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Abstract. The first geometric-arithmetic (GA) index and atom-bond connectivity (ABC) index
are molecular structure descriptors which play a significant role in quantitative structure-property
relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies. Das and
Trinajstić [Chem. Phys. Lett. 497 (2010) 149-151] showed that GA index is greater than ABC
index for all those graphs (except K1;4 and T �, see Figure 1) in which the difference between
maximum and minimum degree is less than or equal to 3. In this note, it is proved that GA index
is greater than ABC index for line graphs of molecular graphs, for general graphs in which the
difference between maximum and minimum degree is less than or equal to .2ı�1/2 (where ı is
the minimum degree and ı � 2) and for some families of trees. Therefore, a partial solution to
an open problem proposed by Das and Trinajstić is given.
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1. INTRODUCTION

Let G D .V;E/ denote a graph with vertex set V.G/D fv1;v2; : : : ;vng and edge
set E.G/ such that jE.G/j Dm. Suppose that di is the degree of a vertex vi 2 V.G/

[18]. All the graphs considered in this study are simple, finite and undirected.
Topological indices are numerical parameters of a graph which are invariant un-

der graph isomorphisms. They play a significant role in mathematical chemistry
especially in the quantitative structure-property relationship (QSPR) and quantitative
structure-activity relationship (QSAR) investigations [8, 17]. A whole class of topo-
logical indices is the “geometric-arithmetic indices” whose general definition is as
follows [12, 21]:

GAgeneral DGAgeneral.G/D
X

ij2E.G/

p
QiQj

1
2
.Qi CQj /

;
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where Qi is some quantity that can be associated with the vertex vi of the graph
G in a unique manner. The first geometric-arithmetic (GA) index was proposed by
Vukičević and Furtula [21] by settingQi as the degree di of the vertex vi of the graph
G:

GA.G/D
X

ij2E.G/

p
didj

1
2
.di Cdj /

:

It has been demonstrated, on the example of octane isomers, that GA index is well-
correlated with a variety of physico-chemical properties [21]. The details about math-
ematical properties of the GA indices and their applications in QSPR and QSAR can
be found in the survey [5] reported by Das, Gutman and Furtula.

Estrada et al. [11] proposed a topological index, known as the atom-bond con-
nectivity (ABC) index of graph G, which is abbreviated as ABC(G) and defined as

ABC.G/D
X

ij2E.G/

s
di Cdj �2

didj
:

The ABC index provides a good model for the stability of linear and branched
alkanes as well as the strain energy of cycloalkanes [10, 11]. Due to its physico-
chemical applicability, the ABC index has attracted significant attention from re-
searchers in recent years and many mathematical properties of this index were repor-
ted. For instance, see the papers [3, 4, 7, 13, 14, 19, 22, 23], more precisely the recent
ones [2, 9, 15, 20] and references cited therein.

A graph having maximum vertex degree at most 4 is known as a molecular graph.
The line graph L.G/ of a graph G has the vertex set V.L.G// D E.G/ where the
two vertices of L.G/ are adjacent if and only if the corresponding edges of G are
adjacent; detailed properties of a line graph can be found in [18]. Some possible
chemical applications of line graphs of molecular graphs were discussed in [16]. Das
and Trinajstić [6] compared the GA and ABC indices for molecular graphs and for
general graphs in which the difference between maximum and minimum degree is
less than or equal to three. Recently, the current authors [1] derived a relation between
GA index and ABC index. In the present work, these two indices are compared for
line graphs of molecular graphs, for general graphs in which the difference between
maximum and minimum degree is less than or equal to .2ı � 1/2 (where ı is the
minimum degree and ı � 2) and for some families of trees.

2. PRELIMINARIES

The maximum and minimum vertex degree in a graph G are denoted by � and ı
respectively. Also, a vertex of the graph G is said to be pendant if its neighborhood
contains exactly one vertex. While, an edge of a graph is said to be pendant if one of
its vertices is pendant.
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FIGURE 1. The molecular graphs K1;4 and T �

The unionH [K of two graphsH andK is the graph with the vertex set V.H/[
V.K/ and the edge set E.H/[E.K/. A tree in which exactly one of its vertices
has degree greater than two is known as Starlike tree. Let S.r1; r2; : : : ; rk/ denote the
Starlike tree which has a vertex v of degree k > 2 such that the graph obtained from
S.r1; r2; : : : ; rk/ by removing the vertex v is Pr1

[Pr2
[ � � � [Prk

where Pri
is the

path graph on ri (1 � i � k) vertices. We say that the Starlike tree S.r1; r2; : : : ; rk/
has k branches, the lengths of which are r1; r2; : : : ; rk (r1 � r2 � � � � � rk � 1), and
has

Pk
iD1 ri C1 vertices.

