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Abstract. Let R be a ring and M be an R-module. M is said to be an E�-module (respectively,
an EE�-module) if M has a supplement (respectively, ample supplements) in every coatomic
extension N , i.e. N

M
is coatomic. We prove that if a module M is an EE�-module, every

submodule of M is an E�-module, and then we show that a ring R is left perfect iff every left
R-module is an E�-module iff every left R-module is an EE�-module. We also prove that the
class of E�-modules is closed under extension. In addition, we give a new characterization of
left V -rings by cofinitely injective modules.
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1. INTRODUCTION

Throughout this paper, we assume that all rings are associative with identity and all
modules are unital left modules. LetM be such a module. As usual, the notationK �
M means thatK is a submodule ofM . A submoduleL�M is said to be essential in
M , denoted asLEM , ifL\U ¤ 0 for every non-zero submoduleU �M . Dually, a
proper submoduleK ofM is said to be small inM and denoted byK <<M , ifM ¤
KCT for every proper submodule T of M . By radical of M , denoted by Rad.M/,
we will indicate the sum of all small submodules, or, equivalently intersection of all
maximal submodules of M (see [8]). If M D Rad.M/, i.e., M has no maximal
submodules, M is called radical.

Let M be a module. M is said to be coatomic if Rad.M
K
/ D M

K
implies that

K DM for some submodule K of M in [9]. M is coatomic if and only if every
proper submodule of M is contained in a maximal submodule of M . Semisimple
modules are coatomic. In addition, every factor module of a coatomic module is
again coatomic.

Let U;V �M be modules. V is called supplement of U inM if it is minimal with
respect toM DU CV , equivalentlyM DU CV and U \V << V . A submodule S
ofM has ample supplements inM if, wheneverM DSCL,L contains a supplement
K of S in M [8].
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Let 0 �!M �! N �! K �! 0 be a short exact sequence of modules. Then,
N is called an extension of M by K. To simplify the notation, we think of M as a
submodule N . In [3], a module N is said to be a cofinite extension of M provided
M � N and N

M
is finitely generated. In light of this fact that finitely generated

modules are coatomic, we call a module N coatomic extension of M if the factor
module N

M
of N is coatomic.

It is well known that a module M is injective if and only if it is a direct summand
of every extensionN ofM . Since every direct summand is a supplement, Zöschinger
studied in [10] modules that have a supplement in every extension and termed these
modules the property .E/ as a generalization of injective modules. In particular, he
proved in [10, Lemma 1.2] that every submodule of a module M has the property
.E/ if and only if M has ample supplements in every extension, namely the prop-
erty .EE/. It is obvious that the class of modules with the property .EE/ contains
properly artinian modules.

In [3], a module M is said to have the property .CE/ (respectively, the property
.CEE/) if M has a supplement (respectively, ample supplements) in every cofinite
extension. It is shown in [3, Theorem 2.12] that R is semiperfect if and only if every
left R-module has the property .CE/.

Let M be a module. We call M an E�-module if M has a supplement in every
coatomic extension, and M an EE�-module if it has ample supplements in every
coatomic extension. The notation of E�-modules lies between modules with .E/
and modules with the property .CE/. Some examples are given to show that these
inclusions are proper.

In this paper, we study some basic properties of E�-modules and EE�-modules.
We show that the class of E�-modules closed under finite direct sums, extensions
and direct summands. We prove that, over a left hereditary ring, every factor module
of a coatomic E�-module is an E�-module. In Proposition 2, we show that if M is
an EE�-module, then every submodule of M is an E�-module. This gives us that
over semilocal rings every EE�-module is strongly radical supplemented. Also, we
prove in Theorem 2 that a ring R is left perfect if and only if every left R-module is
an E�-module if and only if every left R-module is an EE�-module. In addition, we
show that every simple left R-module is cofinitely injective if and only if, for every
finitely generated left R-module M , Rad.M/ D 0 if and only if R is a left V -ring
(i.e., rings whose simple left modules are injective). Finally, we prove in Proposition
5 that every E�-module over a left V -ring is injective.

