GLOBAL RAINBOW DOMINATION IN GRAPHS

J. AMJADI, S.M. SHEIKHOESLAMI, AND L. VOLKMANN

Received 27 May, 2014

Abstract. For a positive integer \(k \), a \(k \)-rainbow dominating function (\(k \)-RDF) of a graph \(G \) is a function \(f \) from the vertex set \(V(G) \) to the set of all subsets of the set \(\{1, 2, \ldots, k\} \) such that for any vertex \(v \in V(G) \) with \(f(v) = \emptyset \), the condition \(\bigcup_{u \in N(v)} f(u) = \{1, 2, \ldots, k\} \) is fulfilled, where \(N(v) \) is the neighborhood of \(v \). The weight of a \(k \)-RDF \(f \) is the value \(\omega(f) = \sum_{v \in V} |f(v)| \). A \(k \)-RDF \(f \) is called a global \(k \)-rainbow dominating function (\(G_k \)-RDF) if \(f \) is also a \(k \)-RDF of the complement \(\overline{G} \) of \(G \). The global \(k \)-rainbow domination number of \(G \), denoted by \(\gamma_{GR}(G) \), is the minimum weight of a \(G_k \)-RDF on \(G \). In this paper, we initiate the study of the global \(k \)-rainbow domination number and we establish some sharp bounds for it.

2010 Mathematics Subject Classification: 05C69

Keywords: \(k \)-rainbow dominating function, \(k \)-rainbow domination number, global \(k \)-rainbow dominating function, global \(k \)-rainbow domination number

1. INTRODUCTION

In this paper, \(G \) is a simple graph with vertex set \(V(G) \) and edge set \(E(G) \) (briefly \(V, E \)). The order \(|V| \) of \(G \) is denoted by \(n = n(G) \). Denote by \(K_n \) the complete graph, by \(C_n \) the cycle and by \(P_n \) the path of order \(n \), respectively. For every vertex \(v \in V(G) \), the open neighborhood \(N_G(v) = N(v) \) is the set \(\{u \in V(G) \mid uv \in E(G)\} \) and its closed neighborhood is the set \(N_G[v] = N[v] = N(v) \cup \{v\} \). The degree of a vertex \(v \in V \) is \(\deg_G(v) = \deg(v) = |N(v)| \). The open neighborhood of a set \(S \subseteq V \) is the set \(N_G(S) = N(S) = \bigcup_{v \in S} N(v) \), and the closed neighborhood of \(S \) is the set \(N_G[S] = N[S] = N(S) \cup S \). The minimum and maximum degrees of \(G \) are respectively denoted by \(\delta(G) = \delta \) and \(\Delta(G) = \Delta \). A leaf of a graph is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf and a strong support vertex is a vertex adjacent to at least two leaves. For a vertex \(v \) in a rooted tree \(T \), let \(C(v) \) denote the set of children of \(v \). Let \(D(v) \) denote the set of descendants of \(v \) and \(D[v] = D(v) \cup \{v\} \). The maximal subtree at \(v \) is the subtree of \(T \) induced by \(D[v] \), and is denoted by \(T_v \). We use [12, 19] for terminology and notation which are not defined here.

A subset \(S \) of vertices of \(G \) is a dominating set if \(N[S] = V \). The domination number \(\gamma(G) \) is the minimum cardinality of a dominating set of \(G \). A dominating set \(S \) of
G is the global dominating set of G if S is a dominating set both of G and \(G^c\). The global domination number \(\gamma_r(G)\) of G is the minimum cardinality of a global dominating set. The global domination number was introduced independently by Brigham and Dutton [7] (the term factor domination number was used) and Sampathkumar [15] and has been studied by several authors (see for example [3, 20]). Since then some variants of the global domination parameter, such as connected (total) global domination, global minus domination, and global Roman domination, have been studied [4, 5, 10, 13].

For a positive integer \(k\), a \(k\)-rainbow dominating function (kRDF) of a graph G is a function \(f \colon V(G) \to P\{1, 2, \ldots, k\}\) such that for any vertex \(v \in V(G)\) with \(f(v) = \emptyset\), the condition \(\bigcup_{u \in N(v)} f(u) = \{1, 2, \ldots, k\}\) is fulfilled. The weight of a kRDF \(f\) is the value \(\omega(f) = \sum_{v \in V} |f(v)|\). The \(k\)-rainbow domination number of a graph G, denoted by \(\gamma_{rk}(G)\), is the minimum weight of a kRDF of G. A \(\gamma_r(G)\)-function is a kRDF dominating function of G with weight \(\gamma_{rk}(G)\). Note that \(\gamma_{r1}(G)\) is the classical domination number \(\gamma(G)\).

