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Abstract. The main purpose of this work is to investigate the qualitative behavior of an HIV
dynamics model with two types of cocirculating target cells. The model takes into account both
short-lived and long lived chronically infected cells. In the two types of target cells, the drug ef-
ficacy is assumed to be different. The incidence rate is represented by Crowley-Martin functional
response. First we have derived the basic reproduction number R0, then constructed Lyapunov
functions to establish the global asymptotic stability of the disease-free and endemic equilibria
of the model. We have been proven that, the disease-free equilibrium is globally asymptotic-
ally stable (GAS) when R0 � 1, and the endemic equilibrium is GAS when R0 > 1. Numerical
simulations have been carried out to support our theoretical results.
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1. INTRODUCTION

Although the mathematical modeling of human immunodeficiency virus (HIV)
dynamics alone cannot deals with issues associated with HIV infection, it can be a
helpful tool for a good understanding the viral dynamics in vivo. Mathematical mod-
els can improved strategies of diagnosis and treatment. Today, many anti-HIV drugs
are available for patients with HIV, which led to a rapid decrease in viruses and an
increase in the major target cells of the virus, CD4C T cells. There are two main
categories of anti-HIV, the reverse-transcriptase inhibitors RTIs drugs which prevent
HIV from infecting the target cells, and the protease inhibitors PIs drugs which pre-
vent the infected cells from producing new infectious viruses [1]. In the literature,
several mathematical models describing the HIV dynamics in vivo have been pro-
posed (see, e.g. [3], [6–10], [12, 13]). However, these models did not take into
account the difference between short-lived infected cells and long lived chronically
infected cells. In HIV infection, the short-lived infected cells produce much larger
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amounts of viruses than long lived chronically infected cells and die at a much faster
rate [2]. The basic HIV infection model which takes into account long lived chronic-
ally infected cells under the effect of antiviral drug therapy has been proposed in [2]
as:

Px D ��dx� .1� "/ Ňxv; (1.1)

Py D .1�q/.1� "/ Ňxv� ıy; (1.2)

Ṕ D q.1� "/ Ňxv�a´; (1.3)

Pv DNıyCMa´�uv; (1.4)

where x;y;´ and v represent, respectively, the concentrations of the uninfected CD4C

T cells, short-lived infected cells, long lived chronically infected cells, and free vir-
uses. Parameters � and d are the birth rate and death rate constants of the uninfected
CD4C T cells. Parameter Ň is the infection rate constant. The short-lived infected
CD4C T cells, long lived chronically infected CD4C T cells and free viruses are
die with rate constants ı, a and u; respectively. The fractions .1� q/ and q with
0 < q < 1 are the probabilities during the infection on which an uninfected cell will
become either short-lived infected or long lived chronically infected. Parameters
N and M are the average number of virus particles generated in the lifetime of the
short-lived infected and long lived chronically infected cells, respectively. The model
incorporates RTI drug therapy with drug efficacy denoted by " and 0� "� 1: All the
parameters mentioned in the model are positive.

In a very recent work [8], model (1.1)-(1.4) has been modified to consider the an-
tibody immune response. In model (1.1)-(1.4), it was assumed that, the HIV has one
class of target cells, CD4C T cells. Based on the observation of Perelson et al. [9]
that, the HIV attack two types of cells CD4C T cells and macrophages. Recently,
many efforts have been devoted to propose and analyze various mathematical mod-
els of HIV dynamics with two classes of target cells [2, 5, 6, 8, 10] In [4], the virus
dynamics models have been studied by assuming that the virus has multiple classes
of uninfected target cells. However, in [5, 6, 8, 10] and [4], only short-lived infected
cells has been considered. In [2], the model (1.1)-(1.4) was extended to take into
consideration two cocirculating target cells, CD4C T cells and macrophages as:

Px1 D �1�d1x1� .1� "/ Ň1x1v; (1.5)

Px2 D �2�d2x2� .1�f "/ Ň2x2v; (1.6)

Py1 D .1�q/.1� "/ Ň1x1v� ıy1; (1.7)

Py2 D .1�q/.1�f "/ Ň2x2v� ıy2; (1.8)

Ṕ1 D q.1� "/ Ň1x1v�a´1; (1.9)

Ṕ2 D q.1�f "/ Ň2x2v�a´2; (1.10)
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Pv DNı.y1Cy2/CMa.´1C´2/�uv; (1.11)

where xi ;yi ;´i ; and v denote the concentrations of uninfected target cells, short-lived
infected cells, long lived chronically infected cells, and free viruses, respectively, and
i D 1;2 correspond to the CD4C T cells and macrophages, respectively. In the CD4C

T cells, the drug efficacy is "while in the macrophages the drug efficacy is "f reduced
by a factor f where 0 < f < 1. The definitions of all parameters and variables are
identical to those given in Eqs. (1.1)-(1.4).