2. E�-MODULES AND EE�-MODULES

It is clear that every module with the property .E/ is an E�-module, but the fol-
lowing example shows that an E�-module doesn’t have the property .E/, in general.

Recall from [1] that a module M is called strongly radical supplemented if every
submodule N of M containing Rad.M/ has a supplement in M . It is proven in [1,
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Corollary 2.1] that finite sums of strongly radical supplemented modules are strongly
radical supplemented. Note that every radical module is strongly radical supplemen-
ted.

Example 1. For a non-complete local dedekind domain R, let M be the direct
sum of left R-modules R�, K.I / and R, where R� is the completion of R, K is the
quotient field of R and I is an index set, respectively. Since injective modules over
a dedekind domain are strongly radical supplemented, it follows from [10, Lemma
3.3] that M is an E�-module. On the other hand, M doesn’t have the property .E/
by [10, Theorem 3.5].

It is shown in [10, Lemma 1.3 (a)] that direct summands of modules with the
property .E/ have the property .E/. Now we give an analogue of this fact for E�-
modules.

Proposition 1. Every direct summand of an E�-module is an E�-module.

Proof. Let M be an E�-module and U be a direct summand of M . Then, we can
writeM DU ˚V for some submodule V ofM . For any coatomic extension T of U ,
we consider the external direct product of these modules T and V . Put W D T ˚V .
Now we take the monomorphism ˚ WM �! W by ˚.m/D ˚.uC v/D .u;v/ for
all mD uCv 2 U ˚V DM . It can be seen that ˚.M/ is an E�-module. Now

W

˚.M/
D
T ˚V

˚.M/
Š
T

U

is coatomic. It follows that ˚.M/ has a supplement, say U
0

, in W . Therefore,
T D U C	.U

0

/, where 	 WW �! T is the projection. Since ker.	/� ˚.M/, we
have U \	.U

0

/ << 	.U
0

/ by [8, 19.3]. Hence, 	.U
0

/ is a supplement of U in
T . �

A submodule of an E�-module need not be an E�-module, in general. To see this
actuality, we shall consider the left Z-modules Z�Q. But we have:

Proposition 2. If M is an EE�-module, then every submodule U of M is an
E�-module.

Proof. Let N be a coatomic extension of U . We shall show that U has a supple-
ment in N . By W , we denote the external direct product of M and N . Put F D W

W
0 ,

where the submodule W
0

D f.u;�u/ 2W ju 2 U g �W . For these inclusion homo-
morphism �1 WU �!N and �2 WU �!M , we can draw the pushout in the following:
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where � and � are monomorphisms. Then F D Im.�/C Im.�/. Therefore N
U
Š

F
Im.�/

is coatomic. Since Im.�/ŠM is an EE�-module, there exists a submodule
L of Im.�/ such that L is a supplement of Im.�/ in F . Now

N D ��1.F /D ��1.Im.�//C��1.L/D U C��1.L/

and
U \��1.L/ << ��1.L/:

This means that ��1.L/ is a supplement of U in N . �

A ring R is called semilocal if R
Rad.R/

is a semisimple artinian ring ([8]). The
following corollary is an immediate consequence of Proposition 2.

Corollary 1. Let M be an EE�-module over a semilocal ring R. Then, M is
strongly radical supplemented.

Proof. Let Rad.M/� U �M . Then M
U

is a factor module of M
Rad.M/

. Since R

is a semilocal ring, M
Rad.M/

is semisimple as a R
Rad.R/

-module. Therefore, M
U

is a
coatomic R-module. By the hypothesis, U has a supplement in M . This means that
M is strongly radical supplemented. �

Let � be a class of modules. Then, � is called closed under extension ifM; N
M
2�

implies N 2 � . The following crucial lemma is used to show that the class of E�-
modules is closed under extensions.

Lemma 1. Let M be a module and K be a small submodule of M . Then, M is
coatomic if and only if the factor module M

K
is coatomic.