The \(k\)-rainbow domination number was introduced by Brešar, Henning, and Rall [6] and has been studied by several authors (see for example [1, 2, 8, 9, 11, 14, 16–18]). A 2-rainbow dominating function (briefly, rainbow dominating function) \(f : V \mapsto \mathcal{P}\{1, 2\}\) can be represented by the ordered partition \((V_0, V_1, V_2, V_{1,2})\) (or \((V_0^f, V_1^f, V_2^f, V_{1,2}^f)\) to refer \(f\)) of V, where \(V_0 = \{v \in V \mid f(v) = \emptyset\}\), \(V_1 = \{v \in V \mid f(v) = \{1\}\}\), \(V_2 = \{v \in V \mid f(v) = \{2\}\}\), and \(V_{1,2} = \{v \in V \mid f(v) = \{1, 2\}\}\). In this representation, its weight is \(\omega(f) = |V_1| + |V_2| + 2|V_{1,2}|\).

A kRDF \(f\) is called a global \(k\)-rainbow dominating function (GkRDF) if \(f\) is also a kRDF of the complement \(G^c\) of G. The global \(k\)-rainbow domination number of G, denoted by \(\gamma_{grk}(G)\), is the minimum weight of a GkRDF on G. A \(\gamma_{grk}(G)\)-function is a GkRDF of G with weight \(\gamma_{grk}(G)\). Since every global \(k\)-rainbow dominating function \(f\) of G is a kRDF of G and \(G^c\), and assigning 1 to the vertices with nonempty label under \(f\) is a global dominating set of G, and since assigning \(\{1, 2, \ldots, k\}\) to the vertices of a global dominating set yields a GkRDF, we deduce that

\[
\max\{\gamma_g(G), \gamma_{rk}(G), \gamma_{grk}(G^c)\} \leq \gamma_{grk}(G) \leq k\gamma_g(G).
\]

We note that the global \(k\)-rainbow domination number can differ significantly from the \(k\)-rainbow domination number. For example, for \(n \geq k + 1\), \(\gamma_{rk}(K_n) = k\) and \(\gamma_{grk}(K_n) = n\).

Our purpose in this paper is to initiate the study of the global \(k\)-rainbow domination number in graphs. We study basic properties of the global \(k\)-rainbow domination number and we establish some bounds for it.

We make use of the following results in this paper.

Theorem A ([14]). For any graph G of order n and maximum degree \(\Delta(G) \geq 1\),
\[
\gamma_{rk}(G) \geq \frac{k n}{\Delta(G) + k}.
\]
Theorem B ([6]). For \(n \geq 1 \),
\[
\gamma_{r2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1.
\]

Theorem C ([6]). For \(n \geq 3 \),
\[
\gamma_{r2}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor.
\]

Theorem D ([1]). If \(G \) is a graph of order \(n \), then
\[
\gamma_{rk}(G) \leq n - \Delta(G) + k - 1.
\]

Theorem E ([9]). Let \(G \) be a connected graph. If there is a path \(v_3v_2v_1 \) in \(G \) with \(\deg(v_2) = 2 \) and \(\deg(v_1) = 1 \), then \(G \) has a \(\gamma_{r2}(G) \)-function \(f \) such that \(f(v_1) = \{1\} \), and \(2 \in f(v_3) \).

Since the function \(f \) defined by \(f(v) = \{1\} \) for each \(v \in V(G) \) is a GkRDF of a graph \(G \), we have the first part of the following observation. The second part is easy to see and therefore its proof is omitted.

Observation 1. If \(G \) is a graph of order \(n \), then \(\gamma_{rk}(G) \leq n \). Furthermore, if \(1 \leq n \leq 4 \), then \(\gamma_{rk}(G) = n \).

2. Graphs with \(\gamma_{rk}(G) = \gamma_{grk}(G) \)

In this section we provide some sufficient conditions for a graph to satisfy \(\gamma_{rk}(G) = \gamma_{grk}(G) \).

Proposition 1. If \(G \) is a disconnected graph with at least two components of order at least \(k \), then
\[
\gamma_{grk}(G) = \gamma_{rk}(G).
\]

 Proof. Let \(G_1, G_2, \ldots, G_k \) be the components of \(G \). Assume, without loss of generality, that \(|V(G_i)| \geq k \) for \(i = 1, 2 \). Let \(f \) be a \(\gamma_{rk}(G) \)-function. Obviously, \(\sum_{v \in V(G_i)} |f(v)| \geq k \) for \(i = 1, 2 \). If \(f(x) = \emptyset \) for some \(x \in V(G_i) \), then clearly \(\bigcup_{v \in V(G_i)} f(v) = \{1, 2, \ldots, k\} \), otherwise we may assume \(\bigcup_{v \in V(G_i)} f(v) = \{1, 2, \ldots, k\} \) for \(i = 1, 2 \) because \(|V(G_1)| \geq k \) and \(|V(G_2)| \geq k \). Then \(f \) is a GkRDF of \(G \) and hence \(\gamma_{grk}(G) \leq \gamma_{rk}(G) \). Now the result follows from (1.1). \(\square \)

According to Proposition 1, if \(G \) is the disjoint union of two copies of the complete graph \(K_n \) \((n \geq k)\), then \(\gamma_{grk}(G) = \gamma_{rk}(G) \).