By a trivial graph, we mean a graph having one vertex. Denote by K1;n and Kn

the Star on nC 1 vertices and complete graph on n vertices respectively. A triangle
of a graph G is called odd if there is a vertex of G adjacent to an odd number of its
vertices.

Lemma 1 ([18]). A graph G is a line graph if and only if G does not have K1;3

as an induced subgraph, and if two odd triangles have a common edge then the
subgraph induced by their vertices is K4.

3. COMPARISON BETWEEN GA INDEX AND ABC INDEX

If the graph G has s � 2 components G1;G2; : : : ;Gs , then from the definition of
theGA and ABC indices it follows that ABC.G/D

Ps
iD1ABC.Gi / andGA.G/DPs

iD1GA.Gi /. Moreover, if the graph G is trivial then ABC.G/D GA.G/D 0D
ABC.P2/. Hence it is enough to restrict our considerations to non-trivial and con-
nected graphs only. Denoted by T � the tree on eight vertices, obtained by joining the
central vertices of two copies K1;3 by an edge (see Figure 1). To prove the first main
theorem of this section, we need the following known result:

Theorem 1 ([6]). Let G be a non-trivial and connected graph with maximum de-
gree � and minimum degree ı. If �� ı � 3 and G © K1;4;T

�, then GA.G/ >
ABC.G/.

Letma;b.G/ be the number of edges of a graphG connecting the vertices of degree
a and b. In the following theorem, we compare theGA index and the ABC index for
line graph of a molecular graph:
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Theorem 2. Let M be a molecular (connected) graph with n � 3 vertices and
G Š L.M/. Then GA.G/ > ABC.G/.

Proof. If n� 4 or M Š Pn, then it can be easily seen that G is a molecular graph
which satisfies the hypothesis of Theorem 1 and hence the result follows. Let us as-
sume that n� 5 andM 6ŠPn. Note that 1� di � 6 for all vertices vi ofG. Hence the
edges of G are of possible degree pairs: .6;6/; .6;5/; .6;4/; .6;3/; .6;2/; .6;1/; .5;5/;
.5;4/; .5;3/; .5;2/; .5;1/; .4;4/; .4;3/; .4;2/; .4;1/; .3;3/; .3;2/; .3;1/; .2;2/; .2;1/.

The values of �ij D
2
p

di dj

diCdj
and �ij D

q
diCdj�2

di dj
for all above mentioned degree

pairs are given in the Table 1 and Table 2 (Table 2 is taken from [6]). From these
tables one can note easily that

�ij ��ij

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

�
2
p

6
7
�

q
5
6
��0:2130 if .di ;dj /D .4;1/; .5;1/; .6;1/

� 0:0495 if .di ;dj /D .3;1/

� 0:1589 if .di ;dj /D .6;2/

� 0:1964 if .di ;dj /D .5;2/

� 0:2357 if .di ;dj /D .2;1/; .4;2/

�
2
p

6
5
�

1p
2
� 0:2727 otherwise

(3.1)

It is claimed that
6X

bD2

m1;b.G/� b
jV.G/j

2
c � b

jE.G/j

2
c: (3.2)

The right inequality obviously holds because G contains atleast one cycle. To prove
the left inequality it is enough to show that no two pendent edges of G are adjacent.
Contrarily, suppose that e1 D uv and e2 D uw are pendent edges of G. Since n� 5,
order of G is at least 4. This implies that there exists a vertex t (different from
v;w) adjacent with u in G. Then the graph obtained by removing all vertices except
u;v;w; t of G isK1;3 , a contradiction to the Lemma 1. Now, we consider two cases:

Case 1. If m1;b.G/D 0 for all b � 4, then it follows from (3.1) that �ij ��ij > 0

for all edges ij 2G and hence GA.G/ > ABC.G/.
Case 2. If m1;b.G/D 0 not for all b � 4.