Proof. .H)/ It is clear.
.(H/ Let U be a proper submodule of M . Since K�M , then UCK

K
is a proper

submodule of M
K

. Since M
K

is coatomic, UCK
K

is contained in a maximal submodule
of M

K
, say V

K
. Therefore, V is a maximal submodule of M . Hence, M is coatomic

as required. �

Recall from [9, Lemma 1.5 (a)] that the class of coatomic modules is closed under
extensions.

Theorem 1. Let M �N be modules. If M and N
M

are E�-modules, then N is an
E�-module.

Proof. Let K be a coatomic extension of N . For M �N �K,

K

N
Š

K
M
N
M
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is coatomic, and thus K
M

is a coatomic extension of N
M

. By the hypothesis, the sub-
module N

M
has a supplement, say L

M
, in K

M
. So we can write N

M
C

L
M
D

K
M

and
N
M
\
L
M
D

N\L
M
�

L
M

. Therefore, K DN CL. Now

L
M
N\L
M

Š
L

N \L
Š
N CL

N
D
K

N

is coatomic. Applying Lemma 1, we obtain that L
M

is coatomic. Since M is an E�-
module, there exists a submodule M

0

of L such that M CM
0

D L and M \M
0

�

M
0

. Then,K DN CLDN C.MCM
0

/DN CM
0

. Assume thatN CM
00

DK for
some submodule M

00

�M
0

. Then, M CM
00

� L. Since L
M

is a supplement of N
M

in K
M

, it follows that LDM CM
00

. By the minimality of M
0

, we have M
00

DM
0

.
Therefore M is an E�-module. �

Note that, by Theorem 1, a finitely generated semisimple module is anE�-module.

Corollary 2. Let M be a module and K be a maximal submodule of M . If K is
an E�-module, thenM is an E�-module. In particular, modules containing a simple
maximal submodule are E�-modules.

Proof. LetK be anE�-module. Since simple modules areE�-modules, the factor
module M

K
is an E�-module. Applying Theorem 1, we get M is an E�-module. �

Now we can prove every finite direct sum of E�-modules in the following Propos-
ition.

Proposition 3. Let Mi .i 2 I / be any finite collection of E�-modules and M D
M1˚M2˚ :::˚Mn. Then, M is an E�-module.

Proof. In order to show thatM is an E�-module, we use induction on n. Suppose
that nD 2. Other case can prove by a similar way. Let M DM1˚M2. Then, M2 Š
M
M1

. By the hypothesis and Theorem 1, we obtain that M is an E�-module. �

Recall that over a left hereditary ring every factor module of an injective module
is injective. In the following, we show that every factor module of a coatomic E�-
module over a left hereditary ring is an E�-module.

Proposition 4. Let R be a left hereditary ring and M be a coatomic E�-module.
Then every factor module of M is an E�-module.

Proof. For any submodule U ofM , letN be a coatomic extension of M
U

. Then,N
is coatomic. By E.M/, we denote the injective hull of M . Since R is left hereditary,
E.M/
U

is injective, and so there exists a commutative diagram with exact rows in the
following:
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i.e., f id D 	�1 and ˚	 D �2� , where 	 WM �! K is a monomorphism by [7,
Lemma 2.16] . It follows that N Š K

	.M/
. Since M is an E�-module, 	.M/ has

a supplement, say V , in K. By the last part proof of Proposition 2, we obtain that
˚.V / is a supplement of M

U
in N . Hence, M

U
is an E�-module. �

Recall from [6] that an epimorphism f W P �! M is called a small cover if
Ker.f / <<P , and a projective module P together with a small cover f WP �!M

is called a projective cover of M . A ring R is called semiperfect if every finitely
generated left (or right) R-module has a projective cover, and it is called left perfect
if every left R-module has a projective cover.

It is known that a ring R is semiperfect if and only if R is semilocal and idem-
potents can be lifted modulo Rad.R/, and it is left perfect if and only if R is semi-
local and Rad.R/ is a left t-nilpotent ideal. Local rings are semiperfect ([6]).

Now we give a characterization of left perfect rings via E�-modules. Firstly, we
have the following lemma.

Lemma 2. The following statements are equivalent over an arbitrary ring.
(1) Every left module is an E�-module.
(2) Every left module is an EE�-module.

