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GENERALIZED TERRACED MATRICES
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Abstract. We know that every terraced matrix has the factorization Rb DDbC , where C is the
Cesàro matrix and Db D diag f.nC1/bng : In the present paper, we define the generalized ter-
raced matrix by using the generalized Cesàro matrix in the expression above, and some properties
of this matrix are given.
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1. INTRODUCTION

In [13], A.G. Siskakis gives the spectrum of the Cesàro matrix on Hp by using
the integral representation of the Cesàro operator.

LetH .D/ denotes the space of complex valued analytic functions on the unit disk
D, for 1 � p <1; Hp denotes the standard Hardy space on D, and `p denotes the
standard space of p-summable complex-valued sequences on the set of non-negative
integers.

Suppose that 1 < p <1 and .b/D fbng1nD0 is in `p. Then the sequences

C .b/D

(
1

nC1

nX
kD0

bk

)1
nD0

have `p-norms satisfying

kC .b/kp �
p

p�1
k.b/kp

and the constant in this inequality is the best possible [4,6,7,10]. ThusC is a bounded
linear operator on `p for 1 < p <1 with its norm equal to p=.p�1/ :

If f .´/D
P1
kD0 bk´

k is in Hp; let

C .f /.´/D

1X
nD0

 
1

nC1

nX
kD0

bk

!
´n:
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By computing Taylor series, we see that C has the following integral representation:
for f 2Hp;

C .f /.´/D
1

´

Z ´

0

f .t/

1� t
dt (1.1)

In [19], Scott W. Young generalized Cesàro operator, by considering more general
analytic functions instead of the function 1=.1� t / in equality (1.1), as follows.

Definition 1. Let g be analytic on the unit disk. The operator Cg W H 2 ! H 2

defined by

Cg .f / WD
1

´

Z ´

0

f .t/g .t/dt (1.2)

is called the generalized Cesàro operator with symbol g.

Definition 2. Let I be an arc of the unit circle T , and let ' W T !C. Then, let

'I D
1

jI j

Z
I

j'j ; where jI j denotes the arclength of I . ' is said to be of bounded

mean oscillation if

k'k� D sup
I�T

1

jI j

Z
I

j'�'I j<1:

We denote the set of all functions of bounded mean oscillation byBMO . If we endow
BMO with the norm k'kBMO D k'k�Cj' .0/j, then BMO is a Banach space (see
[5]).
We say that g 2 BMOA if g 2H 2 and g

�
ei�
�
2 BMO .

Definition 3. Let I be an arc of T . We say that a function ' W T !C is of
vanishing mean oscillation if

lim
ı!0

sup
I�

1

jI j

Z
I

j'�'I j D 0:

We denote the set of all functions of vanishing mean oscillation by VMO . VMO is
a closed subspace of BMO:
As with BMOA, we define VMOA as the set of g 2H 2 such that g

�
ei�
�
2 VMO .

VMOA is a closed subspace of BMOA (see [5]).

Definition 4. A vector x is a cyclic vector for a bounded operator T on a Hilbert
spaceH if the set fp .T /x W p is polynomialg is dense inH . If T has a cyclic vector,
then T is called a cyclic operator.

We denote the spectrum of the linear operator T by � .T /. That is,

� .T /D f� 2C W T �� not invertibleg :

Let G .´/ D
R ´
0 g .w/dw. Pommerenke [12] showed that Cg is bounded on the

Hilbert space H 2 if and only if G 2 BMOA: Aleman and Siskakis [2] extended
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Pommerenke’s result to the Hardy spacesHp for all p , 1� p <1; and showed that
Cg is compact on Hp if and only if G 2 VMOA.

Continuity of the Cesàro operator C on the Hilbert space H 2 .D/ is due to Hardy,
Littlewood and Polya [7], and to Siskakis for the general Hardy and the unweighted
Bergman space cases, [13,14,16]. In [15], Siskakis considered a class of generalized
Cesàro operators associated with semigroups of weighted composition operators on
H 2 .D/, 1 � p <1, characterized compactness within this class and identified the
spectrum of the operators Cg

ˇ̌
Hp for g .´/ D 1C´

1�´
. He also raised question of the

extent to which these operators were hyponormal or subnormal on H 2 .D/. Brown,
Halmos and Shields [3] and Kriete and Trutt [9] investigated these properties for
the classical Cesàro operator. In [1] Albrecht, Miller and Neumann showed that
C.1C´/=.1�´/ is hyponormal on H 2 .D/.