If m2;5.G/Dm2;6.G/D 0, then from (3.1) and (3.2), it follows that

GA.G/�ABC.G/D
X

ij2E.G/

.�ij ��ij / > 0 (3.3)

If at least one of m2;5.G/;m2;6.G/ is nonzero. Consider the edge e D xy 2 G
where degree of x and y is two and c .c D 5;6/ respectively. Let l denote number
of vertices of degree two which are adjacent with y. Then 1 � l � 2 for otherwise
K1;3 would be an induced subgraph of G. Note that the vertex y lies on either of
the cliques Kc�1;Kc of G and hence the edges with possible degree pairs of these



MORE ON COMPARISON BETWEEN GA INDEX AND ABC INDEX 565

TABLE 1. Values of �ij and �ij for all edges with degrees .di ;dj /

where 5� di � 6 and di � dj

.di ;dj / (6,6) (6,5) (6,4) (6,3) (6,2) (6,1) (5,5) (5,4) (5,3) (5,2) (5,1)

�ij 1 2
p

30
11

2
p

6
5

2
p

2
3

p
3

2
2
p

6
7 1 4

p
5

9

p
15
4

2
p

10
7

p
5

3

�ij
1
3

q
5
2

q
3

10
1p
3

1
3

q
7
2

1p
2

q
5
6

2
p

2
5

1
2

q
7
5

q
2
5

1p
2

2p
5

TABLE 2. Values of �ij and �ij for all edges with degrees .di ;dj /

where 2� di � 4 and di � dj

.di ;dj / (4,4) (4,3) (4,2) (4,1) (3,3) (3,2) (3,1) (2,2) (2,1)

�ij 1 4
p

3
7

2
p

2
3 0.8 1 2

p
6

5

p
3

2 1 2
p

2
3

�ij
1
2

q
3
2

1
2

q
5
3

1p
2

p
3

2
2
3

1p
2

q
2
3

1p
2

1p
2

cliques in G are .6;6/; .6;5/; .6;4/; .6;3/; .5;5/; .5;4/; .5;3/; .4;4/; .4;3/; .3;3/. For
all these degree pairs �ij ��ij � 0:2727. Moreover, corresponding to every clique
Kd .d D 4;5;6/ of G, there exist at most 2d edges with degree pairs .2;c/ in G,
where vertex of degree c (that is y) lies on Kd . Since the size of Kd is d.d�1/

2
� 2d

for d � 5. Therefore, if G does not have clique K4, then by using (3.1) and (3.2)
one can easily see that the inequality (3.3) holds. If G has clique K4. It can be easily
seen that no edge with degree pairs .2;6/ can be incident with any vertex of the clique
K4. This implies, corresponding to every clique K4 there exist at most 8 edges with
degree pairs .2;5/, but the size of K4 is 6. Hence

8.0:1964/C6.0:2727/

14
� 0:2291 > 0:2130:

This completes the proof. �

Now, we prove that conclusion of Theorem 2 remains true if minimum degree is
k � 2 and the difference between maximum and minimum degree is less than or equal
to .2k�1/2. To proceed, we need the following lemma:

Lemma 2. If f .x;y/D .xCy/2x2� .xC y
2
/2.2xCy�2/ , k � x � kC .2k�

1/2 and 0� y � .2k�1/2 where k � 2 then f .x;y/ > 0.

Proof. Step 1. Firstly we take x D k, then

g.y/D f .k;y/D .kCy/2k2
� .kC

y

2
/2.2kCy�2/

and g0.y/ > 0 implies that ˛ < y < ˇ, where

˛ D
2

3
.1�3kC2k2/�

2

3

p
1C4k2�6k3C4k4
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and

ˇ D
2

3
.1�3kC2k2/C

2

3

p
1C4k2�6k3C4k4:

It means that g is increasing in the interval .˛;ˇ/ and decreasing in the intervals
.�1;˛/ and .ˇ;1/. Since ˛ < 0 < ˇ < .2k � 1/2, so g is increasing in .0;ˇ/
and decreasing in .ˇ;.2k � 1/2/. Moreover, g.0/ D k2fk2 � 2.k � 1/g > 0 and
g..2k�1/2/D k4Ck2�

k
2
C

1
4
>0. It follows that g.y/> 0 for all y 2 Œ0; .2k�1/2�.