Proposition 2. If \(G \) is a disconnected graph with \(r \geq 2 \) components \(G_1, G_2, \ldots, G_r \) of order at most \(k - 1 \) such that \(\sum_{i=1}^{r} |V(G_i)| \geq k \), then
\[
\gamma_{grk}(G) = \gamma_{rk}(G).
\]

 Proof. Assume that \(\bigcup_{i=1}^{r} V(G_i) = \{v_1, v_2, \ldots, v_s\} \), and let \(f \) be a \(\gamma_{rk}(G) \)-function. Then clearly \(f(v_i) \neq \emptyset \) for each \(i \). Define \(g : V(G) \rightarrow \mathcal{P}\{\{1, 2, \ldots, k\}\} \) by \(g(v_i) = \{k - i - 1\} \) for \(1 \leq i \leq k - 1 \), \(g(v_i) = \{1\} \) for \(i = k, k + 1, \ldots, s \) and \(g(x) = f(x) \)
for \(x \in V(G) - \{v_1, v_2, \ldots, v_s\} \). Then obviously \(g \) is a GkRDF of \(G \) of weight \(\omega(g) = \gamma_{grk}(G) \) and the proof is complete. \(\Box \)

According to Proposition 2, if \(G \) is the disjoint union of \(k \) copies of \(K_1 \) and a copy of the complete graph \(K_n (n \geq k) \), then \(\gamma_{grk}(G) = \gamma_{r_k}(G) \).

Theorem 1. For any connected graph \(G \) with radius \(\text{rad}(G) \geq 4 \), \(\gamma_{gr2}(G) = \gamma_{r2}(G) \).

Proof. Let \(f = (V_0, V_1, V_2, V_{1,2}) \) be a \(\gamma_{r2}(G) \)-function such that \(|V_{1,2}| \) is maximum. We show that \(f \) is a G2RDF of \(G \). Suppose to the contrary that \(f \) is not a 2RDF of \(G \). Then there exists a vertex \(v \in V_0 \) such that \(V_{1,2} \subseteq N(v) \) and either \(V_1 \subseteq N(v) \) or \(V_2 \subseteq N(v) \). Assume, without loss of generality, that \(V_1 \subseteq N(v) \). Let \(u \) be an arbitrary vertex in \(V(G) \). If \(u \in V_1 \cup V_{1,2} \), then \(d(u, v) = 1 \). If \(u \in V_0 \), then \(u \) and \(v \) have a common neighbor in \(V_1 \) or \(V_{1,2} \) implying that \(d(u, v) \leq 2 \). Let \(u \in V_2 \). If \(u \) has a neighbor in \(V_1 \cup V_{1,2} \), then \(d(u, v) \leq 2 \) as above. If \(u \) has a neighbor \(w \) in \(V_0 \), then \(d(u, v) \leq d(u, w) + d(w, v) \leq 3 \). Otherwise, since \(G \) is connected, \(u \) has a neighbor \(x \) in \(V_2 \). Then the function \(g \) defined by \(g(u) = \emptyset, g(x) = \{1, 2\} \) and \(g(y) = f(y) \) for \(y \in V(G) - \{u, x\} \), is a \(\gamma_{r2}(G) \)-function which contradicts the choice of \(f \). Thus \(f \) is a G2RDF of \(G \) and the proof is complete. \(\Box \)

Corollary 1. Let \(G \) be a connected graph of diameter \(\text{diam}(G) \geq 7 \). Then

\[\gamma_{gr2}(G) = \gamma_{r2}(G). \]

The next results is an immediate consequence of Theorems B, C and 1.

Corollary 2. For \(n \geq 8 \),

\[\gamma_{gr2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1. \]

Corollary 3. For \(n \geq 8 \),

\[\gamma_{gr2}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor. \]

3. Bounds on the Global \(k \)-Rainbow Domination Number

In this section we present some sharp lower and upper bounds on \(\gamma_{grk}(G) \).

Proposition 3. For any integer \(k \geq 2 \) and any graph \(G \) of order \(n \geq 2k \),

\[\gamma_{grk}(G) \geq 2k. \]

Proof. Let \(f \) be a \(\gamma_{grk}(G) \)-function, and let \(V_0 = \{v \in V(G) \mid f(v) = \emptyset\} \). If \(V_0 = \emptyset \), then \(\gamma_{grk}(G) = n \geq 2k \). Let \(V_0 \neq \emptyset \) and \(v \in V_0 \). Then \(\bigcup_{x \in N_G(v)} f(x) = \{1, 2, \ldots, k\} \) and \(\bigcup_{x \in N_G(v)} f(x) = \{1, 2, \ldots, k\} \). Since \(N_G(v) \cap N_G(v) = \emptyset \), we obtain \(\gamma_{grk}(G) = \omega(f) \geq 2k \), as desired. \(\Box \)
This bound is sharp for the disjoint union of two copies of the complete graph \(K_n \) \((n \geq k + 1)\).

Proposition 4. For any graph \(G \) of order \(n \geq 4 \), \(\gamma_{gr2}(G) = 4 \) if and only if \(G \) satisfies one of the following properties.

(i) \(n = 4 \),

(ii) there exist two vertices \(u \) and \(v \) in \(G \) such that \(N(u) \cap N(v) = \emptyset \) and \(N[u] \cup N[v] = V \).