We have observed that, the qualitative behavior of model (1.5)-(1.11) are not stud-
ied in the literature. Moreover, in model (1.5)-(1.11), the incidence rate between
the uninfected target cells and viruses is given by bilinear, i.e., the infection rate per
virus and per uninfected cell is constant. However, this bilinear incidence rate may
not completely describe the infection process. Therefore, several forms of the incid-
ence rate have been proposed, such as saturated incidence rate, ˇxv

1C˛v
where ˛ > 0

[5], Beddington-DeAngelis functional response, ˇxv
1C�xC˛v

, ˛;� > 0 [5], [7], [11],

Crowley-Martin functional response, ˇxv
.1C�x/.1C˛v/

;˛;� > 0 [12], [13].
Our primary goal of the present paper is to propose an HIV dynamics model with

two types of cocirculating target cells, CD4C T cells and macrophages and investigate
its qualitative behavior. In the two types of target cells, the drug efficacy is assumed to
be different. Both short-lived and long lived chronically infected cells are considered
in the mathematical model. The incidence rate is represented by by Crowley-Martin
functional response. The global stability of all equilibria of the model is established
using direct Lyapunov method. The basic reproduction number R0 of the model is
derived. We have established that, the disease-free equilibrium is globally asymptot-
ically stable (GAS) whenR0 � 1, and the endemic equilibrium is GAS whenR0 > 1.

2. THE MODEL

In this section, we introduce a mathematical model of HIV dynamics which de-
scribes two cocirculation populations of target cells, CD4C T cells and macrophages
taking into account both of short-lived and long lived chronically infected cells. The
model is more general than model (1.5)-(1.11) by assuming that the incidence rate of
infection is given by Crowley-Martin functional response and the parameter ı;a;q;N
and M for the CD4C T cells and macrophages are not identically.

Pxi D �i �dixi �
ˇixiv

.1C�ixi /.1C˛iv/
; i D 1;2; (2.1)

Pyi D .1�qi /
ˇixiv

.1C�ixi /.1C˛iv/
� ıiyi ; i D 1;2; (2.2)

Ṕ i D qi
ˇixiv

.1C�ixi /.1C˛iv/
�ai´i ; i D 1;2; (2.3)
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Pv D

2X
iD1

.Niıiyi CMiai´i /�uv; (2.4)

where �i , ˛i , i D 1;2 are positive constants and all the parameters and variables
of the model have the same meanings as given in (1.5)-(1.11) and ˇ1 D .1� "/ Ň1,
ˇ2 D .1�f "/ Ň2.

3. THE ANALYSIS OF THE MODEL

One can easily show the positive invariance of the non-negative orthant R7
�0 for

model (2.1)-(2.4) (see e.g. [6] and [10]).

Proposition 1. There exist positive numbers Li , i D 1;2;3 such that the compact
set ˝ D

n
.x1;y1;´1;x2; ;y2; ;´2;v/ 2 R7

�0 W 0� x1;y1;´1 � L1;

0� x2;y2;´2 � L2; 0� v � L3g is positively invariant.

Proof. To show the boundedness of the solutions of system (2.1)-(2.4), letGi .t/D
xi .t/Cyi .t/C´i .t/, i D 1;2 then

PGi .t/D �i �dixi .t/� ıiyi .t/�ai´i .t/

� �i ��i .xi .t/Cyi .t/C´i .t//D �i ��iGi .t/;

where �i Dminfdi ; ıi ;aig. Hence, Gi .t/�Li , ifGi .0/�Li where Li D
�i

�i
. Since

xi .t/; yi .t/ and ´i .t/ are all non-negative, then 0 � xi .t/;yi .t/;´i .t/ � Li , for all
t � 0, if 0� xi .0/Cyi .0/C´i .0/� Li . Moreover,

Pv D

2X
iD1

.Niıiyi CMiai´i /�uv �

2X
iD1

.Niıi CMiai /Li �uv:

Then v.t/� L3; if v.0/� L3, for all t � 0, where L3 D
2X
iD1

.NiıiCMiai /Li
u

. �

Lemma 1. For system (2.1)-(2.4), there exist a threshold parameter R0 > 0 such
that
(i) when R0 � 1, there exists only one disease-free equilibrium

E0 D .x
0
1 ;0;0;x

0
2 ;0;0;0/,

(ii) when R0 > 1, there exist E0 and an endemic equilibrium
E1 D . Qx1; Qy1; Q́1; Qx2; Qy2; Q́2; Qv/.