Step 2. Now we take y D y0, where y0 is any fixed integer in the interval Œ0; .2k�
1/2�. Let h.x/D f .x;y0/ then

h0.x/D .2xCy0/

�
.2x2
C2�3x/C

�
2x�

3

2

�
y0

�
> 0

for all x � k � 2. Hence h.x/D f .x;y0/ is increasing in Œk;1/. Combining both
the results proved in Step 1 and Step 2, we have the lemma. �

Theorem 3. Let G be a connected graph with maximum degree � and minimum
degree ı � 2. If �� ı � .2ı�1/2 then GA.G/ > ABC.G/.

Proof. Let us consider the quantity

� D d2
i d

2
j �

1

4
.di Cdj /

2.di Cdj �2/; (3.4)

where di and dj are the degrees of vertices vi and vj respectively in G. Since ı �
di ;dj � � � ıC .2ı � 1/

2 this implies that j di � dj j� .2ı � 1/
2. Without loss

of generality we can suppose that di � dj then di D dj C � for some � ; 0 � � �
.2ı�1/2 and (3.4) becomes

� D
�
dj C�

�2
d2

j �

�
dj C

�

2

�2

.2dj C� �2/; (3.5)

where ı � dj � ıC .2ı�1/
2 and 0� � � .2ı�1/2. Now, from Lemma 2 and (3.5),

we have the desired result. �

If the condition��ı � .2ı�1/2 is replaced by��ı � .2ı�1/2C1 in Theorem
3, then the conclusion may not be true. For instance, consider the complete bipartite
graph Kr;s , if we take r D ı � 2 and s D .2ı�1/2C ıC1 then

GA.Kr;s/D
2
�
ı..2ı�1/2C ıC1/

� 3
2

.2ı�1/2C2ıC1

<

q
ı..2ı�1/2C2ı�1/..2ı�1/2C ıC1/D ABC.Kr;s/:

On the other hand, consider the graph G obtained by joining any vertex of K12 to
a vertex of K3 by an edge. Then � D 12;ı D 2 which means that �� ı D 10 >
.2.2/�1/2, but GA.G/ > ABC.G/. We have the following result:
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Theorem 4. IfG is a connected graph with minimum degree ı � 2 and jdi �dj j �

.2ı�1/2 for all edges ij 2E.G/, then GA.G/ > ABC.G/.

Proof. The proof is similar to the proof of Theorem 3 and hence it is omitted. �

A stronger version of the above result can be analogously proved:

Theorem 5. Let G be a connected graph with minimum degree ı � 2 and jdi �

dj j � .2k � 1/
2 for all edges ij 2 E.G/, where k D minfdi ;dj g. Then GA.G/ >

ABC.G/.

The current authors recently derived the following relation between GA index and
ABC index:

Theorem 6 ([1]). Let G be a connected graph and minimum degree ı � 2, thenp
2.n�2/

n�1
GA.G/� ABC.G/�

nC1

4
p
n�1

GA.G/;

with left equality if and only if G ŠKn and right equality if and only if G Š C3.

Let ı1 be the minimum non-pendant vertex degree in G. Now, we compare GA
index and ABC index for trees.

Theorem 7. If T is a tree with n� 3 vertices such thatm1;b D 0 for all b � 4 and
�� ı1 � .2ı1�1/

2, then GA.T / > ABC.T /.

Proof. Let us consider the difference

GA.T /�ABC.T /D
X

ij2E.T /

.�ij ��ij /

D

X
ij2E.T /;
di¤1¤dj

.�ij ��ij /C
X

ij2E.T /;
diD1 or djD1

.�ij ��ij /:

As m1;b D 0 for all b � 4, from (3.1) it follows thatX
ij2E.T /;

diD1 or djD1

.�ij ��ij / > 0

Now, we have to prove that X
ij2E.T /;
di¤1¤dj

.�ij ��ij / > 0

To do so, let di ;dj � 2 then using the same technique, adopted in the proof of The-
orem 3, we have

d2
i d

2
j �

1

4
.di Cdj /

2.di Cdj �2/ > 0
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which is equivalent to
2
p
didj

di Cdj
>

s
di Cdj �2

didj

which implies that X
ij2E.T /;
di¤1¤dj

 
2
p
didj

di Cdj
�

s
di Cdj �2

didj

!
> 0:

This completes the proof. �

Now, for Starlike tree, we have the following result.

Theorem 8. Let S D S.r1; r2; :::; rk/ be a Starlike tree.
(1) If ri � 4 for all i , then GA.S/ > ABC.S/.

