpose of this paper is to prove the following result: Let R be a prime ring
with involution of the second kind and with char(R) # 2. If R admits a nonzero derivation
d : R — R such that [d(x),d(x™)] = [x,x*] for all x € R, then R is commutative. We also
provide an example which shows that the above result does not holds in case the involution is of
the first kind. Moreover, a related result has also been obtained.
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1. INTRODUCTION

Throughout this article, R will represent an associative ring with centre Z(R).
We denote [x, y] = xy — yx, the commutator of x and y and xoy = xy + yx, the
anti-commutator of x and y. However, given two subsets A and B of R, [A, B] will
denote the additive subgroup of R generated by all elements of the form [x, y] where
xe€Aand y € B and Ao B is defined similarly. Further, A4 will be the subring of
R generated by A. A ring R is said to be 2-torsion free if 2a = 0 (where a € R)
implies @ = 0. A ring R is called a prime ring if a Rb = (0) (where a,b € R) implies
a=0orb =0, and is called a semiprime ring in case aRa = (0) implies a = 0. An
additive map x — x* of R into itself is called an involution if (i) (xy)* = y*x* and
(ii) (x*)* = x hold for all x, y € R. An element x in a ring with involution * is said
to be hermitian if x* = x and skew-hermitian if x* = —x. The sets of all hermitian
and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively.
A ring equipped with an involution is known as ring with involution or *-ring. The
involution is said to be of the first kind if Z(R) C H(R), otherwise it is said to be
of the second kind. In the later case S(R) N Z(R) # (0). If R is 2-torsion free then
every x € R can be uniquely represented in the form 2x = h + k, where h € H(R)
and k € S(R). Note that in this case x is normal i.e., xx* = x*x, if and only if &
and k commute. If all elements in R are normal, then R is called a normal ring. An

© 2015 Miskolc University Press



18 SHAKIR ALI, NADEEM AHMAD DAR, AND ABDUL NADIM KHAN

example is the ring of quaternions. A description of such rings can be found in [13],
where further references can be found.

An additive mapping d : R — R is said to be a derivation of Rif d(xy) =d(x)y +
xd(y) for all x,y € R. A derivation d is said to be inner if there exists ¢ € R
such that d(x) = ax — xa for all x € R. Over the last 30 years, several authors have
investigated the relationship between the commutativity of the ring R and certain
special types of maps on R. The first result in this direction is due to Divinsky[12],
who proved that a simple artinian ring is commutative if it has a commuting non-
trivial automorphim. Two years later, Posner [21] proved that the existence of a
nonzero centralizing derivation on a prime ring forces the ring to be commutative.
Over the last few decades, several authors have subsequently refined and extended
these results in various directions (viz., [3, 5, 6], where further references can be
found).

We say thatamap f : R — R preserves commutativity if [ f(x), f ()] = 0 whenever
[x,y]=0forall x,y € R. The study of commutativity preserving mappings has been
an active research area in matrix theory, operator theory and ring theory (see [8, 10]
for references). Following [7], let S be a subset of R, amap f : R — R is said to be
strong commutativity preserving (SCP) on S if [ f(x), f(y)] =[x, y] forall x,y € S.
In [4], Bell and Daif investigated the commutativity in rings admitting a derivation
which is SCP on a nonzero right ideal. Precisely, they proved that if a semiprime ring
R admits a derivation d satisfying [d(x),d(y)] = [x, y] for all x, y in a right ideal
I of R, then I C Z(R). In particular, R is commutative if / = R. Later, Deng and
Ashraf [11] proved that if there exist a derivation d of a semiprime ring R and a map
f I — R defined on a nonzero ideal I of R such that [ f(x),d(y)] = [x, y] for all
x,y € I, then R contains a nonzero central ideal. In particular, they showed that R
is commutative if / = R. Further, Ali and Huang [2], showed that if R is a 2-torsion
free semiprime ring and d is a derivation of R satisfying [d(x),d(y)]+ [x,y] =0
for all x, y in a nonzero ideal I of R, then R contains a nonzero central ideal. Many
related generalizations of these results can be found in the literature (see for instance
[9,15-20,22,23]).