Proof. The equilibria of model (2.1)-(2.4) satisfy the following equations:

�i �dixi �
ˇixiv

.1C�ixi /.1C˛iv/
D 0; (3.1)
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.1�qi /
ˇixiv

.1C�ixi /.1C˛iv/
� ıiyi D 0; (3.2)

qi
ˇixiv

.1C�ixi /.1C˛iv/
�ai´i D 0; (3.3)

2X
iD1

.Niıiyi CMiai´i /�uv D 0: (3.4)

From Eqs. (3.2) and (3.3) we have

yi D
.1�qi /ˇixi

ıi .1C�ixi /.1C˛iv/
v, ´i D

qiˇixi

ai .1C�ixi /.1C˛iv/
v: (3.5)

Inserting yi and ´i into Eq. (3.4) we obtain 
2X
iD1

..1�qi /Ni CqiMi /ˇixi

u.1C�ixi /.1C˛iv/
�1

!
uv D 0: (3.6)

Equation (3.6) has two possible solutions

v D 0 or
2X
iD1

..1�qi /Ni CqiMi /ˇixi

u.1C�ixi /.1C˛iv/
�1 D 0:

If vD 0 then substituting it in Eqs. (3.1) and (3.5), leads to a disease-free equilibrium
E0 D .x

0
1 ;0;0;x

0
2 ;0;0;0/; where x0i D

�i
di
; i D 1,2.

If v ¤ 0, then solving Eq. (3.1) w.r.t. xi we get:

x˙i D

Œ.�ix
0
i
�1/.1C˛iv/�

ˇiv

di
�˙

r
Œ.�ix

0
i
�1/.1C˛iv/�

ˇiv

di
�2C4�ix

0
i
..1C˛iv/2

2�i .1C˛iv/
;

where x0i D
�i
di
; i D 1;2. Clearly if v > 0 then x�i < 0 and xCi > 0; then we choose

xi D x
C
i

xi D (3.7)

Œ.�ix
0
i
�1/.1C˛iv/�

ˇiv

di
�C

r
Œ.�ix

0
i
�1/.1C˛iv/�

ˇiv

di
�2C4�ix

0
i
.1C˛iv/2

2�i .1C˛iv/
:

From Eqs. (3.1), (3.4) and (3.5) we get

2X
iD1

..1�qi /Ni CqiMi /.�i �dixi /�uv D 0: (3.8)



236 A. M. ELAIW AND N. A. ALMUALLEM

Since xi is a function of v, then we can define a function H.v/ as:

H.v/D

2X
iD1

..1�qi /Ni CqiMi /.�i �dixi .v//�uv D 0:

Now, we want to show that there exist Qv > 0 such that H. Qv/D 0: It is clear that, if
v D 0 then xi D x0i and H.0/D 0, and when

v D Nv D

2X
iD1

..1�qi /Ni CqiMi /�i

u
> 0;

then we have Nxi D xi . Nv/ > 0 and

H. Nv/D�

2X
iD1

..1�qi /Ni CqiMi /di Nxi < 0:

Since H.v/ is continuous for all v � 0, we have that

H
0

.0/D

2X
iD1

..1�qi /Ni CqiMi /ˇix
0
i

.1C�ix
0
i /

�uD u

 
2X
iD1

..1�qi /Ni CqiMi /ˇix
0
i

u.1C�ix
0
i /

�1

!
:

Therefore, if
2X
iD1

..1�qi /NiCqiMi /ˇix
0
i

u.1C�ix
0
i
/

> 1; thenH
0

.0/ > 0, and there exists Qv 2 .0; Nv/

such that H. Qv/ D 0. From Eqs. (3.5) and (3), we have Qxi > 0; Qyi > 0 and Q́ i > 0;
i D 1;2. Therefore, an endemic equilibrium E1 D . Qx1; Qy1; Q́1; Qx2; Qy2; Q́2; Qv/ exists

when
2X
iD1

..1�qi /NiCqiMi /ˇix
0
i

u.1C�ix
0
i
/

> 1: �

Now, we are ready to define the parameter R0 as:

R0 D

2X
iD1

R0i D

2X
iD1

..1�qi /Ni CqiMi /ˇix
0
i

u.1C�ix
0
i /

;

where, R01 represents the basic infection reproduction number of the HIV dynamics
with CD4C T cells (in the absence of macrophages) and R02 represents the basic in-
fection reproduction number of the HIV dynamics with macrophages (in the absence
of CD4C T cells), respectively. The parameter R0 determines whether the infection
can be established.