The matrix representation of Cg in the standard basis
˚
´n�1

	1
nD1

of H 2 follows

Cg D

0BBBBBBBBBBBBBBBB@

a0

a1

2

a0

2

a2

3

a1

3

a0

3

a3

4

a2

4

a1

4

a0

4

:::
:::

:::
:::

: : :

1CCCCCCCCCCCCCCCCA
(1.3)

where, aj are Taylor coefficients of g .´/, i.e.
P1
jD0aj´

j D g .´/ 2H .D/.
Given a sequence fbng of scalars, the terraced matrix Rb is the lower triangular

matrix with constant row-segments

Rb D

0BBBBB@
b0
b1 b1
b2 b2 b2
b3 b3 b3 b3
:::

:::
:::

:::
: : :

1CCCCCA (1.4)

The Cesàro matrix is Rf1=.nC1/g and more generally, if we take bn D n�´ we get the
´-Cesàro matrix C´.

In [11], G. Leibowitz gave the following relation between terraced matrix and
Cesàro matrix C .
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If D is the diagonal matrix diag fdng ; then DRfbng D Rfdnbng. Hence every
terraced matrix has the factorization Rb D DbC , where Db D diag f.nC1/bng I

while if every bn ¤ 0; C DDbRb , where Db D diag
�

1

.nC1/bn

�1
nD0

.

In the present paper, we define the generalized terraced matrix by using the gen-
eralized Cesàro matrix and we show that the Cesàro matrix C , obtained when bn D
1=.nC1/ and g .´/D 1=.1�´/ are taken in the generalized terraced matrix, is es-
sentially the only generalized terraced matrix that is a Hausdorff matrix. That is,
any generalized terraced matrix that is not a scalar multiple of C is not a Hausdorff
matrix. And we prove that every generalized terraced matrix commutes with an in-
finite matrix B , then B is a scalar multiple of unit matrix. Also, we prove necessary
and sufficient conditions related to normality and self-adjointedness of generalized
terraced matrix.

Definition 5. Let fbng be a scalar sequence and g .´/ D
P1
kD0ak´

k 2 H .D/.
The matrix

R
g

b
D

0BBBBBBBBBBBB@

a0b0

a1b1 a0b1

a2b2 a1b2 a0b2

a3b3 a2b3 a1b3 a0b3

:::
:::

:::
:::

: : :

1CCCCCCCCCCCCA
(1.5)

is called the generalized terraced matrix with symbol g on H 2.

The relation R
g

b
D DbCg is valid similar to the terraced matrix, where

Db D diag f.nC1/bng
1
nD0. We recall that C D Cg for g .´/ D

1

1�´
, since

g .´/D
P1
kD0´

k , which fixes then an D 1 for all n 2N. Thus, from (1.5) we get

R
g

b
D

0BBBBB@
b0
b1 b1
b2 b2 b2
b3 b3 b3 b3
:::

:::
:::

:::
: : :

1CCCCCADRb

On the other hand Rg
f1=.nC1/g

D Cg . Therefore this definition could be regarded as
a two-way generalization of both terraced and Cesàro operators.
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From (1.5) we can write

�
R
g

b

�
nj
D

8<: an�j bn ; n� j

0 ; n < j

(1.6)

and h�
R
g

b

��i
nj
D

8<: aj�nbj ; j � n

0 ; j < n

(1.7)

2. RESULTS

Theorem 1. Let g .´/D
P1
kD0ak´

k and a0 ¤ 0¤ a1. If Rg
b

commutes with Cg ;
then Rg

b
is a scalar multiple of Cg .

Proof. We get by direct calculation�
R
g

b
Cg
�
nj
D

(
bn
Pn�j

kD0

akan�k�j

kCj C1
; n� j

0 ; n < j

and �
CgR

g

b

�
nj
D

8<:
1

nC1

Pn�j

kD0
akan�k�j bkCj ; n� j

0 ; n < j

If Rg
b
Cg D CgR

g

b
then equating the entries on the first subdiagonal,�

R
g

b
Cg
�
nC1;n

D
�
CgR

g

b

�
nC1;n

;

this gives

a0a1bnC1

�
1

nC1
C

1

nC2

�
D
a0a1

nC2
.bnCbnC1/

for all nonnegative integers n. From last equation we have

bnC1 D
nC1

nC2
bn (2.1)

From (2.1); we can prove by using strong induction that for every n,

bn D
1

nC1
b0

Hence, we have Rg
b
DR

gn
b0
nC1

o D b0Rgn 1
nC1

o D b0Cg : �

Remark 1. Proposition 2.1 of [11] is a special case of Theorem 1 with the case
g .t/D 1=.1� t /.