(iii) there exist three distinct vertices \(u, v, w \) in \(G \) such that \(N(u) \cap (N(v) \cup N(w)) = \emptyset \) and \(N(u) \cup (N(v) \cap N(w)) = V - \{u, v, w\} \).

(iv) there exist four distinct vertices \(u, v, w, x \) in \(G \) such that \((N(u) \cap N(v)) \setminus \{w, x\} = \emptyset, (N(w) \cap N(x)) \setminus \{u, v\} = \emptyset, (N[u] \cup N[v]) \setminus \{w, x\} = V - \{w, x\} \) and \((N[w] \cup N[x]) \setminus \{u, v\} = V - \{u, v\} \).

Proof. If \(n = 4 \), then it is clear that \(\gamma_{gr2}(G) = 4 \). Let \(n \geq 5 \). If (ii) holds, then the function \(f : V \rightarrow \mathcal{P}(\{1, 2\}) \) defined by \(f(u) = f(v) = \{1, 2\} \) and \(f(z) = \emptyset \) for \(z \in V(G) - \{u, v\} \), is a 2RDF of \(G \) and \(\overline{G} \) which yields \(\gamma_{gr2}(G) = 4 \) by Proposition 3.

If (iii) holds, then the function \(f : V \rightarrow \mathcal{P}(\{1, 2\}) \) defined by \(f(u) = \{1\}, f(w) = \{2\} \) and \(f(z) = \emptyset \) for \(z \in V(G) - \{u, v, w\} \), is a 2RDF of \(G \) and \(\overline{G} \) which yields \(\gamma_{gr2}(G) = 4 \) again. Let (iv) hold. Then the function \(f : V \rightarrow \mathcal{P}(\{1, 2\}) \) defined by \(f(u) = \{1\}, f(w) = \{2\} \) and \(f(z) = \emptyset \) for \(z \in V(G) - \{u, v, w, x\} \), is a 2RDF of \(G \) and \(\overline{G} \). This implies that \(\gamma_{gr2}(G) = 4 \).

Conversely, Let \(\gamma_{gr2}(G) = 4 \) and let \(f = (V_0, V_1, V_2, V_{1,2}) \) be a \(\gamma_{gr2}(G) \)-function such that \(|V_{1,2}| \) is maximum. We consider three cases.

Case 1. \(|V_{1,2}| = 2 \).

Let \(V_{1,2} = \{u, v\} \). Then \(V_0 = V(G) - \{u, v\} \). Since \(f \) is a G2RDF, each vertex in \(w \in V(G) - \{u, v\} \) must be adjacent to a vertex in \(\{u, v\} \) in both \(G \) and \(\overline{G} \). It follows that \(N[u] \cup N[v] = V \) and \(N(u) \cap N(v) = \emptyset \), i.e. \(G \) satisfies (ii).

Case 2. \(|V_{1,2}| = 1 \).

Then \(|V_1| = |V_2| = 1 \). Let \(V_{1,2} = \{u\}, V_1 = \{v\} \) and \(V_2 = \{w\} \). Hence \(V_0 = V(G) - \{u, v, w\} \). Every vertex of \(w \in V(G) - \{u, v, w\} \) must be adjacent to \(u \) or both of \(u, v \) in \(G \) and \(\overline{G} \) because \(f \) is a 2RDF of \(G \) and \(\overline{G} \). This yields \(N(u) \cap (N(v) \cup N(w)) = \emptyset \) and \(N(u) \cup (N(v) \cup N(w)) = V - \{u, v, w\} \). Thus \(G \) satisfies (iii) in this case.

Case 3. \(|V_{1,2}| = 0 \).

If \(V_0 = \emptyset \), then \(V_1 \cup V_2 = V(G) \) which implies that \(4 = \gamma_{gr2}(G) = |V_1 \cup V_2| = n \), i.e. \(G \) satisfies (i). Now assume that \(V_0 \neq \emptyset \) and let \(z \in V_0 \). Since \(f \) is a 2RDF of \(G \) and \(\overline{G} \), \(\bigcup_{v \in \mathbb{N}_G(z)} f(v) = \{1, 2\} \) and \(\bigcup_{v \in \mathbb{N}_{\overline{G}}(z)} f(v) = \{1, 2\} \). Assume that \(u, w \in \mathbb{N}_G(z) \) and \(x, v \in \mathbb{N}_{\overline{G}}(z) \) such that \(f(u) = f(v) = \{1\} \) and \(f(w) = f(x) = \{2\} \). Since \(f \) is a G2RDF, each vertex in \(V(G) - \{u, v, w, x\} \) must be adjacent to a vertex in \(\{u, v\} \) and a vertex in \(\{w, x\} \) in \(G \) and \(\overline{G} \). It follows that \((N(u) \cap N(v)) \setminus \{w, x\} = \emptyset, (N(w) \cap N(x)) \setminus \{u, v\} = \emptyset, (N[u] \cup N[v]) \setminus \{w, x\} = V - \{w, x\} \) and \((N[w] \cup N[x]) \setminus \{u, v\} = V - \{u, v\} \). Thus \(G \) satisfies (iv). This completes the proof. \(\square \)
Proposition 5. Let $k \geq 2$ be an integer. If the graph G has $r \geq 1$ components G_1, G_2, \ldots, G_r with $\sum_{i=1}^{r} |V(G_i)| \leq k - 1$ then
\[\gamma_{grk}(G) \leq \gamma_{rk}(G) + k - \sum_{i=1}^{r} |V(G_i)|. \]