Here, we establish the global stability of the two equilibria of system (2.1)-(2.4)
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employing the direct Lyapunov method and LaSalle’s invariance principle. The fol-
lowing function will be used throughout the paper F W .0;1/! Œ0;1/ as:

F.s/D s�1� lns: (3.9)

Theorem 1. The disease-free equilibrium E0 of system (2.1)-(2.4) is GAS when
R0 � 1:

Proof. Define Lyapunov functional W0 as:

W0 D

2X
iD1

i

2664xi �x0i �
xiZ
x0
i

x0
i
.1C�is/

s.1C�ix
0
i
/
dsC Ni

.1�qi /NiCqiMi
yi C

Mi
.1�qi /NiCqiMi

´i

3775Cv;
where i D .1�qi /Ni CqiMi , i D 1;2.

We calculate dW0
dt

along the trajectories of system of (2.1)-(2.4) as:

dW0

dt
D

2X
iD1

i

" 
1�

x0i .1C�ixi /

xi .1C�ix
0
i /

!�
�i �dixi �

ˇixiv

.1C�ixi /.1C˛iv/

�
C

Ni

.1�qi /Ni CqiMi

�
.1�qi /ˇixiv

.1C�ixi /.1C˛iv/
� ıiyi

�
C

Mi

.1�qi /Ni CqiMi

�
qiˇixiv

.1C�ixi /.1C˛iv/
�ai´i

��
(3.10)

C

2X
iD1

.Niıiyi CMiai´i /�uv: (3.11)

Collecting terms of Eq. (3.11) we get

dW0

dt
D

2X
iD1

i

"
di

 
1�

x0i .1C�ixi /

xi .1C�ix
0
i /

!�
x0i �xi

�
C

ˇix
0
i v

.1C�ix
0
i /.1C˛iv/

#
�uv

D�

2X
iD1

i
di .xi �x

0
i /
2

xi .1C�ix
0
i /
�uvCuv

2X
iD1

R0i

.1C˛iv/

D�

2X
iD1

i
di .xi �x

0
i /
2

xi .1C�ix
0
i /
�

2X
iD1

R0i˛iuv
2

.1C˛iv/
C .R0�1/uv. (3.12)

Then dW0
dt
� 0 for all x1;x2;v > 0 when R0 � 1: We note that, the solutions of

system (2.1)-(2.4) converge to � , the largest invariant subset of
n
dW0
dt
D 0

o
. From

Eq. (3.12), we have dW0
dt
D 0 if and only if xi D x0i , i D 1;2 and v D 0. The set �
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is invariant and for any element belongs to � satisfies v D 0 and then Pv D 0. We can
see from Eq. (2.4) that

2X
iD1

.Niıiyi CMiai´i /D 0:

Since yi and ´i are non-negative for i D 1;2; then yi D ´i D 0; i D 1;2. It follows
that, dW0

dt
D 0 iff xi D x0i ; yi D 0; ´i D 0, i D 1,2 and v D 0. From LaSalle’s

invariance principle, E0 is GAS. �

Theorem 2. The endemic equilibrium E1 of system (2.1)-(2.4) is GAS when R0 >
1.