(2) If ri � 2 for all i and

kP
iD1

ri

k
� 4, then GA.S/ > ABC.S/.

(3) If

kP
iD1

ri

k
� 8, then GA.S/ > ABC.S/.

Proof. (1) The edges of S with possible degree pairs are: .2;1/; .2;2/; .k;2/. From
Table 2 we have

�ij ��ij �

(
0:2357 if .di ;dj /D .2;1/

0:2929 if .di ;dj /D .2;2/
(3.6)

Moreover, the function f .k/D �2k ��2k D

�
2
p

2k
kC2
�

1p
2

�
is decreasing in .2;1/

and f .k/!� 1p
2
��0:7071when k!1. Hence we have f .k/>� 1p

2
��0:7071

for all k. Since ri � 4 for all i , this implies that there are k edges with degree pairs
.1;2/, k edges with degree pairs .2;k/ and at least 2k edges with degree pairs .2;2/
in S . This completes the proof of part .1/.

Note that
2
p

di dj

diCdj
�

q
diCdj�2

di dj
>�1 if .di ;dj /D .1;k/ for all k. Using the same

technique, adopted in the proof of part .1/, one can easily prove parts .2/ and .3/. �

Let Wn be the wheel graph of order n. Then

GA.Wn/D .n�1/

 
1C

2
p
3.n�1/

nC2

!
and

ABC.Wn/D .n�1/

�
2

3
C

r
n

3.n�1/

�
:

It can be easily verified that GA.Wn/ > ABC.Wn/ for 4 � n � 194 and GA.Wn/ <

ABC.Wn/ for n� 195. Is there any graph G with the property GA.G/DABC.G/?



MORE ON COMPARISON BETWEEN GA INDEX AND ABC INDEX 569

All our attempts to find such a graph were unsuccessful. We end this section with the
following conjecture.

Conjecture 1. IfG is a non-trivial and connected graph, thenGA.G/¤ABC.G/.

4. CONCLUSION

In [6], comparison between GA index and ABC index for general trees and gen-
eral graphs was left as an open problem. Theorems 2 - 8 provide a partial solution of
this open problem. The complete solution of the said problem remains a task for the
future.
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[13] B. Furtula, A. Graovac, and D. Vukičević, “Atom-bond connectivity index of trees,” Discr. Appl.
Math., vol. 157, no. 13, pp. 2828–2835, 2009.

[14] L. Gan, H. Hou, and B. Liu, “Some results on atom-bond connectivity index of graphs,” MATCH
Commun. Math. Comput. Chem., vol. 66, no. 2, pp. 669–680, 2011.

[15] M. Goubko, C. Magnant, P. S. Nowbandegani, and I. Gutman, “ABC index of trees with fixed
number of leaves,” MATCH Commun. Math. Comput. Chem., vol. 74, no. 1, pp. 697–702, 2015.

[16] I. Gutman and E. Estrada, “Topological indices based on the line graph of the molecular graph,”
J. Chem. Inf. Comput. Sci., vol. 36, no. 1-3, pp. 541–543, 1996, doi: 10.1021/ci950143i.

http://dx.doi.org/10.1016/j.aml.2012.03.021
http://dx.doi.org/10.1016/j.cplett.2011.06.049
http://dx.doi.org/10.1016/j.cplett.2010.07.097
http://dx.doi.org/10.1016/j.dam.2015.10.010
http://dx.doi.org/10.1016/j.cplett.2008.08.074
http://dx.doi.org/10.1007/s10910-009-9584-7
http://dx.doi.org/10.1021/ci950143i


570 ZAHID RAZA, AKHLAQ AHMAD BHATTI, AND AKBAR ALI

[17] I. Gutman and B. Furtula, Novel Molecular Structure Descriptors Theory and Applications.
Kragujevac: Univ. Kragujevac, 2010, vol. I-II.

[18] F. Harary, Graph Theory. Reading: Addison-Wesley, 1969.
[19] W. Lin, T. Gao, Q. Chen, and X. Lin, “On the minimal ABC index of connected graphs with given

degree sequence,” MATCH Commun. Math. Comput. Chem., vol. 69, no. 3, pp. 571–578, 2013.
[20] J. L. Palacios, “A resistive upper bound for the ABC index,” MATCH Commun. Math. Comput.

Chem., vol. 72, no. 3, pp. 709–713, 2014.
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