Theorem 2. If an infinite matrixB commutes with all generalized terraced matrices,
then B is a scalar multiple of the identity matrix.
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Proof. If we consider Rg
b

with g .t/D 1=.1� t /, we obtain the Rhaly matrix Rb .
Hence, the proof could be completed by Proposition 2.3 in [11]. �

Theorem 3. Let bn ¤ 0 for each n 2ZC. The matrix Rg
b

is normal if and only if
g .´/D c for some c 2C.

Proof. We calculate
h�
R
g

b

�� �
R
g

b

�i
00

and
h�
R
g

b

��
R
g

b

��i
00

by matrix multiplica-
tion. We geth�

R
g

b

�� �
R
g

b

�i
00
D

1X
kD0

h�
R
g

b

��i
0k

�
R
g

b

�
k0
D

1X
kD0

jakj
2
jbkj

2

and h�
R
g

b

��
R
g

b

��i
00
D

1X
kD0

�
R
g

b

�
0k

h�
R
g

b

��i
k0
D a0b0a0b0 D ja0j

2
jb0j

2 :

Since normality is defined to be
�
R
g

b

�� �
R
g

b

�
D
�
R
g

b

��
R
g

b

��
; we require thath�

R
g

b

�� �
R
g

b

�i
00
D

h�
R
g

b

��
R
g

b

��i
00

. This implies that

ja0j
2
jb0j

2
C

1X
kD1

jakj
2
jbkj

2
D ja0j

2
jb0j

2 :

Hence,
P1
kD1 jakj

2
jbkj

2
D 0. Since bk ¤ 0 for every k � 1; then ak D 0 for every

k� 1. Thus, g .´/D
P1
kD0ak´

kD a0. The converse direction is trivial since g .´/D
a0 implies that Rg

b
D diag fa0bkg

1
kD1 : �

Corollary 1. Let bn ¤ 0 for each n 2 ZC and b0 2 R. Rg
b

is self-adjoint if and
only if g .´/D c for some c 2 R.

Proof. From (1.6) and (1.7)

a0b0 D a0b0 , a1b1 D a2b2 D a3b3 D �� � D 0

Since, 8n 2N; bn ¤ 0, then

a0 D a0 , a1 D a2 D a3 D �� � D 0

Hence a0 2 R and g .´/D a0 2 R. The other direction is obvious. �

Theorem 4. Let 8n 2 N; bn > 0 real number and fbng be a strictly decreasing
sequence.

�
R
g

b

�� is cyclic for all
R ´
0 g .w/dw 2 BMOA.

Proof. If g .0/D 0; then the result follows from [17], Theorem 2. If g .0/¤ 0; then
the diagonal entries in (1.7) are distinct. Therefore, it is cyclic. See, for example, [8],
Proposition 3.6. �
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Theorem 5. Let gˇ .´/ WD g .ˇ´/ with jˇj D 1, then Rgˇ
b

is unitarily equivalent
to Rg

b
.

Proof. Define the map Uˇ WH 2!H 2 by Uˇ .f /.´/D f .ˇ´/. It is easy to see
that Uˇ is unitary with U �

ˇ
D U

ˇ
. Now, to show the unitary equivalence, we must

prove thatU �
ˇ
R
gˇ
b
Uˇ DR

g

b
. The matrix representation ofUˇ in the basis

˚
´n�1

	1
nD1

is the diagonal matrix diag fˇng : Moreover, we know that
�
Uˇ
��
D U

ˇ
D
�
Uˇ
��1

:

Thus we have U �
ˇ
R
gˇ
b
Uˇ DR

g

b
using these matrix representations and consequently

R
gˇ
b

is unitarily equivalent to Rg
b

. �

Corollary 2. Let D be a unit disk in the complex plane. If ˇ 2 @.D/ and bn > 0
8n 2 N, then �

�
R
1=.1�ˇ´/

b

�
D � .Rb/ D f´ W j´�Lj � Lg [ S , where L D

limn!1 .nC1/bn and 0� L<C1; S D fbn W nD 0;1;2; : : :g.

Proof. This is immediate from the unitary equivalence and [18]. �
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