Proof. We consider the Lyapunov functional W1 as:

W1 D

2X
iD1

i

264xi � Qxi � xiZ
Qxi

Qxi .1C�is/

s.1C�i Qxi /
dsC

Ni

.1�qi /Ni CqiMi
QyiF

�
yi

Qyi

�

C
Mi

.1�qi /Ni CqiMi
Q́ iF

�
´i

Q́ i

��
C QvF

�v
Qv

�
:

Calculating dW1
dt

along the solutions of system (2.1)-(2.4) we obtain

dW1

dt
D

2X
iD1

i

��
1�
Qxi .1C�ixi /

xi .1C�i Qxi /

��
�i �dixi �

ˇixiv

.1C�ixi /.1C˛iv/

�
C

Ni

.1�qi /Ni CqiMi

�
1�
Qyi

yi

��
.1�qi /ˇixiv

.1C�ixi /.1C˛iv/
� ıiyi

�
C

Mi

.1�qi /Ni CqiMi

�
1�
Q́ i

´i

��
qiˇixiv

.1C�ixi /.1C˛iv/
�ai´i

��
C

�
1�
Qv

v

� 2X
iD1

.Niıiyi CMiai´i /�uv

!
: (3.13)

Collecting terms of Eq. (3.13) we get

dW1

dt
D

2X
iD1

i

��
1�
Qxi .1C�ixi /

xi .1C�i Qxi /

�
.�i �dixi /C

ˇi Qxiv

.1C�i Qxi /.1C˛iv/

�
.1�qi /Ni

.1�qi /Ni CqiMi

Qyi

yi

ˇixiv

.1C�ixi /.1C˛iv/
C

Niıi

.1�qi /Ni CqiMi
Qyi

�
qiMi

.1�qi /Ni CqiMi

Q́ i

´i

ˇixiv

.1C�ixi /.1C˛iv/
C

Miai

.1�qi /Ni CqiMi
Q́ i

�
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�uv�
Qv

v

2X
iD1

Niıiyi �
Qv

v

2X
iD1

Miai´i Cu Qv:

Using the equilibrium conditions for E1:

�i D di Qxi C
ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/
;

.1�qi /ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/
D ıi Qyi ;

qiˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/
D ai Q́ i , u Qv D

2X
iD1

.Niıi Qyi CMiai Q́ i / ;

and the following equality

uv D u Qv
v

Qv
D
v

Qv

 
2X
iD1

.Niıi Qyi CMiai Q́ i /

!
D
v

Qv

2X
iD1

i
ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/
;

we obtain

dW1

dt
D

2X
iD1

i

"
�
di .xi � Qxi /

2

xi .1C�i Qxi /
C

ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/

�
1�
Qxi .1C�ixi /

xi .1C�i Qxi /

�
C

ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/

�
v.1C˛i Qv/

Qv.1C˛iv/
�
v

Qv

�
C

2Niıi

.1�qi /Ni CqiMi
Qyi C

2Miai

.1�qi /Ni CqiMi
Q́ i

�
Niıi Qyi

.1�qi /Ni CqiMi

xiv Qyi .1C�i Qxi /.1C˛i Qv/

Qxi Qvyi .1C�ixi /.1C˛iv/

�
Miai Q́ i

.1�qi /Ni CqiMi

xiv Q́ i .1C�i Qxi /.1C˛i Qv/

Qxi Qv´i .1C�ixi /.1C˛iv/

�
Niıi Qyi

.1�qi /Ni CqiMi

yi Qv

Qyiv
�

Miai Q́ i

.1�qi /Ni CqiMi

´i Qv

Q́ iv

�
: (3.14)

Eq. (3.14) can be rewritten as:

dW1

dt
D

2X
iD1

i

�
�
di .xi � Qxi /

2

xi .1C�i Qxi /
C

ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/

�
v.1C˛i Qv/

Qv.1C˛iv/
�
v

Qv

�
C

Niıi
.1�qi /NiCqiMi

Qyi

�
3� Qxi .1C�ixi /

xi .1C�i Qxi /
�
xi Qyiv.1C�i Qxi /.1C˛i Qv/
Qxiyi Qv.1C�ixi /.1C˛iv/

�
yi Qv
Qyiv

�
C

Miai
.1�qi /NiCqiMi

Q́ i

�
3� Qxi .1C�ixi /

xi .1C�i Qxi /
�
xi Q́iv.1C�i Qxi /.1C˛i Qv/
Qxi´i Qv.1C�ixi /.1C˛iv/

�
´i Qv
Q́iv

��
D

2X
iD1

i

�
�
di .xi � Qxi /

2

xi .1C�i Qxi /
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C
ˇi Qxi Qv

.1C�i Qxi /.1C˛i Qv/

�
v.1C˛i Qv/

Qv.1C˛iv/
�
v

Qv
�1C

1C˛iv

1C˛i Qv

�
C

Niıi

.1�qi /Ni CqiMi
Qyi

�
4�
Qxi .1C�ixi /

xi .1C�i Qxi /
�
xi Qyiv.1C�i Qxi /.1C˛i Qv/

Qxiyi Qv.1C�ixi /.1C˛iv/

�
yi Qv

Qyiv
�
1C˛iv

1C˛i Qv

�
C

Miai

.1�qi /Ni CqiMi
Q́ i

�
4�
Qxi .1C�ixi /

xi .1C�i Qxi /

�
xi Q́ iv.1C�i Qxi /.1C˛i Qv/

Qxi´i Qv.1C�ixi /.1C˛iv/
�
´i Qv

Q́ iv
�
1C˛iv

1C˛i Qv

��
D

2X
iD1

i

�
�
di .xi � Qxi /

2

xi .1C�i Qxi /
�

ˇi Qxi˛i .v� Qv/
2

.1C�i Qxi /.1C˛i Qv/2.1C˛iv/

C
Niıi

.1�qi /Ni CqiMi
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Q́ iv
�
1C˛iv
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��
: (3.15)

Because the geometrical mean is less than or equal to the arithmetical mean, then
the last two terms of Eq. (3.15) are less than or equal zero. Therefore, if R0 > 1;
then Qx1; Qx2; Qy1; Qy2; Q́1; Q́2; Qv > 0; and dW1

dt
� 0 for all x1;x2;y1;y2;´1;´2; v > 0. It

is clear that, the set fdW1
dt
D 0g contains only the invariant singleton set fE1g. The

global stability of E1 is induced from LaSalle’s invariance principle. �

4. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we use numerical simulations to illustrate theoretical results given
in Theorems 1 and 2 for model (2.1)-(2.4). We shall fix the following parameters:
�1D 10; �2D 6; d1D 0:01; d2D 0:01; ı1D 0:5; ı2D 0:3; a1D 0:3; a2D 0:1; ˛1D

0:05; ˛2D 0:05; �1D 0:0005; �2D 0:0005; N1D 20; N2D 10; M1D 10; M2D 5;
Ň
1D 0:0005; Ň2D 0:0008; q1D q2D 0:5; f D 0:5 and uD 2: The parameter " will

be chosen below:
(i) R0 � 1: Let "D 0:98; then we get R0 D 0:88. According to Theorem 1, E0 is

GAS. Figures 1-7 show that the numerical results are compatible with the results of
Theorem 1. We can see that, the concentrations of uninfected CD4CT cells and mac-
rophages are increasing and converge to their normal values �1

d1
D 1000; �2

d2
D 600,

respectively, while the concentrations of infected cells and free viruses are decaying
and tend to zero. In this case, the treatment succeeded to eliminate the viruses from
the blood.
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(ii) R0 > 1: We choose " D 0; then we compute R0 D 4:73: From Figures 1-
7 we can see that, our simulation results are consistent with the theoretical results
of Theorem 2, where is E1 GAS. We can observe that, the trajectory of system
(2.1)-(2.4) converges to E1 D .630:16;3:69;6:16;300:38;4:99;14:98; 38:97/: We
note that, when "D 0, i.e. there is no treatment the infection becomes chronic.
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FIGURE 1. The evolution of uninfected CD4CT cells for model
(2.1)-(2.4).
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FIGURE 2. The evolution of short-lived infected CD4CT cells for
model (2.1)-(2.4).

5. CONCLUSION

In this paper, we have investigated the qualitative behavior of an HIV infection
model which describes the interaction of the HIV with two classes of target cells,
CD4CT cells and macrophages with different drug efficacy. Both short-lived and
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FIGURE 3. The evolution of chronically infected CD4CT cells for
model (2.1)-(2.4).
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FIGURE 4. The evolution of uninfected macrophages cells for
model (2.1)-(2.4).
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FIGURE 5. The evolution of short-lived infected macrophages cells
for model (2.1)-(2.4).
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FIGURE 6. The evolution of chronically infected macrophages cells
for model (2.1)-(2.4).
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FIGURE 7. The evolution of free virus for model (2.1)-(2.4).

long lived chronically infected cells have been taken into account. The infection rate
is given by Crowley-Martin functional response. The global stability of the disease-
free equilibrium and endemic equilibrium of the model has been established by con-
structing suitable Lyapunov functionals and using LaSalle’s invariant principle. We
have derived the basic infection reproduction number R0 for the model. We have
proven that, the disease-free equilibrium E0 is GAS when R0 � 1, and the endemic
equilibrium E1 is GAS when R0 > 1.
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