The main purpose of the present paper is to initiate the study of a more general
concept than SCP mappings. More precisely, we consider an additive mapping f :
R — R satisfying [ f(x), f(x*)] = [x,x*] for all x € R. In fact, we investigate the
commutativity of a prime ring with involution, when the mapping f is assumed to be
a derivation of R. Moreover, a related result is obtained by replacing the commutator
by anti-commutator.

2. RESULTS

We begin with the following lemma, which is essentially proved in [!, Lemma
2.1].
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Lemma 1. Let R be a prime ring with involution x such that char(R) # 2. If
S(R)NZ(R) # (0) and R is normal, then R is commutative.

Theorem 1. Let R be a prime ring with involution * of the second kind and with
char(R) # 2. Let d be a nonzero derivation of R such that [d(x),d(x*)] = [x,x*]
forall x € R. Then R is commutative.

Proof. By the assumption, we have

[d(x),d(x™)] = [x,x7] 2.1
for all x € R. A lineralization of (2.1) yields that
[d(x),d(y")]+[d(y),d(x™)] = [x,y*] + [y, x"] (2.2)

for all x,y € R. Replacing y by xx* in (2.2) and making use of (2.1), we arrive at
d(x)[d(x),x*] +[d(x),x]d(x*) +d(x)[x*,d(x*)] + [x,d(x")]d(x*) =0 (2.3)
for all x € R. Replacing x by x + /', where i’ € H(R) N Z(R), we obtain
d(h)[d(x), x*]+ [d(x),x]d(h) +d(h)[x*,d(x*)] + [x,d(x*)|d (k) = 0.
This can be further written as
d(h)([d(x). x*]+ [d(x). x] + [x*.d(x*)] + [x.d(x*)]) = 0

forall i’ e H(R)NZ(R) and x € R. Since the centre of a prime ring is free from zero
divisors we get either d(h') = 0 forall i € H(R)N Z(R) or [d(x),x*] + [d(x), x] +
[x*,d(x*)] + [x.d(x*)] = 0 for all x € R. Suppose

d(h')y=0forall i € H(R)NZ(R). (2.4)

Replacing W by (k)% in (2.4), where k' € S(R)NZ(R), we get
0=d(h)=d((k)?) =dk )k +k'dk")y =2dK k.

Since char(R) # 2, we arrive at

d(kk' =0forallk € S(R)NZ(R).
For eacl/l k'eS(R)NZ (1/2), the last expression yields that either d (k/) =0ork =0.
Since k = 0 implies d(k ) = 0, we may write

d(k'y=0forallk' € S(R)N Z(R). 2.5)

Let x € Z(R). Since char(R) # 2, every x € Z(R) can be represented as 2x = h +k,
where h € H(R)NZ(R) and k € S(R) N Z(R). This implies that 2d (x) = d(2x) =
dh+k)=d(h)+d(k) =0. Since char(R) # 2, we get

d(x) =0forall x € Z(R). (2.6)
Replacing y by k' y in (2.2), where k" € S(R) N Z(R) and using (2.6), we arrive at
K (1d(0).d(y)]+ (). d (] + [x.y T =y x*) =0
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for all k' € S(R)N Z(R) and x,y € R. Using the primeness of R and the fact that
S(R)NZ(R) # (0), we get

—[d(x).d(yI] +[d(y). d(x)] = =[x,y ]+ [y, x7] 2.7)

for all x,y € R. On comparing (2.2) and (2.7), we obtain 2[d(x),d(y*)] = 2[x, y*]
forall x, y € R. Replacing y by y* and using the fact that char (R) # 2, we conclude
that [d(x),d(y)] = [x, y] for all x, y € R. Therefore in view of [4, Theorem 1], R is
commutative. Now we consider the case