Proof. Let $\bigcup_{i=1}^{r} V(G_i) = \{v_1, v_2, \ldots, v_s\}$, and let f be a $\gamma_{rk}(G)$-function. Clearly, $f(v_i) \neq \emptyset$ for each i. Define $g : V(G) \to \mathcal{P}\{1, 2, \ldots, k\}$ by $g(v_i) = \{s, s + 1, \ldots, k\}$, $g(v_i) = \{i\}$ for $i = 1, 2, \ldots, s - 1$ and $g(x) = f(x)$ for $x \in V(G) - \{v_1, v_2, \ldots, v_s\}$. Then obviously g is a $GkRDGF$ of G with weight $\omega(g) = \gamma_{rk}(G) + k - s$ and so $\gamma_{grk}(G) \leq \gamma_{rk}(G) + k - \sum_{i=1}^{r} |V(G_i)|$. □

Let H be the disjoint union of $r \leq k - 1$ isolated vertices and a star $K_{1,s}$ with $s \geq k$. Then $\gamma_{rk}(H) = r + k$ and $\gamma_{grk}(H) = 2k$. This example demonstrates that Proposition 5 is tight.

Proposition 6. Let G be a graph of order $n \geq 4$ and $u, v \in V(G)$. If $uv \not\in E(G)$, then
\[\gamma_{grk}(G) \leq n - \deg(u) - \deg(v) + 2|N(u) \cap N(v)| + 2k - 2, \]
and if $uv \in E(G)$, then
\[\gamma_{grk}(G) \leq n - \deg(u) - \deg(v) + 2|N(u) \cap N(v)| + 2k. \]

Proof. Define $f : V(G) \to \mathcal{P}\{1, 2, \ldots, k\}$ as follows
\[f(z) = \begin{cases}
\{1, 2, \ldots, k\} & \text{if } z \in \{u, v\} \\
\emptyset & \text{if } z \in ((N(u) \cup N(v)) - \{u, v\}) \setminus (N(u) \cap N(v)) \\
\{1\} & \text{otherwise.}
\end{cases} \]

It is easy to see that f is a $GkRDGF$ of G which attains the bound. This completes the proof. □

Corollary 4. If G is a connected triangle-free graph of order $n \geq 4$, then
\[\gamma_{grk}(G) \leq \min\{n - \Delta(G) - \delta(G) + 2k, \gamma_{rk}(G) + 2k - 1\}. \]

Proof. By considering a vertex of maximum degree and one of its neighbors, it follows from Proposition 6 that $\gamma_{grk}(G) \leq n - \Delta(G) - \delta(G) + 2k$. Hence, it is sufficient to show that $\gamma_{grk}(G) \leq \gamma_{rk}(G) + 2k - 1$. If $n \leq \gamma_{rk}(G) + 2k - 1$, the result is immediate. Let $n > \gamma_{rk}(G) + 2k - 1$ and let f be a $\gamma_{rk}(G)$-function. Then there exists a vertex u such that $f(u) = \emptyset$. Then u has a neighbor v such that $|f(v)| \geq 1$. Define $g : V(G) \to \mathcal{P}\{1, 2, \ldots, k\}$ by $g(u) = g(v) = \{1, 2, \ldots, k\}$ and $g(x) = f(x)$ otherwise. Clearly, g is a $GkRDGF$ of G and hence $\gamma_{grk}(G) \leq \gamma_{rk}(G) + 2k - 1$. This completes the proof. □
Proposition 7. Let \(k \geq 2 \) be an integer, and let \(G \) be a graph of diameter \(\text{diam}(G) \geq 5 \). Then

\[
\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + 2k - 2.
\]