Proof. Suppose that every left module is an E�-module. Let M be any module.
For a coatomic extension N of M , let N DM CS for some submodule S of N .
Then N

M
Š

S
M\S

is coatomic. By the hypothesis, M \S has a supplement in S , say
W . So we can write S D .M \S/CW and .M \S/\W DM \W �W . Then
we have N DM CW and N \W � W . Therefore, M is an EE�-module. The
converse is clear by definitions. �

Theorem 2. Let R be a ring. The following three statements are equivalent.
(1) R is left perfect.
(2) Every left R-module is an E�-module.
(3) Every left R-module is an EE�-module.

Proof. .1/) .2/ By [4, 39.9], over a left perfect ring every left module has the
property .E/. This completes the proof of (2).
.2/) .3/ It follows from Lemma 2.
.3/) .1/ SinceEE�-modules have the property .CEE/, by the hypothesis, every

R-module has the property .CEE/. It follows from [3, Theorem 2.12] that R is
semiperfect. Therefore, R is semilocal.
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Now it is enough to show that every left R-module is strongly radical supplemen-
ted by [2, Theorem 1]. Let M be any left R-module. By the hypothesis, M is an
EE�-module. Applying Corollary 1, we deduce that M is strongly radical supple-
mented. �

Now we give an example of a module, which has the property .CE/, but not an
E�-module.

Example 2. Let p be a prime integer in Z. Consider the local dedekind domain
R D Z.p/ D f

a
b
ja;b 2 Z and p − bg. Let N be the left R-module R.N/. Put

M D Rad.N /. Since R is a local ring, the factor module N
M

is semisimple as a
R

Rad.R/
�module. Therefore, N

M
is a semisimple R-module and so N is a coatomic

extension of M . It follows from [3, Theorem 2.12] that M has the property .CE/.
On the other hand, M is not an E�-module by [2, Theorem 1].

In [5], a ring R is said to be a left V-ring if every simple left R-module is injective.
It is well known that a ring R is a left V -ring if and only if Rad.M/D 0 for every
left R-moduleM . Recall from [3] that a moduleM is called cofinitely injective ifM
is a direct summand of every cofinite extension N of M . Clearly, injective modules
are cofinitely injective, and a cofinitely injective module has the property .CE/. Now
we have the next result:

Proposition 5. Let R be a left V -ring and M be an E�-module over the ring.
Then, M is injective.

Proof. Let N be an extension of M . Since every module over a left V -ring is
coatomic, N

M
is coatomic. Therefore, N is a coatomic extension of M . By assump-

tion, we can write N DM CK and M \K << K for some submodule K � N .
Since R is a left V -ring, we obtain that M \K � Rad.K/ � Rad.N / D 0. This
means that M is a direct summand of N . Hence, M is injective. �

Theorem 3. The following statements are equivalent for a ring R.

(1) Every simple left R-module is cofinitely injective.
(2) If M is a finitely generated left R-module, Rad.M/D 0.
(3) Every proper left ideal I of R is an intersection of maximal left ideals.

Proof. .1/ H) .2/ Let M be an arbitrary finitely generated left R-module and
let m 2 Rad.M/. We claim that m D 0. Put K D Rm. Then, K has a maximal
submodule L. Therefore, K

L
is a simple left R-module and by assumption K

L
is

cofinitely injective. Now, for L�K �M modules,

M
L
K
L

Š
M

K
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is coatomic since M is finitely generated. So there exists the decomposition M
L
D

K
L
˚
T
L

for some submodule T
L
�
M
L

. Note that

K

L
Š

M
L
T
L

Š
M

T

is simple. Thus, T is a maximal submodule of M . Therefore, m 2 K \T � L. It
follows that mD 0.
.2/H) .3/ and .3/H) .1/ follow from [5, Theorem 6.1]. �

As a consequence of the above, we have the following.

Corollary 3. Let R be a ring. Then, R is a left V -ring if and only if every simple
left R-module is cofinitely injective.

Proof. The proof follows from Theorem 3 and [5, Theorem 6.1]. �
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