[d (x).x*]+ [d(x). x] + [x*.d (x)] + [x.d(x™)] = 0

for all x € R. Replacing x by h + k, where h € H(R) and k € S(R), we obtain
4[d(k),h)] = 0. Since char(R) # 2, we are force to conclude that

[d(k),h] =0for all h € H(R) and k € S(R). (2.8)

Replacing h by kok', where ko € S(R) and k' € S(R) N Z(R), we arrive at
([d(k),ko])k/ = 0. Since R is prime and S(R) N Z(R) # (0), we get

[d(k).ko] = 0 for all k,ko € S(R). (2.9)

Now since char(R) # 2, every x € R can be represented as 2x = h + k, where
he H(R),k € S(R), so in view of equations (2.8) and (2.9), we are force to conclude
that

[d(k),x] =0 forall k € S(R)and x € R. (2.10)

for all k € S(R) and x € R. That is, d(k) € Z(R) for all k € S(R). First we
assume that d(S(R)) = (0). Then, we have d(x —x*) = 0 for all x € R. That
is, d(x) = d(x*) for all x € R. Thus, we have 0 = [d(x),d(x™)] = [x,x™] for
all x € R. Hence R is normal and we are done by Lemma 1. Now suppose that
d(S(R)) # (0). For k, € S(R) with d(k,) # 0 and k € [S(R),S(R)], we have
d(kokky) € Z(R). The last expression can be written as d(ko)kk, + kokd (ko) €
Z(R), since d([S(R),S(R)]) = (0). Thus d(k,)(kok + kk,) € Z(R) and hence
kok +kky, € Z(R) for all k € [S(R), S(R)]. This implies that d(kok +kk,) € Z(R)
and hence 2d(ky)k € Z(R). Since char(R) # 2 and R is prime, the above relation
yields that k € Z(R). That is, [S(R),S(R)] € Z(R). Suppose [S(R),S(R)] # (0)
and k,k, € S(R) such that [k,k,] # 0. Since kkok € S(R), we have [k,kk,k] =
klk.kolk = k?[k.ko] € Z(R). This implies that k? € Z(R) and hence k € Z(R)
for all k € S(R) as proved earlier. Therefore, R is commutative in view of Lemma
1. Now suppose [S(R),S(R)] = (0). Since S(R)? is both a Lie ideal and a com-
mutative subring of R, by [13, Theorem 2.1.2], k2 € Z(R) for all k € S(R) and
hence k € Z(R) for all k € S(R). Thus, R is normal and hence R is commutative by
Lemma 1. This completes the proof of the theorem. g

If we replace commutator by anti-commutator in Theorem 1, the corresponding
result also holds.
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Theorem 2. Let R be a prime ring with involution * of the second kind and with
char(R) # 2. Let d be a nonzero derivation of R such that d(x)od(x*) = x ox™
forall x € R. Then R is commutative.

Proof. By the given hypothesis, we have d(x)od(x*) = x ox™ for all x € R. This
can be further written as

d(x)d(x*)+d(x*)d(x) = xx* +x*x (2.11)
for all x € R. A lineralization of (2.11) yields that
(2.12)
d(x)d(y*) +d(y)d(x*) +d(x")d(y) +d(y")d(x) = xy™ + yx* +xFy + y*x
for all x,y € R. Replacing y by W x,(h € HRR)NZ(R))in (2.12) and using (2.11),
we get
d(h)d(x)x* +d(h)xd(x*) +d(h)d(x*)x +d(h)x*d(x) = 0.
That is, d(h)d(x ox*) =0 forall A € H(R) N Z(R) and x € R. Since the centre of
a prime ring is free from zero divisors, we have either d (W)=0forallh € H(R)N
Z(R) or d(xox™) =0 forall x € R. Suppose d(h/) =0forallh € H(R)NZ(R).
This further implies that d(x) = 0 for all x € Z(R). Replacing y by kK'y, k' e
S(R)NZ(R)) in (2.12) and using the fact d(x) = 0 for all x € Z(R), we obtain
k' (—d(x)d(y*) +d(y)d(x*) +d(x*)d(y) — d(y*)d(x)) =
= k' (—xy* 4 yx* +x*y - y*x).
Again using the primeness of R and since S(R) N Z(R) # (0), we arrive at
—d(x)d(y*) +d(y)d(x*) +d(x*)d(y) —d(y™)d(x)
=—xy*+yx*+x¥y—y*x (2.13)
for all x,y € R. Comparing (2.12) and (2), we get 2(d(x)d(y*) +d(y*)d(x)) =
2(xy* + y*x) for all x,y € R. Since char(R) # 2 and replace y by y* to get
d(x)od(y)=xoyforall x,y € R. Hence, R is commutative in view of [3, Theorem