Proof. If \(G \) is disconnected, then the result follows from Propositions 1 and 5. Henceforth, we assume that \(G \) is connected. Let \(f \) be a \(\gamma_{rk}(G) \)-function. Let \(v_1v_2\ldots v_d \) be a diametral path in \(G \). If \(f(v_1) = f(v_d) = \emptyset \), then we have \(\bigcup_{x \in N(v_1)} f(x) = \{1, 2, \ldots, k\} \) and \(\bigcup_{x \in N(v_d)} f(x) = \{1, 2, \ldots, k\} \). Since \(\text{diam}(G) \geq 5 \), we have \(N(v_1) \cap N(v_d) = \emptyset \). It follows that \(f \) is a GkRDF of \(G \) and hence \(\gamma_{g\text{-rk}}(G) = \gamma_{rk}(G) \). If \(f(v_1) \neq \emptyset \) and \(f(v_d) \neq \emptyset \), then the function \(g : V \to \mathcal{P}\{1, 2, \ldots, k\} \) defined by \(g(v_1) = g(v_d) = \{1, 2, \ldots, k\} \) and \(g(x) = f(x) \) for \(x \in V(G) - \{v_1, v_d\} \), is a GkRDF of \(G \) of weight at most \(\omega(f) + 2k - 2 \) and so \(\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + 2k - 2 \). Now let \(f(v_1) = \emptyset \) and \(f(v_d) \neq \emptyset \) (the case \(f(v_1) \neq \emptyset \) and \(f(v_d) = \emptyset \) is similar). Define \(g : V \to \mathcal{P}\{1, 2, \ldots, k\} \) by \(g(v_d) = \{1, 2, \ldots, k\} \) and \(g(x) = f(x) \) for \(x \in V(G) - \{v_d\} \). Obviously, \(g \) is a GkRDF of \(G \) of weight at most \(\omega(f) + k - 1 \) and so \(\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + k - 1 \). This completes the proof. \(\square \)

Proposition 8. If \(G \) is a graph of diameter 3 or 4, then

\[
\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + 2k.
\]

Proof. Let \(f \) be a \(\gamma_{rk}(G) \)-function, and let \(u \) and \(v \) be two vertices of \(G \) such that \(d(u, v) = \text{diam}(G) \). Then the function \(g : V \to \mathcal{P}\{1, 2, \ldots, k\} \) defined by \(g(u) = g(v) = \{1, 2, \ldots, k\} \) and \(g(x) = f(x) \) for \(x \in V(G) - \{u, v\} \), is a GkRDF of \(G \) and therefore \(\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + 2k \). \(\square \)

Theorem 2. If \(G \) is a graph of order \(n \geq 4 \) with minimum degree \(\delta(G) \), then

\[
\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + \delta(G) + k - 1.
\]

This bound is sharp for stars \(K_{1,t} \) (\(t \geq 2k - 1 \)) by Proposition 3.

Proof. If \(G \) is disconnected, then the result follows from Propositions 1 and 5. Therefore we assume that \(G \) is connected. Let \(u \) be a vertex of minimum degree \(\delta(G) \), \(f \) be a \(\gamma_{rk}(G) \)-function and \(B = \{x \in N(u) \mid f(x) = \emptyset\} \).

If \(f(u) = \emptyset \), then \(\bigcup_{v \in N(u) - B} f(v) = \{1, 2, \ldots, k\} \). Then obviously the function \(g : V(G) \to \mathcal{P}\{1, 2, \ldots, k\} \) defined by \(g(u) = \{1, 2, \ldots, k\} \), \(g(x) = \{1\} \) if \(x \in B \) and \(g(z) = f(z) \) otherwise, is a GkRDF of \(G \) with weight at most \(\gamma_{rk}(G) + \delta(G) + k - 1 \) and hence \(\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + \delta(G) + k - 1 \).

Let \(|f(u)| \geq 1 \). Define \(g : V(G) \to \mathcal{P}\{1, 2, \ldots, k\} \) by \(g(u) = \{1, 2, \ldots, k\} \), \(g(v) = \{1\} \) if \(v \in B \) and \(g(z) = f(z) \) for each \(z \in V(G) - (B \cup \{u\}) \). It is clear that \(g \) is a GkRDF of \(G \) with weight at most \(\gamma_{rk}(G) + \delta(G) + k - 1 \) and hence \(\gamma_{g\text{-rk}}(G) \leq \gamma_{rk}(G) + \delta(G) + k - 1 \). This completes the proof. \(\square \)
4. Global rainbow domination numbers of trees

According to Theorem 2, for any tree T of order $n \geq 4$ we have

$$\gamma_{gr2}(T) \leq \gamma_{r2}(T) + 2. \quad (4.1)$$

In this section we characterize all extremal trees attaining equality in (4.1). We begin with some lemmas giving some sufficient conditions for a tree to have global 2-rainbow domination number less than $\gamma_{r2}(T) + 2$. As a special case, Corollary 1 and Proposition 3 imply the next results.

Corollary 5. For any tree T with $\text{diam}(T) \geq 7$, $\gamma_{gr2}(T) = \gamma_{r2}(T)$.

Corollary 6. If T is a star of order $n \geq 4$, then $\gamma_{gr2}(T) = \gamma_{r2}(T) + 2$.

Lemma 1. Let T be a tree. If T has two strong support vertices, then $\gamma_{gr2}(T) \leq \gamma_{r2}(T) + 1$.

Proof. Let u and v be two strong support vertices of T and let f be a $\gamma_{r2}(T)$-function. Obviously we may assume that $f(u) = f(v) = \{1, 2\}$. Since T is a tree, u and v have at most one common neighbor. If u and v have no common neighbor, then clearly f is a G2RDF of T and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. If u and v have a common neighbor, say w, then the function g defined by $g(w) = f(w) \cup \{1\}$ and $g(x) = f(x)$ otherwise, is a G2RDF of T of weight at most $\gamma_{r2}(T) + 1$ and the result follows.

Lemma 2. Let T be a tree. If $\text{diam}(T) = 6$, then $\gamma_{gr2}(T) = \gamma_{r2}(T)$.

Proof. Let $P = v_1v_2 \ldots v_7$ be a diametral path of T and let f be a $\gamma_{r2}(T)$-function. Root T at v_1. If v_2 and v_6 are strong support vertices, then f is a $\gamma_{gr2}(T)$-function since v_2 and v_6 have no common neighbor. Hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Assume, without loss of generality, that $\text{deg}(v_2) = 2$. By Theorem E, we may assume $f(v_1) = \{1\}$ and $2 \in f(v_3)$. If v_6 is a strong support vertex, then we can assume $f(v_6) = \{1, 2\}$ and clearly f is a G2RDF of T implying that $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Henceforth, we assume $\text{deg}(v_6) = 2$. By Theorem E, we may assume $f(v_7) = \{1\}$ and $2 \in f(v_5)$. Define the function g by $g(v) = \{1\}$ if $v \in V(T_{v_9})$ and $f(v) = \{2\}$, $g(v) = \{2\}$ if $v \in V(T_{v_8})$ and $f(v) = \{1\}$ and $g(x) = f(x)$ otherwise. Clearly, g is a G2RDF of T of weight $\gamma_{r2}(T)$ and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. This completes the proof.

Lemma 3. Let T be a tree. If $\text{diam}(T) = 5$, then $\gamma_{gr2}(T) \leq \gamma_{r2}(T) + 1$.

Proof. Let $P = v_1v_2 \ldots v_6$ be a diametral path of T, and let f be a $\gamma_{r2}(T)$-function. If v_2 and v_5 are strong support vertices, then f is a $\gamma_{gr2}(T)$-function and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Assume, without loss of generality, that all support vertices adjacent to v_4 have degree 2. By Theorem E, we may assume $f(v_6) = \{1\}$ and $2 \in f(v_4)$. Then the function g defined by $g(v_3) = f(v_3) \cup \{1\}$ and $g(x) = f(x)$ otherwise, is a G2RDF of T of weight at most $\gamma_{r2}(T) + 1$ that implies $\gamma_{gr2}(T) \leq \gamma_{r2}(T) + 1$. \hfill \Box
A subdivision of an edge uv is obtained by removing the edge uv, adding a new vertex w, and adding edges uw and wv. The subdivision graph $S(G)$ is the graph obtained from G by subdividing each edge of G. The subdivision star $S(K_{1,t})$ for $t \geq 2$, is called a healthy spider. A wounded spider S_t is the graph formed by subdividing at most $t-1$ of the edges of a star $K_{1,t}$ for $t \geq 2$. The center of a spider, is the center of the star whose subdivision produced the spider.

Definition 1. For $1 \leq i \leq 2$, let \mathcal{B}_i be the family of trees T defined as follows and let $\mathcal{B} = \bigcup_{i=1}^{2} \mathcal{B}_i$.

$\mathcal{B}_1 : T$ is a spider S_t for some $t \geq 2$ with exception of stars, wounded spiders S_t ($t \geq 3$) with exactly one wounded leg or wounded spiders S_t ($t \geq 3$) with at least four healthy legs.

$\mathcal{B}_2 : T$ is obtained from stars $K_{1,r_1}, K_{1,r_2}, \ldots, K_{1,r_j}$ where $r_k \geq 3$ for $1 \leq k \leq j$, with centers y_1, y_2, \ldots, y_j ($j \geq 2$) by adding a new vertex x and joining x to all vertices y_j and adding at most one pendant edge at x.

Lemma 4. Let T be a tree. If $\text{diam}(T) = 4$, then $\gamma_{gr2}(T) \leq \gamma_{r2}(T) + 1$ and equality holds if and only if $T \in \mathcal{B}$.

Proof. Let $\text{diam}(T) = 4$ and let $P = v_1v_2v_3v_4v_5$ be a diametral path of T. Let f be a $\gamma_{r2}(T)$-function. Consider the following cases.

Case 1. $\deg(v_2) = 3$.

Suppose u, v_1 are the leaves adjacent to v_2. Then we can assume that $f(v_2) = \{1, 2\}$. If $\deg(v_4) \geq 3$, then we may assume $f(v_4) = \{1, 2\}$ and if $\deg(v_4) = 2$ then by Theorem E we can assume $f(v_5) = \{1\}$ and $2 \in f(v_3)$. Define $g : V(T) \rightarrow \mathcal{P}(\{1, 2\})$ by $g(v_1) = \{1\}, g(u) = \{2\}, g(v_2) = \emptyset$ and $g(x) = f(x)$ otherwise. Obviously g is a G2RDF of T of weight $\gamma_{r2}(T)$ and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$.

By Case 1, we may assume that all support vertices adjacent to v_3 have degree different from 3.

Case 2. $\deg(v_2) > 3$.