4.4]. On the other hand, suppose d(x ox*) = 0 for all x € R. The above equation
can be further written as

d(x)x* +xd(x*)+d(x*)x +x*d(x) =0 (2.14)

for all x € R. Replacing x by h € H(R) N Z(R) in (2.14), and using the fact that
char(R) # 2, we obtain

d(h)h = 0forall h € H(R)N Z(R).

Now since the centre of a prime ring is free from zero divisors, we get for each
h € H(R) N Z(R) either d(h) =0 or h = 0. Since h = 0 implies d(h) = 0, we
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may write d(h) = 0 forall h € H(R) N Z(R) and hence d(x) = 0 for all x € Z(R).
Linearizing (2.14), we obtain

(2.15)
dx)y*+d(y)x* +xd(y*) +yd(x*) +d(x*)y +d(y*)x +x*d(y) + y*d(x) =0

for all x,y € R. Replacing y by y, € Z(R) in (2.15) and using the fact that d(x) =0
for all x € Z(R), we get

d(x)yg +yod(x™) +d(x")yo + ysd(x) =0 (2.16)

for all y, € Z(R) and x € R. In particular, taking y, = hp, € H(R)N Z(R) in
(2.16), we get 2(d(x)ho + d(x*)h,) = 0. Since char(R) # 2, we obtain d(x)h, +
d(x*)h, = 0. This can be further written as

d(x+x%)h, =0 (2.17)

for all h, € H(R)N Z(R) and x € R. Using the primeness of R, we get either
d(x+x*)=0o0or H(R)NZ(R) = (0). But H(R)N Z(R) = (0) implies that S(R) N
Z(R) = (0), which gives a contradiction since we have assumed S(R) N Z(R) # (0).
Therefore, we are left with the case d(x + x*) = 0 for all x € R. Replacing x by
h + k in the above equation, we get 2d(h) = 0. This implies that d(h) = 0 for
all h € H(R). Further d(x + x*) = 0 implies that d(x) = —d(x*) for all x € R.
Replacing x by x/, where h € H(R) in the last expression we get d(x)h = —hd (x™),
since d(h) = 0. This further implies that d(x)h = hd(x) for all x € R. Therefore in
view of the theorem of [14], we conclude that & € Z(R) forall h € H(R). Hence R is
commutative in view of Lemma 1. Thereby completing the proof of the theorem. [J

At the end, let us write an example which shows that the restriction of second kind
involution in Theorem 1 is not superfluous.

a b
Example 1. LetR—{(C d

dition and matrix multiplication is a prime ring. Define mappings d : R —> R, and

. a b\ _ (0 —b a b\ _(d -b
*.R—)Rsuchthatd(c d)_(c 0)’(c d) _(—c a)'

Obviously, Z(R) = { ( g 2 ) ‘ aec Z} . Then x* = x for all x € Z(R), and hence

Z(R) € H(R), which shows that the involution * is of the first kind. Moreover, d
is nonzero and the following condition [d(x),d(x*)] = [x,x*] for all x € R, is satis-
fied. However, R is not commutative. Hence, in Theorem 1, the hypothesis of second
kind involution is crucial.

) ‘ a,b,c,d € Z} . Of course R with matrix ad-
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