Then $f(v_2) = \{1, 2\}$. If $\deg(v_4) = 2$, then by Theorem E we may assume $f(v_5) = \{1\}$ and $2 \in f(v_3)$, and clearly f is a G2RDF of T and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. So we assume that each support vertex adjacent to v_3 has degree at least 4. If v_3 is a strong support vertex, then $f(v_3) = \{1, 2\}$ and clearly f is a G2RDF of T and hence $\gamma_{gr2}(T) = \gamma_{r2}(T)$. Let v_3 be not a strong support vertex. Then $T \in \mathcal{B}_2$ and T has at most two $\gamma_{r2}(T)$-functions which none of them is G2RDF of T and hence $\gamma_{gr2}(T) \geq \gamma_{r2}(T) + 1$. On the other hand, the function g defined by $g(v_3) = \{1\}$ and $g(x) = f(x)$ otherwise is a G2RDF of T of weight $\gamma_{r2}(T) + 1$ implying that $\gamma_{gr2}(T) = \gamma_{r2}(T) + 1$.

By Cases 1 and 2, we may assume that all support vertices adjacent to v_3 have degree 2. Thus T is a spider of diameter 4. If T is a wounded spiders S_t ($t \geq 3$) with exactly one wounded leg, then the function g that assigns \emptyset to all support vertices
of T with exception of the center of spider, $\{1\}$ to the center of spider and the leaf adjacent to the center of spider, and $\{2\}$ to the other leaves, is a G2RDF of T of weight $\gamma_{r2}(T)$ implying that $\gamma_{g \cdot r2}(T) = \gamma_{r2}(T)$. Now T is a wounded spider S_t ($t \geq 3$) with at least four healthy legs. Suppose x is the center of T and u_1, u_2, u_3, u_4 are leaves at distance two from x. Then the function g that assigns $\{1, 2\}$ to x, \emptyset to all support vertices of T, $\{1\}$ to u_1, u_2, and $\{2\}$ to the other leaves, is a G2RDF of T of weight $\gamma_{r2}(T)$ implying that $\gamma_{g \cdot r2}(T) = \gamma_{r2}(T)$. Finally let T be a spider that is not a wounded spider S_t ($t \geq 3$) with exactly one wounded leg or a wounded spider S_t ($t \geq 3$) with at least four healthy legs, that is $T \in \mathcal{B}_1$. It is easy to see that in this case $\gamma_{g \cdot r2}(T) = \gamma_{r2}(T) + 1$ and the proof is complete. □

For $p, q \geq 1$, a double star $DS(p, q)$ is a tree with exactly two vertices that are not leaves, with one adjacent to p leaves and the other to q leaves.

Lemma 5. Let T be a tree. If $\text{diam}(T) = 3$, then $\gamma_{g \cdot r2}(T) \leq \gamma_{r2}(T) + 1$ and equality holds if and only if $T = DS(p, q)$ with $q \geq p = 1$.

Proof. Let $\text{diam}(T) = 3$. Then T is a double star $DS(p, q)$ with $q \geq p \geq 1$. Let u, v be the vertices of T of degree p and q, respectively. If $p \geq 2$, then u, v are strong support vertices with no common neighbor and it follows from the proof of Lemma 1 that $\gamma_{g \cdot r2}(T) = \gamma_{r2}(T)$. Henceforth, assume $p = 1$. If $q = 1$, then $T = P_4$ and clearly $\gamma_{g \cdot r2}(T) = \gamma_{r2}(T) + 1$. Let $q \geq 2$ and u' be the leaf adjacent to u. Then T has exactly two $\gamma_{r2}(T)$-functions f_i ($i = 1, 2$) defined by $f_i(v) = \{1, 2\}$, $f_i(u') = \{i\}$ and $f_i(x) = \emptyset$ otherwise. Obviously, none of f_1 or f_2 is not a G2RDF of T and also the function g defined by $g(u) = \{1\}$ and $g(x) = f_1(x)$ for $x \in V(T) \setminus \{u\}$ is a G2RDF of T that yields $\gamma_{g \cdot r2}(T) \geq \gamma_{r2}(T) + 1$. □

The next theorem is an immediate consequence of (4.1), Corollaries 5, 6 and Lemmas 2, 3, 4, 5.

Theorem 3. Let T be a tree of order $n \geq 4$. Then $\gamma_{g \cdot r2}(T) = \gamma_{r2}(T) + 2$ if and only if T is the star $K_{1,t}$ for some $t \geq 3$.

ACKNOWLEDGEMENT

The authors would like to thank anonymous referees for their remarks and suggestions that helped improve the manuscript.

REFERENCES

GLOBAL RAINBOW DOMINATION IN GRAPHS

Authors’ addresses

J. Amjadi
Azarbaijan Shahid Madani University, Department of Mathematics, Tabriz, I.R. Iran
E-mail address: j-amjadi@azaruniv.edu

S.M. Sheikholeslami
Azarbaijan Shahid Madani University, Department of Mathematics, Tabriz, I.R. Iran
E-mail address: s.m.sheikholeslami@azaruniv.edu

L. Volkmann
RWTH Aachen University, Lehrstuhl II für Matematik, 52056, Aachen, Germany
E-mail address: volkm@math2.rwth-aachen.de